Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 176
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 160(6): 1169-81, 2015 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-25748651

RESUMEN

A conserved feature of the midblastula transition (MBT) is a requirement for a functional DNA replication checkpoint to coordinate cell-cycle remodeling and zygotic genome activation (ZGA). We have investigated what triggers this checkpoint during Drosophila embryogenesis. We find that the magnitude of the checkpoint scales with the quantity of transcriptionally engaged DNA. Measuring RNA polymerase II (Pol II) binding at 20 min intervals over the course of ZGA reveals that the checkpoint coincides with widespread de novo recruitment of Pol II that precedes and does not require a functional checkpoint. This recruitment drives slowing or stalling of DNA replication at transcriptionally engaged loci. Reducing Pol II recruitment in zelda mutants both reduces replication stalling and bypasses the requirement for a functional checkpoint. This suggests a model where the checkpoint functions as a feedback mechanism to remodel the cell cycle in response to nascent ZGA.


Asunto(s)
Replicación del ADN , Drosophila melanogaster/embriología , Drosophila melanogaster/genética , Cigoto/metabolismo , Animales , Blástula/citología , Blástula/metabolismo , Ciclo Celular , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citología , Drosophila melanogaster/metabolismo , Embrión no Mamífero/citología , Embrión no Mamífero/metabolismo , Femenino , Masculino , Proteínas Nucleares , Regiones Promotoras Genéticas , ARN Polimerasa II/metabolismo , Proteína de Replicación A/metabolismo , Factores de Transcripción/metabolismo
2.
Development ; 151(13)2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38884356

RESUMEN

Neural crest cells are a stem cell population unique to vertebrate embryos that retains broad multi-germ layer developmental potential through neurulation. Much remains to be learned about the genetic and epigenetic mechanisms that control the potency of neural crest cells. Here, we examine the role that epigenetic readers of the BET (bromodomain and extra terminal) family play in controlling the potential of pluripotent blastula and neural crest cells. We find that inhibiting BET activity leads to loss of pluripotency at blastula stages and a loss of neural crest at neurula stages. We compare the effects of HDAC (an eraser of acetylation marks) and BET (a reader of acetylation) inhibition and find that they lead to similar cellular outcomes through distinct effects on the transcriptome. Interestingly, loss of BET activity in cells undergoing lineage restriction is coupled to increased expression of genes linked to pluripotency and prolongs the competence of initially pluripotent cells to transit to a neural progenitor state. Together these findings advance our understanding of the epigenetic control of pluripotency and the formation of the vertebrate neural crest.


Asunto(s)
Cresta Neural , Animales , Cresta Neural/citología , Cresta Neural/metabolismo , Epigénesis Genética , Regulación del Desarrollo de la Expresión Génica , Proteínas de Xenopus/metabolismo , Proteínas de Xenopus/genética , Xenopus laevis/embriología , Blástula/metabolismo , Blástula/citología , Diferenciación Celular , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/metabolismo , Transcriptoma/genética
3.
Proc Natl Acad Sci U S A ; 118(15)2021 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-33837152

RESUMEN

Animal cytokinesis ends with the formation of a thin intercellular membrane bridge that connects the two newly formed sibling cells, which is ultimately resolved by abscission. While mitosis is completed within 15 min, the intercellular bridge can persist for hours, maintaining a physical connection between sibling cells and allowing exchange of cytosolic components. Although cell-cell communication is fundamental for development, the role of intercellular bridges during embryogenesis has not been fully elucidated. In this work, we characterized the spatiotemporal characteristics of the intercellular bridge during early zebrafish development. We found that abscission is delayed during the rapid division cycles that occur in the early embryo, giving rise to the formation of interconnected cell clusters. Abscission was accelerated when the embryo entered the midblastula transition (MBT) phase. Components of the ESCRT machinery, which drives abscission, were enriched at intercellular bridges post-MBT and, interfering with ESCRT function, extended abscission beyond MBT. Hallmark features of MBT, including transcription onset and cell shape modulations, were more similar in interconnected sibling cells compared to other neighboring cells. Collectively, our findings suggest that delayed abscission in the early embryo allows clusters of cells to coordinate their behavior during embryonic development.


Asunto(s)
Blástula/embriología , Citocinesis , Animales , Blástula/citología , Blástula/metabolismo , Forma de la Célula , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Pez Cebra , Proteínas de Pez Cebra/metabolismo
4.
PLoS Biol ; 18(10): e3000891, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-33090988

RESUMEN

Externally deposited eggs begin development with an immense cytoplasm and a single overwhelmed nucleus. Rapid mitotic cycles restore normality as the ratio of nuclei to cytoplasm (N/C) increases. A threshold N/C has been widely proposed to activate zygotic genome transcription and onset of morphogenesis at the mid-blastula transition (MBT). To test whether a threshold N/C is required for these events, we blocked N/C increase by down-regulating cyclin/Cdk1 to arrest early cell cycles in Drosophila. Embryos that were arrested two cell cycles prior to the normal MBT activated widespread transcription of the zygotic genome including genes previously described as N/C dependent. Zygotic transcription of these genes largely retained features of their regulation in space and time. Furthermore, zygotically regulated post-MBT events such as cellularization and gastrulation movements occurred in these cell cycle-arrested embryos. These results are not compatible with models suggesting that these MBT events are directly coupled to N/C. Cyclin/Cdk1 activity normally declines in tight association with increasing N/C and is regulated by N/C. By experimentally promoting the decrease in cyclin/Cdk1, we uncoupled MBT from N/C increase, arguing that N/C-guided down-regulation of cyclin/Cdk1 is sufficient for genome activation and MBT.


Asunto(s)
Blástula/citología , Puntos de Control del Ciclo Celular , Núcleo Celular/metabolismo , Drosophila melanogaster/embriología , Embrión no Mamífero/citología , Regulación del Desarrollo de la Expresión Génica , Interfase , Cigoto/metabolismo , Animales , Puntos de Control del Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Drosophila melanogaster/citología , Drosophila melanogaster/genética , Gastrulación , Interfase/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transcripción Genética , Transcriptoma/genética
5.
PLoS Genet ; 16(4): e1008652, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32267837

RESUMEN

Forward genetic screens remain at the forefront of biology as an unbiased approach for discovering and elucidating gene function at the organismal and molecular level. Past mutagenesis screens targeting maternal-effect genes identified a broad spectrum of phenotypes ranging from defects in oocyte development to embryonic patterning. However, earlier vertebrate screens did not reach saturation, anticipated classes of phenotypes were not uncovered, and technological limitations made it difficult to pinpoint the causal gene. In this study, we performed a chemically-induced maternal-effect mutagenesis screen in zebrafish and identified eight distinct mutants specifically affecting the cleavage stage of development and one cleavage stage mutant that is also male sterile. The cleavage-stage phenotypes fell into three separate classes: developmental arrest proximal to the mid blastula transition (MBT), irregular cleavage, and cytokinesis mutants. We mapped each mutation to narrow genetic intervals and determined the molecular basis for two of the developmental arrest mutants, and a mutation causing male sterility and a maternal-effect mutant phenotype. One developmental arrest mutant gene encodes a maternal specific Stem Loop Binding Protein, which is required to maintain maternal histone levels. The other developmental arrest mutant encodes a maternal-specific subunit of the Minichromosome Maintenance Protein Complex, which is essential for maintaining normal chromosome integrity in the early blastomeres. Finally, we identify a hypomorphic allele of Polo-like kinase-1 (Plk-1), which results in a male sterile and maternal-effect phenotype. Collectively, these mutants expand our molecular-genetic understanding of the maternal regulation of early embryonic development in vertebrates.


Asunto(s)
División Celular/genética , Desarrollo Embrionario/genética , Herencia Materna/genética , Mutación , Pez Cebra/embriología , Pez Cebra/genética , Alelos , Animales , Blástula/citología , Blástula/embriología , Blástula/metabolismo , Tipificación del Cuerpo/genética , Núcleo Celular , Citocinesis/genética , Femenino , Infertilidad Masculina/genética , Masculino , Mutagénesis , Fenotipo , Proteínas de Pez Cebra/genética
6.
Development ; 146(19)2019 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-31511251

RESUMEN

The early embryos of many animals, including flies, fish and frogs, have unusually rapid cell cycles and delayed onset of transcription. These divisions are dependent on maternally supplied RNAs and proteins including histones. Previous work suggests that the pool size of maternally provided histones can alter the timing of zygotic genome activation (ZGA) in frogs and fish. Here, we examine the effects of under- and overexpression of maternal histones in Drosophila embryogenesis. Decreasing histone concentration advances zygotic transcription, cell cycle elongation, Chk1 activation and gastrulation. Conversely, increasing histone concentration delays transcription and results in an additional nuclear cycle before gastrulation. Numerous zygotic transcripts are sensitive to histone concentration, and the promoters of histone-sensitive genes are associated with specific chromatin features linked to increased histone turnover. These include enrichment of the pioneer transcription factor Zelda, and lack of SIN3A and associated histone deacetylases. Our findings uncover a crucial regulatory role for histone concentrations in ZGA of Drosophila.


Asunto(s)
Ciclo Celular/genética , Drosophila melanogaster/citología , Drosophila melanogaster/genética , Desarrollo Embrionario/genética , Histonas/metabolismo , Transcripción Genética , Animales , Blástula/citología , Cromatina/metabolismo , Drosophila melanogaster/embriología , Embrión no Mamífero/citología , Embrión no Mamífero/metabolismo , Femenino , ARN Mensajero/genética , ARN Mensajero/metabolismo , Sitio de Iniciación de la Transcripción , Cigoto/metabolismo
7.
Dev Biol ; 458(1): 64-74, 2020 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-31610145

RESUMEN

Cell fate specification defines the earliest steps towards a distinct cell lineage. Neural crest, a multipotent stem cell population, is thought to be specified from the ectoderm, but its varied contributions defy canons of segregation potential and challenges its embryonic origin. Aiming to resolve this conflict, we have assayed the earliest specification of neural crest using blastula stage chick embryos. Specification assays on isolated chick epiblast explants identify an intermediate region specified towards the neural crest cell fate. Furthermore, low density culture suggests that the specification of intermediate cells towards the neural crest lineage is independent of contact mediated induction and Wnt-ligand induced signaling, but is, however, dependent on transcriptional activity of ß-catenin. Finally, we have validated the regional identity of the intermediate region towards the neural crest cell fate using fate map studies. Our results suggest a model of neural crest specification within a restricted epiblast region in blastula stage chick embryos.


Asunto(s)
Blástula/citología , Regulación del Desarrollo de la Expresión Génica , Cresta Neural/citología , Animales , Biomarcadores , Comunicación Celular , Linaje de la Célula , Células Cultivadas , Embrión de Pollo , Estratos Germinativos/citología , Modelos Biológicos , Células Madre Multipotentes/citología , Factor de Transcripción PAX7/biosíntesis , Factor de Transcripción PAX7/genética , Factor de Transcripción PAX7/fisiología , Factor de Transcripción SOX9/biosíntesis , Factor de Transcripción SOX9/genética , Factor de Transcripción SOX9/fisiología , Transducción de Señal/fisiología , Transcripción Genética , beta Catenina/biosíntesis , beta Catenina/genética , beta Catenina/fisiología
8.
Biochem Biophys Res Commun ; 569: 29-34, 2021 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-34225077

RESUMEN

Xenopus laevis is highly suitable as a toxicology animal model owing to its advantages in embryogenesis research. For toxicological studies, a large number of embryos must be handled simultaneously because they very rapidly develop into the target stages within a short period of time. To efficiently handle the embryos, a convenient embryo housing device is essential for fast and reliable assessment and statistical evaluation of malformation caused by toxicants. Here, we suggest 3D fabrication of single-egg trapping devices in which Xenopus eggs are fertilized in vitro, and the embryos are cultured. We used manual pipetting to insert the Xenopus eggs inside the trapping sites of the chip. By introducing a liquid circulating system, we connected a sperm-mixed solution with the chip to induce in vitro fertilization of the eggs. After the eggs were fertilized, we observed embryo development involving the formation of egg cleavage, blastula, gastrula, and tadpole. After the tadpoles grew inside the chip, we saved their lives by enabling their escape from the chip through reverse flow of the culture medium. The Xenopus chip can serve as an incubator to induce fertilization and monitor normal and abnormal development of the Xenopus from egg to tadpole.


Asunto(s)
Embrión no Mamífero/embriología , Fertilización In Vitro/métodos , Oocitos/citología , Xenopus laevis/embriología , Animales , Blástula/citología , Blástula/embriología , Blástula/fisiología , División Celular/fisiología , Embrión no Mamífero/citología , Embrión no Mamífero/fisiología , Femenino , Fertilización In Vitro/instrumentación , Gástrula/citología , Gástrula/embriología , Gástrula/fisiología , Larva/citología , Larva/crecimiento & desarrollo , Larva/fisiología , Locomoción/fisiología , Masculino , Oocitos/fisiología , Xenopus laevis/fisiología
9.
Development ; 145(15)2018 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-30002130

RESUMEN

The neural crest, a progenitor population that drove vertebrate evolution, retains the broad developmental potential of the blastula cells it is derived from, even as neighboring cells undergo lineage restriction. The mechanisms that enable these cells to preserve their developmental potential remain poorly understood. Here, we explore the role of histone deacetylase (HDAC) activity in this process in Xenopus We show that HDAC activity is essential for the formation of neural crest, as well as for proper patterning of the early ectoderm. The requirement for HDAC activity initiates in naïve blastula cells; HDAC inhibition causes loss of pluripotency gene expression and blocks the ability of blastula stem cells to contribute to lineages of the three embryonic germ layers. We find that pluripotent naïve blastula cells and neural crest cells are both characterized by low levels of histone acetylation, and show that increasing HDAC1 levels enhance the ability of blastula cells to be reprogrammed to a neural crest state. Together, these findings elucidate a previously uncharacterized role for HDAC activity in establishing the neural crest stem cell state.


Asunto(s)
Histona Desacetilasa 1/metabolismo , Cresta Neural/embriología , Cresta Neural/enzimología , Proteínas de Xenopus/metabolismo , Xenopus laevis/embriología , Acetilación , Animales , Biomarcadores/metabolismo , Blástula/citología , Blástula/metabolismo , Linaje de la Célula/efectos de los fármacos , Linaje de la Célula/genética , Embrión no Mamífero/efectos de los fármacos , Embrión no Mamífero/metabolismo , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Inhibidores de Histona Desacetilasas/farmacología , Histonas/metabolismo , Cresta Neural/efectos de los fármacos , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/efectos de los fármacos , Células Madre Pluripotentes/metabolismo , Xenopus laevis/genética
10.
PLoS Genet ; 14(1): e1007174, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29337989

RESUMEN

Despite extensive work on the mechanisms that generate plasma membrane furrows, understanding how cells are able to dynamically regulate furrow dimensions is an unresolved question. Here, we present an in-depth characterization of furrow behaviors and their regulation in vivo during early Drosophila morphogenesis. We show that the deepening in furrow dimensions with successive nuclear cycles is largely due to the introduction of a new, rapid ingression phase (Ingression II). Blocking the midblastula transition (MBT) by suppressing zygotic transcription through pharmacological or genetic means causes the absence of Ingression II, and consequently reduces furrow dimensions. The analysis of compound chromosomes that produce chromosomal aneuploidies suggests that multiple loci on the X, II, and III chromosomes contribute to the production of differentially-dimensioned furrows, and we track the X-chromosomal contribution to furrow lengthening to the nullo gene product. We further show that checkpoint proteins are required for furrow lengthening; however, mitotic phases of the cell cycle are not strictly deterministic for furrow dimensions, as a decoupling of mitotic phases with periods of active ingression occurs as syncytial furrow cycles progress. Finally, we examined the turnover of maternal gene products and find that this is a minor contributor to the developmental regulation of furrow morphologies. Our results suggest that cellularization dynamics during cycle 14 are a continuation of dynamics established during the syncytial cycles and provide a more nuanced view of developmental- and MBT-driven morphogenesis.


Asunto(s)
Blástula/citología , Blástula/embriología , División Celular , Membrana Celular , Morfogénesis/genética , Cigoto/fisiología , Animales , Animales Modificados Genéticamente , División Celular/genética , Membrana Celular/genética , Membrana Celular/metabolismo , Drosophila melanogaster/embriología , Drosophila melanogaster/genética , Embrión no Mamífero , Desarrollo Embrionario/fisiología , Femenino , Regulación del Desarrollo de la Expresión Génica , Células Gigantes/citología , Células Gigantes/metabolismo , Células Gigantes/ultraestructura , Masculino , Cigoto/metabolismo
11.
Molecules ; 26(13)2021 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-34209220

RESUMEN

Glycans, as the most peripheral cell surface components, are the primary candidates to mediate the initial steps of cell recognition and adhesion via glycan-glycan binding. This molecular mechanism was quantitatively demonstrated by biochemical and biophysical measurements at the cellular and molecular level for the glyconectin 1 ß-d-GlcpNAc3S-(1→3)-α-l-Fucp glycan structure (GN1). The use of adhesion blocking monoclonal antibody Block 2 that specifically recognize this epitope showed that, besides Porifera, human colon carcinoma also express this structure in the apical glycocalyx. Here we report that Block 2 selectively immune-precipitate a Mr 580 × 103 (g580) acidic non-glycosaminoglycan glycan from the total protein-free glycans of Lytechinus pictus sea urchin hatched blastula embryos. Immuno-fluorescence confocal light microscopy and immunogold electron microscopy localized the GN1 structure in the apical lamina glycocalyx attachments of ectodermal cells microvilli, and in the Golgi complex. Biochemical and immune-chemical analyses showed that the g580 glycan is carrying about 200 copies of the GN1 epitope. This highly polyvalent g580 glycan is one of the major components of the glycocalyx structure, maximally expressed at hatched blastula and gastrula. The involvement of g580 GN1 epitope in hatched blastula cell adhesion was demonstrated by: (1) enhancement of cell aggregation by g580 and sponge g200 glycans, (2) inhibition of cell reaggregation by Block 2, (3) dissociation of microvilli from the apical lamina matrix by the loss of its gel-like structure resulting in a change of the blastula embryonal form and consequent inhibition of gastrulation at saturating concentration of Block 2, and (4) aggregation of beads coated with the immune-purified g580 protein-free glycan. These results, together with the previous atomic force microscopy measurements of GN1 binding strength, indicated that this highly polyvalent and calcium ion dependent glycan-glycan binding can provide the force of 40 nanonewtons per single ectodermal cell association of microvilli with the apical lamina, and conservation of glycocalyx gel-like structure. This force can hold the weight of 160,000 cells in sea water, thus it is sufficient to establish, maintain and preserve blastula form after hatching, and prior to the complete formation of further stabilizing basal lamina.


Asunto(s)
Blástula/embriología , Epítopos/metabolismo , Glicosaminoglicanos/metabolismo , Lytechinus/embriología , Animales , Blástula/citología , Adhesión Celular/fisiología , Lytechinus/citología
12.
Development ; 144(7): 1201-1210, 2017 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-28235822

RESUMEN

Stem cells in animals often exhibit a slow cell cycle and/or low transcriptional activity referred to as quiescence. Here, we report that the translational activity in the primordial germ cells (PGCs) of the sea urchin embryo (Strongylocentrotus purpuratus) is quiescent. We measured new protein synthesis with O-propargyl-puromycin and L-homopropargylglycine Click-iT technologies, and determined that these cells synthesize protein at only 6% the level of their adjacent somatic cells. Knockdown of translation of the RNA-binding protein Nanos2 by morpholino antisense oligonucleotides, or knockout of the Nanos2 gene by CRISPR/Cas9 resulted in a significant, but partial, increase (47%) in general translation specifically in the PGCs. We found that the mRNA of the translation factor eEF1A is excluded from the PGCs in a Nanos2-dependent manner, a consequence of a Nanos/Pumilio response element (PRE) in its 3'UTR. In addition to eEF1A, the cytoplasmic pH of the PGCs appears to repress translation and simply increasing the pH also significantly restores translation selectively in the PGCs. We conclude that the PGCs of this sea urchin institute parallel pathways to quiesce translation thoroughly but transiently.


Asunto(s)
Ciclo Celular , Células Germinativas/citología , Biosíntesis de Proteínas , Strongylocentrotus purpuratus/citología , Strongylocentrotus purpuratus/metabolismo , Animales , Secuencia de Bases , Blástula/citología , Blástula/metabolismo , Sistemas CRISPR-Cas/genética , Ciclo Celular/genética , Regulación del Desarrollo de la Expresión Génica , Células Germinativas/metabolismo , Concentración de Iones de Hidrógeno , Mitocondrias/metabolismo , Factor 1 de Elongación Peptídica/genética , Factor 1 de Elongación Peptídica/metabolismo , Biosíntesis de Proteínas/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/metabolismo , Strongylocentrotus purpuratus/genética
13.
Nature ; 516(7530): 238-41, 2014 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-25252979

RESUMEN

Phosphorites of the Ediacaran Doushantuo Formation (∼600 million years old) yield spheroidal microfossils with a palintomic cell cleavage pattern. These fossils have been variously interpreted as sulphur-oxidizing bacteria, unicellular protists, mesomycetozoean-like holozoans, green algae akin to Volvox, and blastula embryos of early metazoans or bilaterian animals. However, their complete life cycle is unknown and it is uncertain whether they had a cellularly differentiated ontogenetic stage, making it difficult to test their various phylogenetic interpretations. Here we describe new spheroidal fossils from black phosphorites of the Doushantuo Formation that have been overlooked in previous studies. These fossils represent later developmental stages of previously published blastula-like fossils, and they show evidence for cell differentiation, germ-soma separation, and programmed cell death. Their complex multicellularity is inconsistent with a phylogenetic affinity with bacteria, unicellular protists, or mesomycetozoean-like holozoans. Available evidence also indicates that the Doushantuo fossils are unlikely crown-group animals or volvocine green algae. We conclude that an affinity with cellularly differentiated multicellular eukaryotes, including stem-group animals or algae, is likely but more data are needed to constrain further the exact phylogenetic affinity of the Doushantuo fossils.


Asunto(s)
Diferenciación Celular , Embrión no Mamífero/citología , Fósiles , Filogenia , Animales , Apoptosis , Blástula/citología , China , Chlorophyta/citología , Células Eucariotas/clasificación , Células Eucariotas/citología
14.
Zygote ; 28(3): 196-202, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32083523

RESUMEN

Marine angelfish (family: Pomacanthidae) are among the most sought-after fish species in the saltwater aquarium trade. However, there is a lack of information in the literature on their early ontogeny. The objective of this study was to describe the embryonic and early larval development of two dwarf angelfish, the bicolour angelfish, Centropyge bicolor and the coral beauty angelfish, Centropyge bispinosa. The eggs of these two species were obtained from spontaneous spawning of the broodstock fish in captivity and incubated at 26.0 ± 0.2°C throughout the study. Fertilized eggs (n = 15) of both species are transparent, pelagic and spherical; the mean diameters of the eggs were measured at 703.6 ± 7.8 µm for C. bicolor and 627.6 ± 7.8 µm for C. bispinosa. The eggs of both species possessed a narrow perivitelline space, smooth and thin chorion, a homogenous and non-segmented yolk as well as a single oil globule. Overall, the observed embryonic development pattern of C. bicolor and C. bispinosa was very similar, and the main difference was the embryonic pigmentation pattern, which only became evident close to hatching. Larvae of both species started hatching at 13 h 30 min after fertilization, and the larval characteristics of both species also showed high levels of similarities. However, the mouth opening time for C. bicolor was 72 h after hatching (AH) and 96 AH for C. bispinosa. In general, the observed early ontogeny of C. bicolor and C. bispinosa also resembled that of other Centropyge species documented in the literature.


Asunto(s)
Embrión no Mamífero/embriología , Desarrollo Embrionario/fisiología , Óvulo/crecimiento & desarrollo , Perciformes/crecimiento & desarrollo , Cigoto/crecimiento & desarrollo , Animales , Blástula/citología , Blástula/embriología , Embrión no Mamífero/citología , Femenino , Gástrula/citología , Gástrula/embriología , Larva/crecimiento & desarrollo , Óvulo/citología , Perciformes/clasificación , Perciformes/embriología , Pigmentación/fisiología , Somitos/citología , Somitos/embriología , Especificidad de la Especie , Factores de Tiempo , Cigoto/citología
15.
Biophys J ; 117(4): 743-750, 2019 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-31378311

RESUMEN

Embryonic development starts with cleavages, a rapid sequence of reductive divisions that result in an exponential increase of cell number without changing the overall size of the embryo. In Drosophila, the final four rounds of cleavages occur at the surface of the embryo and give rise to ∼6000 nuclei under a common plasma membrane. We use live imaging to study the dynamics of this process and to characterize the emergent nuclear packing in this system. We show that the characteristic length scale of the internuclear interaction scales with the density, which allows the densifying embryo to sustain the level of structural order at progressively smaller length scales. This is different from nonliving materials, which typically undergo disorder-order transition upon compression. To explain this dynamics, we use a particle-based model that accounts for density-dependent nuclear interactions and synchronous divisions. We reproduce the pair statistics of the disordered packings observed in embryos and recover the scaling relation between the characteristic length scale and the density both in real and reciprocal space. This result reveals how the embryo can robustly preserve the nuclear-packing structure while being densified. In addition to providing quantitative description of self-similar dynamics of nuclear packings, this model generates dynamic meshes for the computational analysis of pattern formation and tissue morphogenesis.


Asunto(s)
Blástula/citología , Simulación por Computador , Presión , Animales , Fenómenos Biomecánicos , Blastodermo/citología , División Celular , Fuerza Compresiva , Drosophila melanogaster
16.
Dev Genes Evol ; 229(4): 103-124, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31250106

RESUMEN

Many crustacean groups show stereotyped cleavage patterns during early ontogeny. However, these patterns differ between the various major crustacean taxa, and a general mode is difficult to extract. Previous studies suggested that also copepods undergo an early cleavage with a more or less stereotyped pattern of blastomere divisions and fates. Yet, copepod embryology has been largely neglected. The last investigation of this kind dates back more than a century and the results are somewhat contradictory when compared with those of other researchers. To overcome these problems, we studied the early development of a so far undescribed calanoid copepod species, Skistodiaptomus sp., applying histochemical staining, confocal laser scanning microscopy, and bifocal 4D microscopy. The blastomere arrangement of the four-cell stage of this species varies to a large degree. It can either form a typical radial pattern with the four blastomeres lying in one plane or a tilted orientation of the axes connecting the sister cells of the previous division. In both cases, a stereotyped division pattern is maintained inside each quadrant during subsequent cleavages. In addition, we found two types of blastomere arrangements with a mirror symmetry. Most divisions within the quadrants follow the perpendicularity rule until the eighth cleavage. Deviations from this rule occur only in the narrow regions where the different quadrants touch and near the site of gastrulation. Gastrulation is initiated around the descendants of one individually identifiable blastomere of the 16-cell stage. This cell divides in a specific manner forming a characteristic cell arrangement, the gastrulation triangle. This gastrulation triangle initiates the internalization process of the gastrulation and it is encircled by another characteristic cell type, the crown cells. Our observations reveal several similarities to the early development of Calanus finmarchicus, another calanoid species. These relate to blastomere arrangements and divisions and the pattern of gastrulation. As Calanoida represent a basal or near basal branch of the copepod tree, this description will provide the ground for reconstruction of the cleavage pattern of the last common ancestor of Copepoda.


Asunto(s)
Copépodos/citología , Copépodos/embriología , Animales , Blástula/citología , Blástula/metabolismo , Embrión no Mamífero/citología , Embrión no Mamífero/metabolismo , Gástrula/citología , Gástrula/metabolismo
17.
Development ; 143(15): 2868-75, 2016 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-27385011

RESUMEN

CRISPR/Cas9 genome editing is revolutionizing genetic loss-of-function analysis but technical limitations remain that slow progress when creating mutant lines. First, in conventional genetic breeding schemes, mosaic founder animals carrying mutant alleles are outcrossed to produce F1 heterozygotes. Phenotypic analysis occurs in the F2 generation following F1 intercrosses. Thus, mutant analyses will require multi-generational studies. Second, when targeting essential genes, efficient mutagenesis of founders is often lethal, preventing the acquisition of mature animals. Reducing mutagenesis levels may improve founder survival, but results in lower, more variable rates of germline transmission. Therefore, an efficient approach to study lethal mutations would be useful. To overcome these shortfalls, we introduce 'leapfrogging', a method combining efficient CRISPR mutagenesis with transplantation of mutated primordial germ cells into a wild-type host. Tested using Xenopus tropicalis, we show that founders containing transplants transmit mutant alleles with high efficiency. F1 offspring from intercrosses between F0 animals that carry embryonic lethal alleles recapitulate loss-of-function phenotypes, circumventing an entire generation of breeding. We anticipate that leapfrogging will be transferable to other species.


Asunto(s)
Sistemas CRISPR-Cas/fisiología , Células Germinativas/metabolismo , Mutación/genética , Animales , Anuros , Blástula/citología , Blástula/metabolismo , Sistemas CRISPR-Cas/genética , Embrión no Mamífero , Femenino , Células Germinativas/citología , Masculino , Mutagénesis , Nucleasas de los Efectores Tipo Activadores de la Transcripción/genética , Nucleasas de los Efectores Tipo Activadores de la Transcripción/metabolismo , Xenopus
18.
BMC Genomics ; 19(1): 59, 2018 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-29347911

RESUMEN

BACKGROUND: The neural crest (NC) is a class of transitory stem cell-like cells unique to vertebrate embryos. NC cells arise within the dorsal neural tube where they undergo an epithelial to mesenchymal transition in order to migrate and differentiate throughout the developing embryo. The derivative cell types give rise to multiple tissues, including the craniofacial skeleton, peripheral nervous system and skin pigment cells. Several well-studied gene regulatory networks underpin NC development, which when disrupted can lead to various neurocristopathies such as craniofrontonasal dysplasia, DiGeorge syndrome and some forms of cancer. Small RNAs, such as microRNAs (miRNAs) are non-coding RNA molecules important in post-transcriptional gene silencing and critical for cellular regulation of gene expression. RESULTS: To uncover novel small RNAs in NC development we used high definition adapters and next generation sequencing of libraries derived from ectodermal explants of Xenopus laevis embryos induced to form neural and NC tissue. Ectodermal and blastula animal pole (blastula) stage tissues were also sequenced. We show that miR-427 is highly abundant in all four tissue types though in an isoform specific manner and we define a set of 11 miRNAs that are enriched in the NC. In addition, we show miR-301a and miR-338 are highly expressed in both the NC and blastula suggesting a role for these miRNAs in maintaining the stem cell-like phenotype of NC cells. CONCLUSION: We have characterised the miRNAs expressed in Xenopus embryonic explants treated to form ectoderm, neural or NC tissue. This has identified novel tissue specific miRNAs and highlighted differential expression of miR-427 isoforms.


Asunto(s)
Embrión no Mamífero/citología , Regulación del Desarrollo de la Expresión Génica , MicroARNs/genética , Cresta Neural/crecimiento & desarrollo , Xenopus laevis/embriología , Animales , Secuencia de Bases , Blástula/citología , Blástula/metabolismo , Células Cultivadas , Embrión no Mamífero/metabolismo , Redes Reguladoras de Genes , Cresta Neural/metabolismo , Neurogénesis , Especificidad de Órganos , Homología de Secuencia , Células Madre/citología , Células Madre/metabolismo , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo , Xenopus laevis/genética
19.
Genes Cells ; 22(4): 376-391, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28318078

RESUMEN

The Xenopus oocyte is known to accumulate filamentous or F-actin in the nucleus, but it is currently unknown whether F-actin also accumulates in embryo nuclei. Using fluorescence-labeled actin reporters, we examined the actin distribution in Xenopus embryonic cells and found that F-actin accumulates in nuclei during the blastula stage but not during the gastrula stage. To further investigate nuclear F-actin, we devised a Xenopus egg extract that reproduces the formation of nuclei in which F-actin accumulates. Using this extract, we found that F-actin accumulates primarily at the subnuclear membranous region and is essential to maintain chromatin binding to the nuclear envelope in well-developed nuclei. We also provide evidence that nuclear F-actin increases the structural stability of nuclei and contributes to chromosome alignment on the mitotic spindle at the following M phase. These results suggest the physiological importance of nuclear F-actin accumulation in rapidly dividing large Xenopus blastula cells.


Asunto(s)
Blástula/citología , Cromatina/metabolismo , Membrana Nuclear/metabolismo , Xenopus laevis/metabolismo , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Animales , Blástula/metabolismo , Sistema Libre de Células , Embrión no Mamífero/citología , Embrión no Mamífero/metabolismo , Óvulo/citología , Óvulo/metabolismo , Xenopus laevis/embriología
20.
Zygote ; 26(4): 294-300, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30223908

RESUMEN

Brycon orbignyanus is an important large teleost that is currently on the list of endangered species, therefore studies on its reproductive biology and embryology are fundamental to help species conservation and recovery. The objective of this research was to characterize the events that occur during extrusion, fertilization and embryonic development of the species. The samples were collected at predetermined times, fixed and processed for light microscopy and scanning electron microscopy. The greenish oocytes were spherical, had translucent chorion and a mean diameter of 1.3±0.11 mm. The eggs had well defined animal and vegetative poles approximately 18 min post-fertilization. Stages from 2 to 128 blastomeres occurred between 20 min and 3 h post-fertilization (hPF), when the morula was characterized. The blastula stage was observed between 2 and 3 hPF, and the gastrula between 3 and 7 hPF, when the embryonic shield emerged and the cellular migration with the consequent formation of epiblast and hypoblast. At 8 hPF, the formation of the neural tube, above the notochord and the encephalic region, was observed, delimiting the forebrain, mesencephalon and rhombencephalon regions. From 11 hPF onward, the optic vesicle was formed close to the forebrain and the embryo tail was well developed. The optic vesicle was observed from 12 hPF onward, and the tail showed an intense movement that culminated with the rupture of the chorion and consequent hatching of the larva at 13 hPF and 27°C.


Asunto(s)
Blastocisto/citología , Blástula/citología , Characidae/embriología , Embrión no Mamífero/citología , Embrión no Mamífero/ultraestructura , Desarrollo Embrionario , Animales , Microscopía Electrónica de Rastreo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA