Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 106
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Cell Mol Med ; 28(18): e70055, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39304946

RESUMEN

From haematopoietic stem cells to megakaryocytes (Mks), cells undergo various mechanical forces that affect Mk differentiation, maturation and proplatelet formation. The mechanotransductor PIEZO1 appears to be a natural candidate for sensing these mechanical forces and regulating megakaryopoiesis and thrombopoiesis. Gain-of-function mutations of PIEZO1 cause hereditary xerocytosis, a haemolytic anaemia associated with thrombotic events. If some functions of PIEZO1 have been reported in platelets, few data exist on PIEZO1 role in megakaryopoiesis. To address this subject, we used an in vitro model of Mk differentiation from CD34+ cells and studied step-by-step the effects of PIEZO1 activation by the chemical activator YODA1 during Mk differentiation and maturation. We report that PIEZO1 activation by 4 µM YODA1 at early stages of culture induced cytosolic calcium ion influx and reduced cell maturation. Indeed, CD41+CD42+ numbers were reduced by around 1.5-fold, with no effects on proliferation. At later stages of Mk differentiation, PIEZO1 activation promoted endomitosis and proplatelet formation that was reversed by PIEZO1 gene invalidation with a shRNA-PIEZO1. Same observations on endomitosis were reproduced in HEL cells induced into Mks by PMA and treated with YODA1. We provide for the first time results suggesting a dual role of PIEZO1 mechanotransductor during megakaryopoiesis.


Asunto(s)
Diferenciación Celular , Canales Iónicos , Mecanotransducción Celular , Megacariocitos , Canales Iónicos/metabolismo , Canales Iónicos/genética , Humanos , Megacariocitos/metabolismo , Megacariocitos/citología , Diferenciación Celular/genética , Trombopoyesis/genética , Calcio/metabolismo , Antígenos CD34/metabolismo , Anemia Hemolítica Congénita/genética , Anemia Hemolítica Congénita/metabolismo , Anemia Hemolítica Congénita/patología , Células Madre Hematopoyéticas/metabolismo , Células Madre Hematopoyéticas/citología , Hidropesía Fetal/genética , Hidropesía Fetal/metabolismo , Hidropesía Fetal/patología , Plaquetas/metabolismo , Pirazinas , Tiadiazoles
2.
Am J Hematol ; 98(12): 1877-1887, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37671681

RESUMEN

Adenosine Triphosphatase (ATPase) Phospholipid Transporting 11C gene (ATP11C) encodes the major phosphatidylserine (PS) flippase in human red blood cells (RBCs). Flippases actively transport phospholipids (e.g., PS) from the outer to the inner leaflet to establish and maintain phospholipid asymmetry of the lipid bilayer of cell membranes. This asymmetry is crucial for survival since externalized PS triggers phagocytosis by splenic macrophages. Here we report on pathophysiological consequences of decreased flippase activity, prompted by a patient with hemolytic anemia and hemizygosity for a novel c.2365C > T p.(Leu789Phe) missense variant in ATP11C. ATP11C protein expression was strongly reduced by 58% in patient-derived RBC ghosts. Furthermore, functional characterization showed only 26% PS flippase activity. These results were confirmed by recombinant mutant ATP11C protein expression in HEK293T cells, which was decreased to 27% compared to wild type, whereas PS-stimulated ATPase activity was decreased by 57%. Patient RBCs showed a mild increase in PS surface exposure when compared to control RBCs, which further increased in the most dense RBCs after RBC storage stress. The increase in PS was not due to higher global membrane content of PS or other phospholipids. In contrast, membrane lipid lateral distribution showed increased abundance of cholesterol-enriched domains in RBC low curvature areas. Finally, more dense RBCs and subtle changes in RBC morphology under flow hint toward alterations in flow behavior of ATP11C-deficient RBCs. Altogether, ATP11C deficiency is the likely cause of hemolytic anemia in our patient, thereby underlining the physiological role and relevance of this flippase in human RBCs.


Asunto(s)
Anemia Hemolítica Congénita , Fosfatidilserinas , Humanos , Fosfatidilserinas/metabolismo , Células HEK293 , Eritrocitos/metabolismo , Anemia Hemolítica Congénita/genética , Anemia Hemolítica Congénita/metabolismo , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Fosfolípidos/metabolismo , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo
3.
Am J Hematol ; 95(2): 188-197, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31737919

RESUMEN

Dehydrated hereditary stomatocytosis (DHS), or xerocytosis, is an autosomal dominant hemolytic anemia. Most patients with DHS carry mutations in the PIEZO1 gene encoding a mechanosensitive cation channel. We here demonstrate that patients with DHS have low levels of hepcidin and only a slight increase of ERFE, the erythroid negative regulator of hepcidin. We demonstrated that at the physiological level, PIEZO1 activation induced Ca2+ influx and suppression of HAMP expression in primary hepatocytes. In two hepatic cellular models expressing PIEZO1 WT and two PIEZO1 gain-of-function mutants (R2456H and R2488Q), we highlight altered expression of a few genes/proteins involved in iron metabolism. Mutant cells showed increased intracellular Ca2+ compared to WT, which was correlated to increased phosphorylation of ERK1/2, inhibition of the BMP-SMADs pathway, and suppression of HAMP transcription. Moreover, the HuH7 cells, treated with PD0325901, a potent inhibitor of ERK1/2 phosphorylation, reduced the phosphorylation of ERK1/2 with the consequent increased phosphorylation of SMAD1/5/8, confirming the link between the two pathways. Another "proof of concept" for the mechanism that links PIEZO1 to HAMP regulation was obtained by mimicking PIEZO1 activation by cell Ca2+ overload, by the Ca2+ ionophore A23187. There was strong down-regulation of HAMP gene expression after this Ca2+ overload. Finally, the inhibition of PIEZO1 by GsMTx4 leads to phenotype rescue. This is the first demonstration of a direct link between PIEZO1 and iron metabolism, which defines the channel as a new hepatic iron metabolism regulator and as a possible therapeutic target of iron overload in DHS and other iron-loading anemias.


Asunto(s)
Anemia Hemolítica Congénita , Proteínas Morfogenéticas Óseas/metabolismo , Mutación con Ganancia de Función , Hepcidinas/biosíntesis , Hidropesía Fetal , Canales Iónicos , Hierro/metabolismo , Hígado/metabolismo , Sistema de Señalización de MAP Quinasas , Proteínas Smad/metabolismo , Sustitución de Aminoácidos , Anemia Hemolítica Congénita/genética , Anemia Hemolítica Congénita/metabolismo , Anemia Hemolítica Congénita/patología , Benzamidas/farmacología , Proteínas Morfogenéticas Óseas/genética , Difenilamina/análogos & derivados , Difenilamina/farmacología , Regulación de la Expresión Génica , Células Hep G2 , Hepcidinas/genética , Humanos , Hidropesía Fetal/genética , Hidropesía Fetal/metabolismo , Hidropesía Fetal/patología , Canales Iónicos/genética , Canales Iónicos/metabolismo , Hígado/patología , Proteína Quinasa 1 Activada por Mitógenos/genética , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/genética , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Proteínas Smad/genética
4.
Int J Mol Sci ; 21(3)2020 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-32041196

RESUMEN

Patients with hereditary hemochromatosis and non-transfusion-dependent hereditary anemia develop predominantly liver iron-overload. We present a unique method allowing quantification of liver iron retention in humans during first-pass of 59Fe-labeled iron through the portal system, using standard ferrokinetic techniques measuring red cell iron uptake after oral and intravenous 59Fe administration. We present data from patients with iron deficiency (ID; N = 47), hereditary hemochromatosis (HH; N = 121) and non-transfusion-dependent hereditary anemia (HA; N = 40). Mean mucosal iron uptake and mucosal iron transfer (±SD) were elevated in patients with HH (59 ± 18%, 80 ± 15% respectively), HA (65 ± 17%, 74 ± 18%) and ID (84 ± 14%, 94 ± 6%) compared to healthy controls (43 ± 19%, 64 ± 18%) (p < 0.05) resulting in increased iron retention after 14 days compared to healthy controls in all groups (p < 0.01). The fraction of retained iron utilized for red cell production was 0.37 ± 0.17 in untreated HA, 0.55 ± 0.20 in untreated HH and 0.99 ± 0.22 in ID (p < 0.01). Interestingly, compared to red blood cell iron utilization after oral iron administration, red blood cell iron utilization was higher after injection of transferrin-bound iron in HA and HH. Liver iron retention was considerably higher in HH and HA compared to ID. We hypothesize that albumin serves as a scavenger of absorbed Fe(II) for delivering albumin-bound Fe(III) to hepatocytes.


Asunto(s)
Anemia Hemolítica Congénita/tratamiento farmacológico , Anemia Ferropénica/tratamiento farmacológico , Hemocromatosis/tratamiento farmacológico , Radioisótopos de Hierro/administración & dosificación , Hígado/química , Administración Intravenosa , Administración Oral , Adolescente , Adulto , Anciano , Anemia Hemolítica Congénita/metabolismo , Anemia Ferropénica/metabolismo , Estudios de Casos y Controles , Femenino , Hemocromatosis/metabolismo , Humanos , Radioisótopos de Hierro/farmacocinética , Masculino , Persona de Mediana Edad , Albúmina Sérica Humana/metabolismo , Transferrina/metabolismo , Adulto Joven
5.
Biochem Biophys Res Commun ; 516(3): 705-712, 2019 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-31253392

RESUMEN

Distribution of phosphatidylserine (PS) in the erythrocyte membrane is essential for its activity. Flippase transports phospholipids from the outer to the inner leaflet of the lipid bilayer and maintains asymmetric distribution of phospholipids in the plasma membrane. ATP11C, a flippase, catalyzes PS flipping at the plasma membrane in association with cell cycle control protein 50A (CDC50A). ATP11C T418 N mutation causes 90% decrease in erythrocyte PS-flippase activity. However, the mechanism of the activity reduction remains unknown. To study the endogenous expression of ATP11C in erythrocytes, we produced a monoclonal antibody against human ATP11C. Immunoblotting analyses with this antibody revealed the absence of ATP11C in erythrocyte membranes derived from a patient with the T418 N mutation. Transiently expressed ATP11C wild-type in cultured cells localized in the cell membranes in the presence of CDC50A. Contrastingly, ATP11C T418 N mutants stacked at the endoplasmic reticulum (ER) even in the presence of CDC50A, suggesting improper intracellular trafficking. Expression of the T418 N mutant in cultured cells was lower than that in the wild-type. However, reduced expression of the T418 N mutant was partially restored by treatment with proteasome inhibitors, suggesting ER-associated degradation of the mutant protein. Cells expressing T418 N did not show flippase activity at the plasma membrane. These data show that the loss of PS-flippase activity in erythrocytes carrying ATP11C T418 N mutation is due to impaired enzymatic activity, improper membrane trafficking, and increased proteasome degradation.


Asunto(s)
Adenosina Trifosfatasas/genética , Anemia Hemolítica Congénita/genética , Predisposición Genética a la Enfermedad/genética , Proteínas de Transporte de Membrana/genética , Mutación Missense , Adenosina Trifosfatasas/metabolismo , Anemia Hemolítica Congénita/metabolismo , Animales , Transporte Biológico/genética , Células COS , Chlorocebus aethiops , Retículo Endoplásmico/metabolismo , Membrana Eritrocítica/química , Membrana Eritrocítica/metabolismo , Eritrocitos/metabolismo , Femenino , Células HeLa , Humanos , Immunoblotting , Masculino , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Fosfatidilserinas/química , Fosfatidilserinas/metabolismo
6.
Blood ; 130(16): 1845-1856, 2017 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-28716860

RESUMEN

Mutations in PIEZO1 are the primary cause of hereditary xerocytosis, a clinically heterogeneous, dominantly inherited disorder of erythrocyte dehydration. We used next-generation sequencing-based techniques to identify PIEZO1 mutations in individuals from 9 kindreds referred with suspected hereditary xerocytosis (HX) and/or undiagnosed congenital hemolytic anemia. Mutations were primarily found in the highly conserved, COOH-terminal pore-region domain. Several mutations were novel and demonstrated ethnic specificity. We characterized these mutations using genomic-, bioinformatic-, cell biology-, and physiology-based functional assays. For these studies, we created a novel, cell-based in vivo system for study of wild-type and variant PIEZO1 membrane protein expression, trafficking, and electrophysiology in a rigorous manner. Previous reports have indicated HX-associated PIEZO1 variants exhibit a partial gain-of-function phenotype with generation of mechanically activated currents that inactivate more slowly than wild type, indicating that increased cation permeability may lead to dehydration of PIEZO1-mutant HX erythrocytes. In addition to delayed channel inactivation, we found additional alterations in mutant PIEZO1 channel kinetics, differences in response to osmotic stress, and altered membrane protein trafficking, predicting variant alleles that worsen or ameliorate erythrocyte hydration. These results extend the genetic heterogeneity observed in HX and indicate that various pathophysiologic mechanisms contribute to the HX phenotype.


Asunto(s)
Anemia Hemolítica Congénita/genética , Hidropesía Fetal/genética , Canales Iónicos/genética , Adulto , Anemia Hemolítica Congénita/metabolismo , Niño , Estudios de Cohortes , Análisis Mutacional de ADN , Deshidratación/genética , Deshidratación/metabolismo , Eritrocitos/metabolismo , Familia , Femenino , Células HEK293 , Humanos , Hidropesía Fetal/metabolismo , Mutación INDEL , Recién Nacido , Canales Iónicos/metabolismo , Cinética , Masculino , Mutación Missense , Presión Osmótica/fisiología
7.
Eur J Haematol ; 101(4): 566-569, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29969830

RESUMEN

Severe iron overload is frequent in dehydrated hereditary stomatocytosis (DHSt) despite well-compensated hemolysis and no or little transfusion requirement. We investigated 4 patients with proven DHSt, in whom the degree of hemolysis was closely related to iron status. Genetic modifiers increasing iron stores (HFE:pCys282Tyr, HAMP:c-153C>T mutations) were accompanied with high liver iron concentrations and increased hemolysis, whereas therapeutic phlebotomies alleviated the hemolytic phenotype. There were no manifestations of hemolysis in one patient with low iron stores. Hemolysis reappeared when iron supplementation was given. The search for genetic or acquired modifiers of iron status and the modulation of iron stores may help in the management of these patients.


Asunto(s)
Anemia Hemolítica Congénita/diagnóstico , Anemia Hemolítica Congénita/metabolismo , Hidropesía Fetal/diagnóstico , Hidropesía Fetal/metabolismo , Hierro/metabolismo , Fenotipo , Adulto , Alelos , Anemia Hemolítica Congénita/sangre , Anemia Hemolítica Congénita/genética , Biomarcadores , Análisis Mutacional de ADN , Femenino , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Genotipo , Proteína de la Hemocromatosis/genética , Humanos , Hidropesía Fetal/sangre , Hidropesía Fetal/genética , Masculino , Persona de Mediana Edad , Mutación , Radiografía
8.
Blood ; 124(9): 1522-30, 2014 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-24963040

RESUMEN

Loss-of-function mutation in the heme oxygenase 1 (Hmox1) gene causes a rare and lethal disease in children, characterized by severe anemia and intravascular hemolysis, with damage to endothelia and kidneys. Previously, we found that macrophages engaged in recycling of red cells were depleted from the tissues of Hmox1(-/-) mice, which resulted in intravascular hemolysis and severe damage to the endothelial system, kidneys, and other organs. Here, we report that subablative bone marrow transplantation (BMT) has a curative effect for disease in Hmox1(-/-) animals as a result of restoration of heme recycling by repopulation of the tissues with wild-type macrophages. Although engraftment was transient, BMT reversed anemia, normalized blood chemistries and iron metabolism parameters, and prevented renal damage. The largest proportion of donor-derived cells was observed in the livers of transplanted animals. These cells, identified as Kupffer cells with high levels of Hmox1 expression, persisted months after transient engraftment of the donor bone marrow and were responsible for the full restoration of heme-recycling ability in Hmox1(-/-) mice and reversing Hmox1-deficient phenotype. Our findings suggest that BMT or the development of specific cell therapies to repopulate patients' tissues with wild-type or reengineered macrophages represent promising approaches for HMOX1 deficiency treatment in humans.


Asunto(s)
Hemo-Oxigenasa 1/deficiencia , Macrófagos del Hígado/metabolismo , Macrófagos/metabolismo , Proteínas de la Membrana/deficiencia , Anemia Hemolítica Congénita/metabolismo , Anemia Hemolítica Congénita/patología , Anemia Hemolítica Congénita/terapia , Animales , Trasplante de Médula Ósea , Modelos Animales de Enfermedad , Femenino , Hemo/metabolismo , Hemo-Oxigenasa 1/genética , Hemo-Oxigenasa 1/metabolismo , Humanos , Hierro/metabolismo , Riñón/metabolismo , Riñón/patología , Macrófagos del Hígado/trasplante , Macrófagos/trasplante , Masculino , Proteínas de la Membrana/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Estrés Oxidativo
9.
Haematologica ; 101(5): 559-65, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-26944472

RESUMEN

Phosphatidylserine is localized exclusively to the inner leaflet of the membrane lipid bilayer of most cells, including erythrocytes. This asymmetric distribution is critical for the survival of erythrocytes in circulation since externalized phosphatidylserine is a phagocytic signal for splenic macrophages. Flippases are P-IV ATPase family proteins that actively transport phosphatidylserine from the outer to inner leaflet. It has not yet been determined which of the 14 members of this family of proteins is the flippase in human erythrocytes. Herein, we report that ATP11C encodes a major flippase in human erythrocytes, and a genetic mutation identified in a male patient caused congenital hemolytic anemia inherited as an X-linked recessive trait. Phosphatidylserine internalization in erythrocytes with the mutant ATP11C was decreased 10-fold compared to that of the control, functionally establishing that ATP11C is a major flippase in human erythrocytes. Contrary to our expectations phosphatidylserine was retained in the inner leaflet of the majority of mature erythrocytes from both controls and the patient, suggesting that phosphatidylserine cannot be externalized as long as scramblase is inactive. Phosphatidylserine-exposing cells were found only in the densest senescent cells (0.1% of total) in which scramblase was activated by increased Ca(2+) concentration: the percentage of these phosphatidylserine-exposing cells was increased in the patient's senescent cells accounting for his mild anemia. Furthermore, the finding of similar extents of phosphatidylserine exposure by exogenous Ca(2+)-activated scrambling in both control erythrocytes and the patient's erythrocytes implies that suppressed scramblase activity rather than flippase activity contributes to the maintenance of phosphatidylserine in the inner leaflet of human erythrocytes.


Asunto(s)
Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Anemia Hemolítica Congénita/genética , Anemia Hemolítica Congénita/metabolismo , Eritrocitos/metabolismo , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Adenosina Trifosfatasas/deficiencia , Adolescente , Anemia Hemolítica Congénita/diagnóstico , Transporte Biológico Activo , Biomarcadores , Calcio/metabolismo , Índices de Eritrocitos , Eritrocitos/efectos de los fármacos , Humanos , Masculino , Proteínas de Transporte de Membrana/deficiencia , Mutación , Fosfatidilserinas/metabolismo , Fosfatidilserinas/farmacología
10.
Proc Natl Acad Sci U S A ; 110(12): E1162-8, 2013 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-23487776

RESUMEN

Familial xerocytosis (HX) in humans is an autosomal disease that causes dehydration of red blood cells resulting in hemolytic anemia which has been traced to two individual mutations in the mechanosensitive ion channel, PIEZO1. Each mutation alters channel kinetics in ways that can explain the clinical presentation. Both mutations slowed inactivation and introduced a pronounced latency for activation. A conservative substitution of lysine for arginine (R2456K) eliminated inactivation and also slowed deactivation, indicating that this mutant's loss of charge is not responsible for HX. Fitting the current vs. pressure data to Boltzmann distributions showed that the half-activation pressure, P1/2, for M2225R was similar to that of WT, whereas mutations at position 2456 were left shifted. The absolute stress sensitivity was calibrated by cotransfection and comparison with MscL, a well-characterized mechanosensitive channel from bacteria that is driven by bilayer tension. The slope sensitivity of WT and mutant human PIEZO1 (hPIEZO1) was similar to that of MscL implying that the in-plane area increased markedly, by ∼6-20 nm(2) during opening. In addition to the behavior of individual channels, groups of hPIEZO1 channels could undergo simultaneous changes in kinetics including a loss of inactivation and a long (∼200 ms), silent latency for activation. These observations suggest that hPIEZO1 exists in spatial domains whose global properties can modify channel gating. The mutations that create HX affect cation fluxes in two ways: slow inactivation increases the cation flux, and the latency decreases it. These data provide a direct link between pathology and mechanosensitive channel dysfunction in nonsensory cells.


Asunto(s)
Anemia Hemolítica Congénita/metabolismo , Hidropesía Fetal/metabolismo , Canales Iónicos/metabolismo , Mecanotransducción Celular , Mutación Missense , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Anemia Hemolítica Congénita/genética , Anemia Hemolítica Congénita/patología , Anemia Hemolítica Congénita/fisiopatología , Escherichia coli , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Células HEK293 , Humanos , Hidropesía Fetal/genética , Hidropesía Fetal/patología , Hidropesía Fetal/fisiopatología , Canales Iónicos/genética , Cinética , Datos de Secuencia Molecular , Estructura Terciaria de Proteína
11.
J Biol Chem ; 289(28): 19531-7, 2014 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-24898253

RESUMEN

Transmembrane lipid transporters are believed to establish and maintain phospholipid asymmetry in biological membranes; however, little is known about the in vivo function of the specific transporters involved. Here, we report that developing erythrocytes from mice lacking the putative phosphatidylserine flippase ATP11C showed a lower rate of PS translocation in vitro compared with erythrocytes from wild-type littermates. Furthermore, the mutant mice had an elevated percentage of phosphatidylserine-exposing mature erythrocytes in the periphery. Although erythrocyte development in ATP11C-deficient mice was normal, the mature erythrocytes had an abnormal shape (stomatocytosis), and the life span of mature erythrocytes was shortened relative to that in control littermates, resulting in anemia in the mutant mice. Thus, our findings uncover an essential role for ATP11C in erythrocyte morphology and survival and provide a new candidate for the rare inherited blood disorder stomatocytosis with uncompensated anemia.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Membrana Eritrocítica/enzimología , Fosfolípidos/metabolismo , Desequilibrio Ácido-Base/genética , Desequilibrio Ácido-Base/metabolismo , Desequilibrio Ácido-Base/patología , Adenosina Trifosfatasas/genética , Anemia Hemolítica Congénita/genética , Anemia Hemolítica Congénita/metabolismo , Anemia Hemolítica Congénita/patología , Animales , Transporte Biológico Activo , Supervivencia Celular/fisiología , Membrana Eritrocítica/genética , Eritrocitos Anormales/metabolismo , Eritrocitos Anormales/patología , Errores Innatos del Metabolismo/genética , Errores Innatos del Metabolismo/metabolismo , Errores Innatos del Metabolismo/patología , Ratones , Ratones Mutantes , Fosfolípidos/genética
14.
Blood ; 120(9): 1908-15, 2012 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-22529292

RESUMEN

Hereditary xerocytosis (HX, MIM 194380) is an autosomal dominant hemolytic anemia characterized by primary erythrocyte dehydration. Copy number analyses, linkage studies, and exome sequencing were used to identify novel mutations affecting PIEZO1, encoded by the FAM38A gene, in 2 multigenerational HX kindreds. Segregation analyses confirmed transmission of the PIEZO1 mutations and cosegregation with the disease phenotype in all affected persons in both kindreds. All patients were heterozygous for FAM38A mutations, except for 3 patients predicted to be homozygous by clinical and physiologic studies who were also homozygous at the DNA level. The FAM38A mutations were both in residues highly conserved across species and within members of the Piezo family of proteins. PIEZO proteins are the recently identified pore-forming subunits of channels that mediate mechanotransduction in mammalian cells. FAM38A transcripts were identified in human erythroid cell mRNA, and discovery proteomics identified PIEZO1 peptides in human erythrocyte membranes. These findings, the first report of mutation in a mammalian mechanosensory transduction channel-associated with genetic disease, suggest that PIEZO proteins play an important role in maintaining erythrocyte volume homeostasis.


Asunto(s)
Anemia Hemolítica Congénita/genética , Hidropesía Fetal/genética , Canales Iónicos/genética , Mecanotransducción Celular/genética , Mutación , Secuencia de Aminoácidos , Anemia Hemolítica Congénita/metabolismo , Secuencia de Bases , Análisis Mutacional de ADN , Células Eritroides/metabolismo , Exoma/genética , Salud de la Familia , Femenino , Expresión Génica , Predisposición Genética a la Enfermedad/genética , Genotipo , Humanos , Hidropesía Fetal/metabolismo , Canales Iónicos/metabolismo , Masculino , Espectrometría de Masas , Datos de Secuencia Molecular , Linaje , Proteómica , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
15.
Am J Hematol ; 88(5): 343-9, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23417980

RESUMEN

Lentiviral modification combined with ex vivo erythroid differentiation was used to stably inhibit RhAG expression, a critical component of the Rh(rhesus) membrane complex defective in the Rh(null) syndrome. The cultured red cells generated recapitulate the major alterations of native Rh(null) cells regarding antigen expression, membrane deformability, and gas transport function, providing the proof of principle for their use as model of Rh(null) syndrome and to investigate Rh complex biogenesis in human primary erythroid cells. Using this model, we were able to reveal for the first time that RhAG extinction alone is sufficient to explain ICAM-4 and CD47 loss observed on native Rh(null) RBCs. Together with the effects of RhAG forced expression in Rh(null) progenitors, this strongly strengthens the hypothesis that RhAG is critical to Rh complex formation. The strategy is also promising for diagnosis purpose in order to overcome the supply from rare blood donors and is applicable to other erythroid defects and rare phenotypes, providing models to dissect membrane biogenesis of multicomplex proteins in erythroid cells, with potential clinical applications in transfusion medicine.


Asunto(s)
Proteínas Sanguíneas/metabolismo , Antígeno CD47/metabolismo , Moléculas de Adhesión Celular/metabolismo , Células Eritroides/metabolismo , Enfermedades Genéticas Congénitas/metabolismo , Glicoproteínas de Membrana/metabolismo , Sistema del Grupo Sanguíneo Rh-Hr/metabolismo , Células Madre Adultas/citología , Células Madre Adultas/metabolismo , Anemia Hemolítica Congénita/metabolismo , Anemia Hemolítica Congénita/patología , Anemia Hipoplástica Congénita/metabolismo , Anemia Hipoplástica Congénita/patología , Proteínas Sanguíneas/antagonistas & inhibidores , Proteínas Sanguíneas/genética , Diferenciación Celular , Línea Celular , Células Cultivadas , Células Eritroides/patología , Células Precursoras Eritroides/citología , Células Precursoras Eritroides/metabolismo , Femenino , Sangre Fetal , Células Madre Fetales/citología , Células Madre Fetales/metabolismo , Enfermedades Genéticas Congénitas/sangre , Enfermedades Genéticas Congénitas/patología , Humanos , Glicoproteínas de Membrana/antagonistas & inhibidores , Glicoproteínas de Membrana/genética , Porfiria Eritropoyética/metabolismo , Porfiria Eritropoyética/patología , Embarazo , Interferencia de ARN , ARN Interferente Pequeño , Reticulocitos/metabolismo , Reticulocitos/patología , Sistema del Grupo Sanguíneo Rh-Hr/sangre
16.
Blood Rev ; 61: 101103, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37353463

RESUMEN

Novel developments in therapies for various hereditary hemolytic anemias reflect the pivotal role of pyruvate kinase (PK), a key enzyme of glycolysis, in red blood cell (RBC) health. Without PK catalyzing one of the final steps of the Embden-Meyerhof pathway, there is no net yield of adenosine triphosphate (ATP) during glycolysis, the sole source of energy production required for proper RBC function and survival. In hereditary hemolytic anemias, RBC health is compromised and therefore lifespan is shortened. Although our knowledge on glycolysis in general and PK function in particular is solid, recent advances in genetic, molecular, biochemical, and metabolic aspects of hereditary anemias have improved our understanding of these diseases. These advances provide a rationale for targeting PK as therapeutic option in hereditary hemolytic anemias other than PK deficiency. This review summarizes the knowledge, rationale, (pre)clinical trials, and future advances of PK activators for this important group of rare diseases.


Asunto(s)
Anemia Hemolítica Congénita no Esferocítica , Anemia Hemolítica Congénita , Anemia Hemolítica , Humanos , Piruvato Quinasa/genética , Piruvato Quinasa/metabolismo , Anemia Hemolítica/metabolismo , Anemia Hemolítica Congénita no Esferocítica/etiología , Anemia Hemolítica Congénita no Esferocítica/terapia , Eritrocitos/metabolismo , Anemia Hemolítica Congénita/terapia , Anemia Hemolítica Congénita/metabolismo
17.
Blood Adv ; 7(6): 1033-1039, 2023 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-36490356

RESUMEN

For some molecular players in red blood cells (RBCs), the functional indications and molecular evidence are discrepant. One such protein is transient receptor potential channel of canonical subfamily, member 6 (TRPC6). Transcriptome analysis of reticulocytes revealed the presence of TRPC6 in mouse RBCs and its absence in human RBCs. We transfused TRPC6 knockout RBCs into wild-type mice and performed functional tests. We observed the "rescue" of TRPC6 within 10 days; however, the "rescue" was slower in splenectomized mice. The latter finding led us to mimic the mechanical challenge with the cantilever of an atomic force microscope and simultaneously carry out imaging by confocal (3D) microscopy. We observed the strong interaction of RBCs with the opposed surface at around 200 pN and the formation of tethers. The results of both the transfusion experiments and the atomic force spectroscopy suggest mechanically stimulated protein transfer to RBCs as a protein source in the absence of the translational machinery. This protein transfer mechanism has the potential to be utilized in therapeutic contexts, especially for hereditary diseases involving RBCs, such as hereditary xerocytosis or Gárdos channelopathy.


Asunto(s)
Anemia Hemolítica Congénita , Eritrocitos , Animales , Humanos , Ratones , Anemia Hemolítica Congénita/metabolismo , Transfusión Sanguínea , Eritrocitos/metabolismo , Hidropesía Fetal/metabolismo , Canal Catiónico TRPC6/metabolismo
18.
Blood Adv ; 7(12): 2681-2693, 2023 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-36595486

RESUMEN

Gain-of-function mutations in PIEZO1 cause dehydrated hereditary stomatocytosis (DHS) or hereditary xerocytosis, an autosomal dominant hemolytic anemia characterized by high reticulocyte count, a tendency to macrocytosis, and mild jaundice, as well as by other variably penetrant clinical features, such as perinatal edema, severe thromboembolic complications after splenectomy, and hepatic iron overload. PIEZO1 mutations in DHS lead to slowed inactivation kinetics of the ion channel and/or facilitation of channel opening in response to physiological stimuli. To characterize the alterations of red blood cell proteome in patients with mutated PIEZO1, we used a differential approach to compare the proteome of patients with DHS (16 patients from 13 unrelated ancestries) vs healthy individuals. We identified new components in the regulation of the complex landscape of erythrocytes ion and volume balance mediated by PIEZO1. Specifically, the main impaired processes in patients with DHS were ion homeostasis, transmembrane transport, regulation of vesicle-mediated transport, and the proteasomal catabolic process. Functional assays demonstrated coexpression of PIEZO1 and band 3 when PIEZO1 was activated. Moreover, the alteration of the vesicle-mediated transport was functionally demonstrated by an increased vesiculation rate in patients with DHS compared with healthy controls. This finding also provides an explanation of the pathogenetic mechanism underlying the increased thrombotic rate observed in these patients. Finally, the newly identified proteins, involved in the intracellular signaling pathways altered by PIEZO1 mutations, could be used in the future as potential druggable targets in DHS.


Asunto(s)
Anemia Hemolítica Congénita , Mutación con Ganancia de Función , Embarazo , Femenino , Humanos , Anemia Hemolítica Congénita/genética , Anemia Hemolítica Congénita/complicaciones , Anemia Hemolítica Congénita/metabolismo , Proteoma/metabolismo , Hidropesía Fetal/genética , Hidropesía Fetal/metabolismo , Eritrocitos/metabolismo , Mutación , Canales Iónicos/genética
19.
Am J Physiol Cell Physiol ; 302(2): C419-28, 2012 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-22012326

RESUMEN

In red cells, Rh-associated glycoprotein (RhAG) acts as an ammonia channel, as demonstrated by stopped-flow analysis of ghost intracellular pH (pH(i)) changes. Recently, overhydrated hereditary stomatocytosis (OHSt), a rare dominantly inherited hemolytic anemia, was found to be associated with a mutation (Phe65Ser or Ile61Arg) in RHAG. Ghosts from the erythrocytes of four of the OHSt patients with a Phe65Ser mutation were resealed with a pH-sensitive probe and submitted to ammonium gradients. Alkalinization rate constants, reflecting NH(3) transport through the channel and NH(3) diffusion unmediated by RhAG, were deduced from time courses of fluorescence changes. After subtraction of the constant value found for Rh(null) lacking RhAG, we observed that alkalinization rate constant values decreased ∼50% in OHSt compared with those of controls. Similar RhAG expression levels were found in control and OHSt. Since half of the expressed RhAG in OHSt most probably corresponds to the mutated form of RhAG, as expected from the OHSt heterozygous status, this dramatic decrease can be therefore related to the loss of function of the Phe65Ser-mutated RhAG monomer.


Asunto(s)
Amoníaco/metabolismo , Proteínas Sanguíneas/genética , Proteínas Sanguíneas/metabolismo , Eritrocitos/citología , Eritrocitos/metabolismo , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Mutación Puntual , Anemia Hemolítica Congénita/genética , Anemia Hemolítica Congénita/metabolismo , Animales , Proteína 1 de Intercambio de Anión de Eritrocito/metabolismo , Acuaporina 1/metabolismo , Proteínas Sanguíneas/química , Membrana Eritrocítica/metabolismo , Calor , Humanos , Hiperpotasemia/sangre , Hiperpotasemia/congénito , Glicoproteínas de Membrana/química , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo
20.
Blood Cells Mol Dis ; 48(4): 219-25, 2012 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-22406315

RESUMEN

Autosomal dominant overhydrated cation-leak stomatocytosis in humans has been associated with missense mutations in the erythroid membrane transport genes AE1, RhAG, and GLUT1. Syndromic stomatocytosis has been reported in three dog breeds, but stomatocytosis in Standard Schnauzers is usually asymptomatic, and is accompanied by minimal if any anemia. We have extended the evaluation of a cohort of schnauzers. We found that low-level stomatocytosis was accompanied by increased MCV and increased red cell Na content, and minimal or no reticulocytosis. Red cells from two affected dogs exhibited increased currents in on-cell patches measured in symmetrical NaCl solutions, but Na,K-ATPase and NKCC-mediated cation flux was minimal. Three novel coding polymorphisms found in canine RhAG cDNA and three novel polymorphisms found in canine SLC4A1 cDNA did not cosegregate with MCV or Na content. The GLUT1 cDNA sequence was normal. We conclude that unlike human overhydrated cation-leak stomatocytosis, stomatocytosis in this cohort of Standard Schnauzers is not caused by mutations in the genes encoding RhAG, SLC4A1, or GLUT1.


Asunto(s)
Anemia Hemolítica Congénita/genética , Proteína 1 de Intercambio de Anión de Eritrocito/genética , Transportador de Glucosa de Tipo 1/genética , Glicoproteínas de Membrana/genética , Mutación , Anemia Hemolítica Congénita/metabolismo , Animales , Transporte Biológico , Cationes/metabolismo , Perros , Índices de Eritrocitos , Eritrocitos/metabolismo , Femenino , Humanos , Iones/sangre , Masculino , Sistemas de Lectura Abierta , Linaje , Polimorfismo Genético , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA