Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 290
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Mol Cell ; 73(5): 1075-1082.e4, 2019 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-30849388

RESUMEN

High-throughput DNA sequencing techniques have enabled diverse approaches for linking DNA sequence to biochemical function. In contrast, assays of protein function have substantial limitations in terms of throughput, automation, and widespread availability. We have adapted an Illumina high-throughput sequencing chip to display an immense diversity of ribosomally translated proteins and peptides and then carried out fluorescence-based functional assays directly on this flow cell, demonstrating that a single, widely available high-throughput platform can perform both sequencing-by-synthesis and protein assays. We quantified the binding of the M2 anti-FLAG antibody to a library of 1.3 × 104 variant FLAG peptides, exploring non-additive effects of combinations of mutations and discovering a "superFLAG" epitope variant. We also measured the enzymatic activity of 1.56 × 105 molecular variants of full-length human O6-alkylguanine-DNA alkyltransferase (SNAP-tag). This comprehensive corpus of catalytic rates revealed amino acid interaction networks and cooperativity, linked positive cooperativity to structural proximity, and revealed ubiquitous positively cooperative interactions with histidine residues.


Asunto(s)
Anticuerpos/metabolismo , Análisis Mutacional de ADN/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , O(6)-Metilguanina-ADN Metiltransferasa/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Oligopéptidos/metabolismo , Análisis por Matrices de Proteínas/métodos , Afinidad de Anticuerpos , Especificidad de Anticuerpos , Automatización de Laboratorios , Sitios de Unión de Anticuerpos , Catálisis , Análisis Mutacional de ADN/instrumentación , Secuenciación de Nucleótidos de Alto Rendimiento/instrumentación , Cinética , Mutación , O(6)-Metilguanina-ADN Metiltransferasa/genética , Análisis de Secuencia por Matrices de Oligonucleótidos/instrumentación , Oligopéptidos/genética , Análisis por Matrices de Proteínas/instrumentación , Unión Proteica , Ingeniería de Proteínas , Flujo de Trabajo
2.
Anal Chem ; 92(10): 7240-7248, 2020 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-32323972

RESUMEN

The "sample-to-answer" integration and automation of circulating tumor DNA (ctDNA)-based liquid biopsy using digital PCR (dPCR) has been hampered by the complicated operations of liquids with volumes ranging from milliliter samples to nanoliter droplets. On the basis of a "3D extensible" design paradigm proposed previously, an integrated droplet digital PCR (IddPCR) microdevice was successfully developed to automate the entire process of liquid biopsy, from the extraction of ctDNA in 2 mL of plasma using magnetic beads to the generation, amplification, and screening of over 30 000 droplets for detection. A series of reagent mixing structures, including macro-, meso-, and micromixers, was designed to enable efficient reagent handling and mixing at different volume scales. The volume thresholds of the microscale and macroscale in the IddPCR device were calculated to be 40 and 100 µL, respectively, based on the fluid dynamics and sizes of the device structures, so that different mixers can be selected according to the reagent volumes. The DNA extraction efficiency obtained on the device was determined to be ∼60%, and the on-chip ddPCR demonstrated a high correlation with an R2 of 0.9986 between the readouts and the estimations by a Poisson distribution. Finally, the IddPCR microdevice was able to detect rare tumor mutations (T790M) with an occurring frequency as low as ∼1% from 2 mL of human plasma in a "sample-to-answer" manner. This work offers a feasible solution for the automation of liquid biopsy and paves the way for its broad applications in clinics.


Asunto(s)
ADN Tumoral Circulante/genética , Análisis Mutacional de ADN , Reacción en Cadena de la Polimerasa , ADN Tumoral Circulante/sangre , ADN Tumoral Circulante/aislamiento & purificación , Análisis Mutacional de ADN/instrumentación , Humanos , Mutación , Reacción en Cadena de la Polimerasa/instrumentación
3.
Biomed Microdevices ; 22(2): 23, 2020 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-32162067

RESUMEN

Cancer cells release extracellular vesicles known as extracellular vesicles (EVs), containing tumor-derived DNA, RNA and proteins within their cargo, into the circulation. Circulating tumor-derived extracellular vesicles (TEV) can be used in the context of serial "liquid biopsies" for early detection of cancer, for monitoring disease burden in patients, and for assessing recurrence in the post-resection setting. Nonetheless, isolating sufficient TEV by ultracentrifugation-based approaches, in order to enable molecular assessment of EVs cargo, can be an arduous, time-consuming process and is inconsistent in the context of yield and purity among institutions. Herein, we describe a microfluidic platform, which we have named MITEV (Microfluidic Isolation of Tumor-derived Extracellular Vesicles) for the rapid isolation of TEV from the plasma of pancreatic cancer patients. The device, which has ~100,000 pillars placed in a zigzag pattern and is coated with antibodies against generic EV surface proteins (anti-CD63, -CD9, and -CD81 antibodies) or the TEV specific anti-Epithelial Cell Adhesion Molecule (EpCAM) antibody, is capable of high-throughput EVs isolation and yields sufficient DNA (total of ~2-14 ng from 2-ml plasma) for downstream genomic analysis. Using two independent quantitative platforms, droplet digital polymerase chain reaction (ddPCR) and molecular barcoding using nanoString nCounter® technology, we can reliably identify KRAS mutations within isolated TEV of treatment-naïve metastatic pancreatic cancer patients. Our study suggests that the MITEV device can be used for point-of-care applications, such as in the context of monitoring residual or recurrent tumor presence in pancreatic cancer patients undergoing therapy.


Asunto(s)
Separación Celular/instrumentación , Análisis Mutacional de ADN/instrumentación , Vesículas Extracelulares/genética , Vesículas Extracelulares/patología , Dispositivos Laboratorio en un Chip , Neoplasias Pancreáticas/patología , Línea Celular Tumoral , Genómica , Humanos , Proteínas Proto-Oncogénicas p21(ras)/genética
4.
Methods ; 164-165: 36-48, 2019 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-31078796

RESUMEN

The CRISPR/Cas9 system is transforming many biomedical disciplines, including cancer research. Through its flexible programmability and efficiency to induce DNA double strand breaks it has become straightforward to introduce cancer mutations into cells in vitro and/or in vivo. However, not all mutations contribute equally to tumorigenesis and distinguishing essential mutations for tumor growth and survival from biologically inert mutations is cumbersome. Here we present a method to screen for the functional relevance of mutations in high throughput in established cancer cell lines. We employ the CRISPR/Cas9 system to probe cancer vulnerabilities in a colorectal carcinoma cell line in an attempt to identify novel cancer driver mutations. We designed 100 high quality sgRNAs that are able to specifically cleave mutations present in the colorectal carcinoma cell line RKO. An all-in-one lentiviral library harboring these sgRNAs was then generated and used in a pooled screen to probe possible growth dependencies on these mutations. Genomic DNA at different time points were collected, the sgRNA cassettes were PCR amplified, purified and sgRNA counts were quantified by means of deep sequencing. The analysis revealed two sgRNAs targeting the same mutation (UTP14A: S99delS) to be depleted over time in RKO cells. Validation and characterization confirmed that the inactivation of this mutation impairs cell growth, nominating UTP14A: S99delS as a putative driver mutation in RKO cells. Overall, our approach demonstrates that the CRISPR/Cas9 system is a powerful tool to functionally dissect cancer mutations at large-scale.


Asunto(s)
Sistemas CRISPR-Cas/genética , Neoplasias Colorrectales/genética , Análisis Mutacional de ADN/métodos , Edición Génica/métodos , Biblioteca Genómica , Línea Celular Tumoral , Clonación Molecular/métodos , Análisis Mutacional de ADN/instrumentación , Vectores Genéticos/genética , Secuenciación de Nucleótidos de Alto Rendimiento/instrumentación , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Lentivirus/genética , ARN Guía de Kinetoplastida/genética , ARN Guía de Kinetoplastida/aislamiento & purificación , Transfección/instrumentación , Transfección/métodos
5.
Anal Bioanal Chem ; 411(10): 1935-1941, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30810791

RESUMEN

Mutations in mitochondrial DNA (mtDNA) have been an essential cause of numerous diseases, making their identification critically important. The majority of mtDNA screening techniques require polymerase chain reaction (PCR) amplification, enzymatic digestion, and denaturation procedures, which are laborious and costly. Herein, we developed a sensitive PCR-free electrokinetic-based sensor combined with a customized bis-peptide nucleic acid (bis-PNA) and gamma-PNA (γ-PNA) probes immobilized on beads, for the detection of mtDNA point mutations and sequence-specific supercoiled plasmid DNA at the picomolar range. The probes are capable of invading the double-stranded circular DNA and forming a stable triplex structure. Thus, this method can significantly reduce the sample preparation and omit the PCR amplification steps prior to sensing. Further, this bioanalytical tool can open up a new paradigm in clinical settings for the screening of double-stranded circular nucleic acids with a single-base mismatch specificity in a rapid and sensitive manner.


Asunto(s)
Análisis Mutacional de ADN/instrumentación , ADN Circular/genética , ADN Mitocondrial/genética , Mutación Puntual , Secuencia de Bases , Células Cultivadas , Análisis Mutacional de ADN/economía , Análisis Mutacional de ADN/métodos , ADN Circular/análisis , ADN Mitocondrial/análisis , Técnicas Electroquímicas/economía , Técnicas Electroquímicas/instrumentación , Técnicas Electroquímicas/métodos , Diseño de Equipo , Humanos , Ácidos Nucleicos de Péptidos/química , Ácidos Nucleicos de Péptidos/genética , Plásmidos/análisis , Plásmidos/genética , Factores de Tiempo
6.
Anal Chem ; 90(4): 2601-2608, 2018 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-29323871

RESUMEN

We present a microfluidic device for specifically capturing cancer cells and isolating their genomic DNA (gDNA) for specific amplification and sequence analysis. To capture cancer cells within the device, nucleic acid aptamers that specifically bind to cancer cells were immobilized within a channel containing micropillars designed to increase capture efficiency. The captured cells were lysed in situ, and their gDNA was isolated by physical entanglement within a second smaller-dimensioned micropillar array. This type of isolation allows the gDNA to be retained and purified within the channel and enables amplification and analysis to be performed on the gDNA without the loss of the original template. We developed a technique for selectively amplifying genes from whole gDNA using multiple displacement amplification. The amplified gene samples were sequenced, and the resulting sequence information was compared against the known wild-type gene to identify any mutations. We have tested cervical and ovarian cancer cells for mutations in the TP53 gene using this technology. This approach offers a way to monitor multiple genetic mutations in the same small population of cells, which is beneficial given the wide diversity in cancer cells, and therefore it requires very few cells to be extracted from a patient sample.


Asunto(s)
Aptámeros de Nucleótidos/química , Separación Celular/instrumentación , Análisis Mutacional de ADN/instrumentación , ADN de Neoplasias/genética , Técnicas Analíticas Microfluídicas , Neoplasias Ováricas/patología , Neoplasias del Cuello Uterino/patología , Femenino , Humanos , Técnicas Analíticas Microfluídicas/instrumentación , Neoplasias Ováricas/genética , Células Tumorales Cultivadas , Proteína p53 Supresora de Tumor/genética , Neoplasias del Cuello Uterino/genética
7.
Clin Chem ; 64(3): 536-546, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29301749

RESUMEN

BACKGROUND: Liquid biopsies can be used in castration-resistant prostate cancer (CRPC) to detect androgen receptor splice variant 7 (AR-V7), a splicing product of the androgen receptor. Patients with AR-V7-positive circulating tumor cells (CTCs) have greater benefit of taxane chemotherapy compared with novel hormonal therapies, indicating a treatment-selection biomarker. Likewise, in those with pancreatic cancer (PaCa), KRAS mutations act as prognostic biomarkers. Thus, there is an urgent need for technology investigating the expression and mutation status of CTCs. Here, we report an approach that adds AR-V7 or KRAS status to CTC enumeration, compatible with multiple CTC-isolation platforms. METHODS: We studied 3 independent CTC-isolation devices (CellCollector, Parsortix, CellSearch) for the evaluation of AR-V7 or KRAS status of CTCs with in situ padlock probe technology. Padlock probes allow highly specific detection and visualization of transcripts on a cellular level. We applied padlock probes for detecting AR-V7, androgen receptor full length (AR-FL), and prostate-specific antigen (PSA) in CRPC and KRAS wild-type (wt) and mutant (mut) transcripts in PaCa in CTCs from 46 patients. RESULTS: In situ analysis showed that 71% (22 of 31) of CRPC patients had detectable AR-V7 expression ranging from low to high expression [1-76 rolling circle products (RCPs)/CTC]. In PaCa patients, 40% (6 of 15) had KRAS mut expressing CTCs with 1 to 8 RCPs/CTC. In situ padlock probe analysis revealed CTCs with no detectable cytokeratin expression but positivity for AR-V7 or KRAS mut transcripts. CONCLUSIONS: Padlock probe technology enables quantification of AR-V7, AR-FL, PSA, and KRAS mut/wt transcripts in CTCs. The technology is easily applicable in routine laboratories and compatible with multiple CTC-isolation devices.


Asunto(s)
Análisis Mutacional de ADN/métodos , Calicreínas/genética , Mutación Puntual , Antígeno Prostático Específico/genética , Proteínas Proto-Oncogénicas p21(ras)/genética , Receptores Androgénicos/genética , Anciano , Anciano de 80 o más Años , Línea Celular Tumoral , Separación Celular/instrumentación , Separación Celular/métodos , Análisis Mutacional de ADN/instrumentación , Sondas de ADN , Femenino , Humanos , Dispositivos Laboratorio en un Chip , Antígenos Comunes de Leucocito/inmunología , Antígenos Comunes de Leucocito/metabolismo , Masculino , Células Neoplásicas Circulantes/patología , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patología , Neoplasias de la Próstata Resistentes a la Castración/genética , Neoplasias de la Próstata Resistentes a la Castración/patología
8.
Biomed Microdevices ; 18(1): 7, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26780442

RESUMEN

The improvements in our ability to sequence and genotype DNA have opened up numerous avenues in the understanding of human biology and medicine with various applications, especially in medical diagnostics. But the realization of a label free, real time, high-throughput and low cost biosensing platforms to detect molecular interactions with a high level of sensitivity has been yet stunted due to two factors: one, slow binding kinetics caused by the lack of probe molecules on the sensors and two, limited mass transport due to the planar structure (two-dimensional) of the current biosensors. Here we present a novel three-dimensional (3D), highly sensitive, real-time, inexpensive and label-free nanotip array as a rapid and direct platform to sequence-specific DNA screening. Our nanotip sensors are designed to have a nano sized thin film as their sensing area (~ 20 nm), sandwiched between two sensing electrodes. The tip is then conjugated to a DNA oligonucleotide complementary to the sequence of interest, which is electrochemically detected in real-time via impedance changes upon the formation of a double-stranded helix at the sensor interface. This 3D configuration is specifically designed to improve the biomolecular hit rate and the detection speed. We demonstrate that our nanotip array effectively detects oligonucleotides in a sequence-specific and highly sensitive manner, yielding concentration-dependent impedance change measurements with a target concentration as low as 10 pM and discrimination against even a single mismatch. Notably, our nanotip sensors achieve this accurate, sensitive detection without relying on signal indicators or enhancing molecules like fluorophores. It can also easily be scaled for highly multiplxed detection with up to 5000 sensors/square centimeter, and integrated into microfluidic devices. The versatile, rapid, and sensitive performance of the nanotip array makes it an excellent candidate for point-of-care diagnostics, and high-throughput DNA analysis applications.


Asunto(s)
Nanoestructuras , Análisis de Secuencia por Matrices de Oligonucleótidos , Análisis Mutacional de ADN/instrumentación , Análisis Mutacional de ADN/métodos , Humanos , Análisis de Secuencia por Matrices de Oligonucleótidos/instrumentación , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos
9.
J Sep Sci ; 39(16): 3230-8, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27307099

RESUMEN

A voltage-programming-based capillary gel electrophoresis method with a laser-induced fluorescence detector was developed for the fast and highly sensitive detection of DNA molecules related to angiotensin-converting enzyme insertion/deletion polymorphism, which has been reported to influence predisposition to various diseases such as cardiovascular disease, high blood pressure, myocardial infarction, and Alzheimer's disease. Various voltage programs were investigated for fast detection of specific DNA molecules of angiotensin-converting enzyme insertion/deletion polymorphism as a function of migration time and separation efficiency to establish the effect of voltage strength to resolution. Finally, the amplified products of the angiotensin-converting enzyme insertion/deletion polymorphism (190 and 490 bp DNA) were analyzed in 3.2 min without losing resolution under optimum voltage programming conditions, which were at least 75 times faster than conventional slab gel electrophoresis. In addition, the capillary gel electrophoresis method also successfully applied to the analysis of real human blood samples, although no polymorphism genes were detected by slab gel electrophoresis. Consequently, the developed voltage-programming capillary gel electrophoresis method with laser-induced fluorescence detection is an effective, rapid analysis technique for highly sensitive detection of disease-related specific DNA molecules.


Asunto(s)
Análisis Mutacional de ADN/métodos , Electroforesis Capilar/métodos , Peptidil-Dipeptidasa A/genética , Polimorfismo Genético , Análisis Mutacional de ADN/instrumentación , Electroforesis Capilar/instrumentación , Humanos , Mutación INDEL , Peptidil-Dipeptidasa A/química , Reacción en Cadena de la Polimerasa , Sensibilidad y Especificidad
10.
Anal Chem ; 87(2): 1202-9, 2015 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-25495389

RESUMEN

A fully automated microsystem consisting of a disposable DNA extraction and PCR microchip, as well as a compact control instrument, has been successfully developed for genetic testing of hereditary hearing loss from human whole blood. DNA extraction and PCR were integrated into a single 15-µL reaction chamber, where a piece of filter paper was embedded for capturing genomic DNA, followed by in-situ PCR amplification without elution. Diaphragm microvalves actuated by external solenoids together with a "one-way" fluidic control strategy operated by a modular valve positioner and a syringe pump were employed to control the fluids and to seal the chamber during thermal cycling. Fully automated DNA extractions from as low as 0.3-µL human whole blood followed by amplifications of 59-bp ß-actin fragments can be completed on the microsystem in about 100 min. Negative control tests that were performed between blood sample analyses proved the successful elimination of any contamination or carryover in the system. To more critically test the microsystem, a two-color multiplex allele-specific PCR (ASPCR) assay for detecting c.176_191del16, c.235delC, and c.299_300delAT mutations in GJB2 gene that accounts for hereditary hearing loss was constructed. Two allele-specific primers, one labeled with TAMRA for wild type and the other with FAM for mutation, were designed for each locus. DNA extraction from blood and ASPCR were performed on the microsystem, followed by an electrophoretic analysis on a portable microchip capillary electrophoresis system. Blood samples from a healthy donor and five persons with genetic mutations were all accurately analyzed with only two steps in less than 2 h.


Asunto(s)
Análisis Mutacional de ADN/instrumentación , ADN/sangre , ADN/genética , Pérdida Auditiva/sangre , Pérdida Auditiva/genética , Dispositivos Laboratorio en un Chip , Reacción en Cadena de la Polimerasa Multiplex/instrumentación , Alelos , Conexina 26 , Conexinas , Diseño de Equipo , Pruebas Genéticas/instrumentación , Humanos
11.
Anal Chem ; 87(19): 9761-8, 2015 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-26378744

RESUMEN

The high glucose uptake and activation of oncogenic signaling pathways in cancer cells has long made these features, together with the mutational spectrum, prime diagnostic targets of circulating tumor cells (CTCs). Further, an ability to characterize these properties at a single cell resolution is widely believed to be essential, as the known extensive heterogeneity in CTCs can obscure important correlations in data obtained from cell population-based methods. However, to date, it has not been possible to quantitatively measure metabolic, proteomic, and genetic data from a single CTC. Here we report a microchip-based approach that allows for the codetection of glucose uptake, intracellular functional proteins, and genetic mutations at the single-cell level from rare tumor cells. The microchip contains thousands of nanoliter grooves (nanowells) that isolate individual CTCs and allow for the assessment of their glucose uptake via imaging of a fluorescent glucose analog, quantification of a panel of intracellular signaling proteins using a miniaturized antibody barcode microarray, and retrieval of the individual cell nuclei for subsequent off-chip genome amplification and sequencing. This approach integrates molecular-scale information on the metabolic, proteomic, and genetic status of single cells and permits the inference of associations between genetic signatures, energy consumption, and phosphoproteins oncogenic signaling activities in CTCs isolated from blood samples of patients. Importantly, this microchip chip-based approach achieves this multidimensional molecular analysis with minimal cell loss (<20%), which is the bottleneck of the rare cell analysis.


Asunto(s)
Análisis Mutacional de ADN/instrumentación , Glucosa/metabolismo , Dispositivos Laboratorio en un Chip , Células Neoplásicas Circulantes/metabolismo , Fosfoproteínas/metabolismo , Análisis de la Célula Individual/instrumentación , Diseño de Equipo , Genómica/instrumentación , Glucosa/análisis , Humanos , Mutación , Células Neoplásicas Circulantes/patología , Imagen Óptica/instrumentación , Fosfoproteínas/análisis , Análisis por Matrices de Proteínas/instrumentación
12.
Med Sci (Paris) ; 31(1): 84-92, 2015 Jan.
Artículo en Francés | MEDLINE | ID: mdl-25658735

RESUMEN

Polymerase chain reaction based techniques have been widely used in laboratory settings. Several applications in oncology, virology or prenatal diagnosis require highly sensitive detection methods, which cannot be achieved with conventional techniques. Digital PCR (dPCR) was developed from the association of PCR and limiting dilution procedures. It is based on the compartmentalization of DNA molecules in small volumes. Controlling the size and the content of each compartment is crucial to obtain a high sensitivity with a single molecule resolution. Microfluidics offers promising tools to isolate DNA fragments such as microdroplets, microchambers or microwells with volumes ranging from few picoliters to nanoliters. The review provides an overview of recent developments of microfluidics dPCR platforms and how this technology can influence the management of cancer patients.


Asunto(s)
Análisis Mutacional de ADN/métodos , Microfluídica , Técnicas de Diagnóstico Molecular/métodos , Reacción en Cadena de la Polimerasa/métodos , Computadores , Análisis Mutacional de ADN/instrumentación , Frecuencia de los Genes , Ensayos Analíticos de Alto Rendimiento/instrumentación , Ensayos Analíticos de Alto Rendimiento/métodos , Humanos , Microfluídica/instrumentación , Microfluídica/métodos , Técnicas de Diagnóstico Molecular/instrumentación , Reacción en Cadena de la Polimerasa/instrumentación
13.
Anal Chem ; 86(23): 11773-81, 2014 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-25359284

RESUMEN

Plasmonic nanosensors are candidates for the development of new sensors with low detection limits, high sensitivity, and specificity for target detection: these characteristics are of critical importance in the screening of mutations responsible for inherited diseases. In this work, we focused our study on the detection of some of the most frequent mutations responsible for cystic fibrosis (CF) among the Italian population. For the detection of the CF mutations we adopted a recently developed and highly sensitive Grating Coupled-Surface Plasmon Resonance (GC-SPR) enhanced spectroscopy method for label-free molecular identification exploiting a conical illumination configuration. Gold sinusoidal gratings functionalized with heterobifunctional PEG were used as sensing surfaces, and the specific biodetection was achieved through the coupling with DNA hairpin probes designed for single nucleotide discrimination. Such substrates were used to test unlabeled PCR amplified homozygous wild type (wt) and heterozygous samples, deriving from clinical samples, for the screened mutations. Hybridization conditions were optimized to obtain the maximum discrimination ratio (DR) between the homozygous wild type and the heterozygous samples. SPR signals obtained from hybridizing wild type and heterozygous samples show DRs able to identify univocally the correct genotypes, as confirmed by fluorescence microarray experiments run in parallel. Furthermore, SPR genotyping was not impaired in samples containing unrelated DNA, allowing the platform to be used for the concomitant discrimination of several alleles also scalable for a high throughput screening setting.


Asunto(s)
Fibrosis Quística/genética , Análisis Mutacional de ADN/instrumentación , Mutación , Resonancia por Plasmón de Superficie/instrumentación , Humanos
14.
Nat Methods ; 8(8): 649-51, 2011 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-21725299

RESUMEN

We present a microfluidic 'megapixel' digital PCR device that uses surface tension-based sample partitioning and dehydration control to enable high-fidelity single DNA molecule amplification in 1,000,000 reactors of picoliter volume with densities up to 440,000 reactors cm(-2). This device achieves a dynamic range of 10(7), single-nucleotide-variant detection below one copy per 100,000 wild-type sequences and the discrimination of a 1% difference in chromosome copy number.


Asunto(s)
Análisis Mutacional de ADN/instrumentación , Perfilación de la Expresión Génica/instrumentación , Microfluídica/instrumentación , Reacción en Cadena de la Polimerasa/instrumentación , Diseño de Equipo
15.
Haematologica ; 99(3): 465-73, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24142997

RESUMEN

Routine molecular testing in acute myeloid leukemia involves screening several genes of therapeutic and prognostic significance for mutations. A comprehensive analysis using single-gene assays requires large amounts of DNA, is cumbersome and timely consolidation of results for clinical reporting is challenging. High throughput, next-generation sequencing platforms widely used in research have not been tested vigorously for clinical application. Here we describe the clinical application of MiSeq, a next-generation sequencing platform to screen mutational hotspots in 54 cancer-related genes including genes relevant in acute myeloid leukemia (NRAS, KRAS, FLT3, NPM1, DNMT3A, IDH1/2, JAK2, KIT and EZH2). We sequenced 63 samples from patients with acute myeloid leukemia/myelodysplastic syndrome using MiSeq and compared the results with those obtained using another next-generation sequencing platform, Ion-Torrent Personal Genome Machine and other conventional testing platforms. MiSeq detected a total of 100 single nucleotide variants and 23 NPM1 insertions that were confirmed by Ion Torrent or conventional platforms, indicating complete concordance. FLT3-internal tandem duplications (n=10) were not detected; however, re-analysis of the MiSeq output by Pindel, an indel detection algorithm, did detect them. Dilution studies of cancer cell-line DNA showed that the quantitative accuracy of mutation detection was up to an allelic frequency of 1.5% with a high level of inter- and intra-run assay reproducibility, suggesting potential utility for monitoring response to therapy, clonal heterogeneity and evolution. Examples demonstrating the advantages of MiSeq over conventional platforms for disease monitoring are provided. Easy work-flow, high throughput multiplexing capability, 4-day turnaround time and simultaneous assessment of routinely tested and emerging markers make MiSeq highly applicable for clinical molecular testing in acute myeloid leukemia.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/genética , Mutación , Análisis Mutacional de ADN/instrumentación , Análisis Mutacional de ADN/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/instrumentación , Humanos , Neoplasia Residual/diagnóstico , Neoplasia Residual/genética , Nucleofosmina , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
16.
Proc Natl Acad Sci U S A ; 108(23): 9530-5, 2011 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-21586637

RESUMEN

The identification of mutations that are present in a small fraction of DNA templates is essential for progress in several areas of biomedical research. Although massively parallel sequencing instruments are in principle well suited to this task, the error rates in such instruments are generally too high to allow confident identification of rare variants. We here describe an approach that can substantially increase the sensitivity of massively parallel sequencing instruments for this purpose. The keys to this approach, called the Safe-Sequencing System ("Safe-SeqS"), are (i) assignment of a unique identifier (UID) to each template molecule, (ii) amplification of each uniquely tagged template molecule to create UID families, and (iii) redundant sequencing of the amplification products. PCR fragments with the same UID are considered mutant ("supermutants") only if ≥95% of them contain the identical mutation. We illustrate the utility of this approach for determining the fidelity of a polymerase, the accuracy of oligonucleotides synthesized in vitro, and the prevalence of mutations in the nuclear and mitochondrial genomes of normal cells.


Asunto(s)
Análisis Mutacional de ADN/métodos , Reacción en Cadena de la Polimerasa/métodos , Secuencia de Bases , Análisis Mutacional de ADN/instrumentación , Humanos , Modelos Genéticos , Datos de Secuencia Molecular , Mutación , Reacción en Cadena de la Polimerasa/instrumentación , Reproducibilidad de los Resultados , beta Catenina/genética
17.
Anal Biochem ; 433(2): 227-34, 2013 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-22750103

RESUMEN

Prognosis of solid cancers is generally more favorable if the disease is treated early and efficiently. A key to long cancer survival is in radical surgical therapy directed at the primary tumor followed by early detection of possible progression, with swift application of subsequent therapeutic intervention reducing the risk of disease generalization. The conventional follow-up care is based on regular observation of tumor markers in combination with computed tomography/endoscopic ultrasound/magnetic resonance/positron emission tomography imaging to monitor potential tumor progression. A recent development in methodologies allowing screening for a presence of cell-free DNA (cfDNA) brings a new viable tool in early detection and management of major cancers. It is believed that cfDNA is released from tumors primarily due to necrotization, whereas the origin of nontumorous cfDNA is mostly apoptotic. The process of cfDNA detection starts with proper collection and treatment of blood and isolation and storage of blood plasma. The next important steps include cfDNA extraction from plasma and its detection and/or quantification. To distinguish tumor cfDNA from nontumorous cfDNA, specific somatic DNA mutations, previously localized in the primary tumor tissue, are identified in the extracted cfDNA. Apart from conventional mutation detection approaches, several dedicated techniques have been presented to detect low levels of cfDNA in an excess of nontumorous (nonmutated) DNA, including real-time polymerase chain reaction (PCR), "BEAMing" (beads, emulsion, amplification, and magnetics), and denaturing capillary electrophoresis. Techniques to facilitate the mutant detection, such as mutant-enriched PCR and COLD-PCR (coamplification at lower denaturation temperature PCR), are also applicable. Finally, a number of newly developed miniaturized approaches, such as single-molecule sequencing, are promising for the future.


Asunto(s)
Apoptosis , ADN de Neoplasias/sangre , ADN de Neoplasias/genética , Mutación , Neoplasias/sangre , Neoplasias/genética , Animales , Análisis Mutacional de ADN/instrumentación , Análisis Mutacional de ADN/métodos , Humanos , Necrosis , Neoplasias/patología
18.
Mol Cell Probes ; 27(2): 103-8, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23142374

RESUMEN

Thoracic aortic aneurysm and dissection is associated with increasing mortality rate that may occur as part of a syndrome or as an isolated familial condition. Several genes have been implicated in causing TAAD, though an appropriate genetic test for their parallel testing is not yet available. Herein, we describe the novel 117-kb "MFSTAAD chip" that may help to understand the genetic basis of TAAD. A custom duplicate resequencing assay was developed to cover eight genes previously described in TAAD; FBN1, TGFBR1&2, COL3A1, MYH11, ACTA2, SLC2A10 and NOTCH1. GSEQ and SeqC software were used for data analysis. The analytical sensitivity of the assay was validated by the recognition of 182 known mutations (153 point mutations, 21 deletions, 7 insertions and 1 duplication) and a cohort of 28 patients were selected to determine the mutation yield, whereby 18 of them were previously negative for mutations in the genes FBN1 and TGFBR2. The assay had significantly higher sensitivity for point mutations (100%) and the largest deletion of 16 bp was detectable through a decline in the hybridization strength. The overall analytical sensitivity was 85%. Mutation testing of 28 unrelated TAAD patients revealed 4 known and 6 possibly pathogenic mutations with a mutation yield of 32%. The MFSTAAD chip is an alternative tool to next-generation sequencing that allows parallel analysis of several genes on a single platform. Refinements in the probe design and data analysis software will increase the analytical sensitivity of insertions and deletions making this assay even more applicable for clinical testing.


Asunto(s)
Aneurisma de la Aorta Torácica/genética , Disección Aórtica/genética , Análisis Mutacional de ADN/métodos , Mutación , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Secuencia de Bases , Simulación por Computador , Análisis Mutacional de ADN/instrumentación , Reacciones Falso Positivas , Fibrilina-1 , Fibrilinas , Predisposición Genética a la Enfermedad , Humanos , Proteínas de Microfilamentos/genética , Datos de Secuencia Molecular , Oligonucleótidos , Sensibilidad y Especificidad
19.
J Nanosci Nanotechnol ; 13(1): 139-43, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23646708

RESUMEN

The rapid identification and verification of single nucleotide polymorphisms (SNPs) were demonstrated using a well array sensor containing anti-biofouling titanium (Ti). Probe single-stranded DNA (ssDNA) was immobilized inside a titanium-well array on amine-modified glass surfaces with anti-biofouling behavior via a streptavidin-biotin interaction. Fluorescence intensity changes originating from the hybridization of nucleic acids to protein-bound nucleic acids linked to Alexa Fluor (FL) 647 were observed. The protocol was highly sensitive and reproducible for the detection of DNA hybridization. Significant changes in fluorescence signals were observed when using target DNA with a single base mismatch, indicating that this method is applicable to SNP detection. The microarray technology for the detection of SNPs using anti-biofouling Ti and other methods can be used as a highly sensitive in vitro medical sensor, as highlighted by an increase in genotyping accuracy.


Asunto(s)
Análisis Mutacional de ADN/instrumentación , ADN/genética , Nanotecnología/instrumentación , Análisis de Secuencia por Matrices de Oligonucleótidos/instrumentación , Polimorfismo de Nucleótido Simple/genética , Análisis de Secuencia de ADN/instrumentación , Titanio/química , Diseño de Equipo , Análisis de Falla de Equipo , Espectrometría de Fluorescencia/instrumentación
20.
Sensors (Basel) ; 13(10): 12975-93, 2013 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-24077317

RESUMEN

We describe a novel microarray based-method for the screening of oncogenic human papillomavirus 18 (HPV-18) molecular variants. Due to the fact that sequencing methodology may underestimate samples containing more than one variant we designed a specific and sensitive stacking DNA hybridization assay. This technology can be used to discriminate between three possible phylogenetic branches of HPV-18. Probes were attached covalently on glass slides and hybridized with single-stranded DNA targets. Prior to hybridization with the probes, the target strands were pre-annealed with the three auxiliary contiguous oligonucleotides flanking the target sequences. Screening HPV-18 positive cell lines and cervical samples were used to evaluate the performance of this HPV DNA microarray. Our results demonstrate that the HPV-18's variants hybridized specifically to probes, with no detection of unspecific signals. Specific probes successfully reveal detectable point mutations in these variants. The present DNA oligoarray system can be used as a reliable, sensitive and specific method for HPV-18 variant screening. Furthermore, this simple assay allows the use of inexpensive equipment, making it accessible in resource-poor settings.


Asunto(s)
Análisis Mutacional de ADN/instrumentación , Sondas de ADN/genética , ADN Viral/genética , Variación Genética/genética , Papillomavirus Humano 18/genética , Análisis de Secuencia por Matrices de Oligonucleótidos/instrumentación , Polimorfismo de Nucleótido Simple/genética , Diseño de Equipo , Análisis de Falla de Equipo , Papillomavirus Humano 18/aislamiento & purificación , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA