Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Cell Physiol Biochem ; 36(4): 1305-15, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26160442

RESUMEN

BACKGROUND/AIMS: After myocardial infarction (MI), cardiac fibrosis greatly contributes to left ventricular remodeling and heart failure. The intermediate-conductance calcium-activated potassium Channel (KCa3.1) has been recently proposed as an attractive target of fibrosis. The present study aimed to detect the effects of KCa3.1 blockade on ventricular remodeling following MI and its potential mechanisms. METHODS: Myocardial expression of KCa3.1 was initially measured in a mouse MI model by Western blot and real time-polymerase chain reaction. Then after treatment with TRAM-34, a highly selective KCa3.1 blocker, heart function and fibrosis were evaluated by echocardiography, histology and immunohistochemistry. Furthermore, the role of KCa3.1 in neonatal mouse cardiac fibroblasts (CFs) stimulated by angiotensin II (Ang II) was tested. RESULTS: Myocardium expressed high level of KCa3.1 after MI. Pharmacological blockade of KCa3.1 channel improved heart function and reduced ventricular dilation and fibrosis. Besides, a lower prevalence of myofibroblasts was found in TRAM-34 treatment group. In vitro studies KCa3.1 was up regulated in CFs induced by Ang II and suppressed by its blocker.KCa3.1 pharmacological blockade attenuated CFs proliferation, differentiation and profibrogenic genes expression and may regulating through AKT and ERK1/2 pathways. CONCLUSION: Blockade of KCa3.1 is able to attenuate ventricular remodeling after MI through inhibiting the pro-fibrotic effects of CFs.


Asunto(s)
Ventrículos Cardíacos/efectos de los fármacos , Corazón/efectos de los fármacos , Canales de Potasio de Conductancia Intermedia Activados por el Calcio/antagonistas & inhibidores , Infarto del Miocardio/tratamiento farmacológico , Miocardio/patología , Pirazoles/uso terapéutico , Remodelación Ventricular/efectos de los fármacos , Animales , Células Cultivadas , Colágeno/análisis , Fibroblastos/efectos de los fármacos , Fibroblastos/patología , Fibrosis , Ventrículos Cardíacos/patología , Canales de Potasio de Conductancia Intermedia Activados por el Calcio/análisis , Masculino , Ratones , Ratones Endogámicos C57BL , Infarto del Miocardio/patología , Miocardio/metabolismo
2.
Cell Commun Signal ; 13: 32, 2015 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-26177720

RESUMEN

BACKGROUND: Orai/CRACM1 ion channels provide the major Ca(2+) influx pathway for FcεRI-dependent human lung mast cell (HLMC) mediator release. The Ca(2+)-activated K(+) channel KCa3.1 modulates Ca(2+) influx and the secretory response through hyperpolarisation of the plasma membrane. We hypothesised that there is a close functional and spatiotemporal interaction between these Ca(2+)- and K(+)-selective channels. RESULTS: Activation of FcεRI-dependent HLMC KCa3.1 currents was dependent on the presence of extracellular Ca(2+), and attenuated in the presence of the selective Orai blocker GSK-7975A. Currents elicited by the KCa3.1 opener 1-EBIO were also attenuated by GSK-7975A. The Orai1 E106Q dominant-negative mutant ablated 1-EBIO and FcεRI-dependent KCa3.1 currents in HLMCs. Orai1 but not Orai2 was shown to co-immunoprecipitate with KCa3.1 when overexpressed in HEK293 cells, and Orai1 and KCa3.1 were seen to co-localise in the HEK293 plasma membrane using confocal microscopy. CONCLUSION: KCa3.1 activation in HLMCs is highly dependent on Ca(2+) influx through Orai1 channels, mediated via a close spatiotemporal interaction between the two channels.


Asunto(s)
Canales de Calcio/metabolismo , Membrana Celular/metabolismo , Canales de Potasio de Conductancia Intermedia Activados por el Calcio/metabolismo , Mastocitos/metabolismo , Calcio/metabolismo , Canales de Calcio/análisis , Canales de Calcio/genética , Células Cultivadas , Células HEK293 , Humanos , Canales de Potasio de Conductancia Intermedia Activados por el Calcio/análisis , Pulmón/citología , Mastocitos/citología , Proteína ORAI1 , Mutación Puntual , Mapas de Interacción de Proteínas
3.
J Gen Physiol ; 127(2): 159-69, 2006 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-16418402

RESUMEN

The complexity of mammalian physiology requires a diverse array of ion channel proteins. This diversity extends even to a single family of channels. For example, the family of Ca2+-activated K channels contains three structural subfamilies characterized by small, intermediate, and large single channel conductances. Many cells and tissues, including neurons, vascular smooth muscle, endothelial cells, macrophages, and salivary glands express more than a single class of these channels, raising questions about their specific physiological roles. We demonstrate here a novel interaction between two types of Ca2+-activated K channels: maxi-K channels, encoded by the KCa1.1 gene, and IK1 channels (KCa3.1). In both native parotid acinar cells and in a heterologous expression system, activation of IK1 channels inhibits maxi-K activity. This interaction was independent of the mode of activation of the IK1 channels: direct application of Ca2+, muscarinic receptor stimulation, or by direct chemical activation of the IK1 channels. The IK1-induced inhibition of maxi-K activity occurred in small, cell-free membrane patches and was due to a reduction in the maxi-K channel open probability and not to a change in the single channel current level. These data suggest that IK1 channels inhibit maxi-K channel activity via a direct, membrane-delimited interaction between the channel proteins. A quantitative analysis indicates that each maxi-K channel may be surrounded by four IK1 channels and will be inhibited if any one of these IK1 channels opens. This novel, regulated inhibition of maxi-K channels by activation of IK1 adds to the complexity of the properties of these Ca2+-activated K channels and likely contributes to the diversity of their functional roles.


Asunto(s)
Membrana Celular/fisiología , Canales de Potasio de Conductancia Intermedia Activados por el Calcio/fisiología , Canales de Potasio de Gran Conductancia Activados por el Calcio/antagonistas & inhibidores , Potenciales de la Membrana/fisiología , Animales , Calcio/farmacología , Calcio/fisiología , Membrana Celular/química , Canales de Cloruro/efectos de los fármacos , Canales de Cloruro/fisiología , Expresión Génica , Canales de Potasio de Conductancia Intermedia Activados por el Calcio/análisis , Canales de Potasio de Conductancia Intermedia Activados por el Calcio/genética , Canales de Potasio de Gran Conductancia Activados por el Calcio/análisis , Canales de Potasio de Gran Conductancia Activados por el Calcio/genética , Canales de Potasio de Gran Conductancia Activados por el Calcio/fisiología , Potenciales de la Membrana/efectos de los fármacos , Ratones , Ratones Endogámicos , Modelos Biológicos , Glándula Parótida/citología , Glándula Parótida/fisiología , Técnicas de Placa-Clamp , Receptores Muscarínicos/fisiología
4.
Oncotarget ; 7(28): 43924-43938, 2016 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-27270322

RESUMEN

Approximately 50-75% of patients with serous ovarian carcinoma (SOC) experience recurrence within 18 months after first-line treatment. Current clinical indicators are inadequate for predicting the risk of recurrence. In this study, we used 7 publicly available microarray datasets to identify gene signatures related to recurrence in optimally debulked SOC patients, and validated their expressions in an independent clinic cohort of 127 patients using immunohistochemistry (IHC). We identified a two-gene signature including KCNN4 and S100A14 which was related to recurrence in optimally debulked SOC patients. Their mRNA expression levels were positively correlated and regulated by DNA copy number alterations (CNA) (KCNN4: p=1.918e-05) and DNA promotermethylation (KCNN4: p=0.0179; S100A14: p=2.787e-13). Recurrence prediction models built in the TCGA dataset based on KCNN4 and S100A14 individually and in combination showed good prediction performance in the other 6 datasets (AUC:0.5442-0.9524). The independent cohort supported the expression difference between SOC recurrences. Also, a KCNN4 and S100A14-centered protein interaction subnetwork was built from the STRING database, and the shortest regulation path between them, called the KCNN4-UBA52-KLF4-S100A14 axis, was identified. This discovery might facilitate individualized treatment of SOC.


Asunto(s)
Biomarcadores de Tumor/análisis , Cistadenocarcinoma Seroso/patología , Recurrencia Local de Neoplasia/patología , Neoplasias Glandulares y Epiteliales/patología , Neoplasias Ováricas/patología , Adulto , Anciano , Anciano de 80 o más Años , Proteínas de Unión al Calcio/análisis , Proteínas de Unión al Calcio/biosíntesis , Carcinoma Epitelial de Ovario , Cistadenocarcinoma Seroso/mortalidad , Femenino , Perfilación de la Expresión Génica , Humanos , Canales de Potasio de Conductancia Intermedia Activados por el Calcio/análisis , Canales de Potasio de Conductancia Intermedia Activados por el Calcio/biosíntesis , Estimación de Kaplan-Meier , Factor 4 Similar a Kruppel , Persona de Mediana Edad , Recurrencia Local de Neoplasia/mortalidad , Neoplasias Glandulares y Epiteliales/mortalidad , Neoplasias Ováricas/mortalidad , Pronóstico , Transcriptoma
5.
Future Med Chem ; 2(5): 707-13, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20596245

RESUMEN

BACKGROUND: Intermediate conductance Ca2+-dependent K+ channels (KCa3.1) have been proposed as therapeutic targets for numerous diseases. We recently characterized the endocytic fate of these channels; leading to the possibility that this can be pharmacologically manipulated, thereby altering the number of channels (N) at the plasma membrane. RESULTS & DISCUSSION: We demonstrate that plasma membrane-localized KCa3.1 can be rapidly(10 min) tagged with a fluorophore using a combination of a biotin ligase (BirA) acceptor peptide-tagged channel and an ER-localized BirA. Endocytosis of KCa3.1 was quantified using a 96-well plate format, demonstrating that the ubiquitin-activating enzyme E1 inhibitor UBEI-41, blocks the endocytosis of KCa3.1. CONCLUSION: We describe a novel method for identifying modulators of KCa endocytosis and demonstrate this can be used to modulate Nat the plasma membrane. It is anticipated that altering N will provide novel therapeutic strategies for targeting these channels in disease.


Asunto(s)
Membrana Celular/metabolismo , Técnica del Anticuerpo Fluorescente/métodos , Canales de Potasio de Conductancia Intermedia Activados por el Calcio/análisis , Canales de Potasio de Conductancia Intermedia Activados por el Calcio/metabolismo , Membrana Celular/ultraestructura , Endocitosis , Colorantes Fluorescentes/análisis , Colorantes Fluorescentes/metabolismo , Células HEK293 , Humanos , Enzimas Activadoras de Ubiquitina/antagonistas & inhibidores
6.
Oncogene ; 28(15): 1792-806, 2009 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-19270724

RESUMEN

Accumulating data point to K(+) channels as relevant players in controlling cell cycle progression and proliferation of human cancer cells, including prostate cancer (PCa) cells. However, the mechanism(s) by which K(+) channels control PCa cell proliferation remain illusive. In this study, using the techniques of molecular biology, biochemistry, electrophysiology and calcium imaging, we studied the expression and functionality of intermediate-conductance calcium-activated potassium channels (IK(Ca1)) in human PCa as well as their involvement in cell proliferation. We showed that IK(Ca1) mRNA and protein were preferentially expressed in human PCa tissues, and inhibition of the IK(Ca1) potassium channel suppressed PCa cell proliferation. The activation of IK(Ca1) hyperpolarizes membrane potential and, by promoting the driving force for calcium, induces calcium entry through TRPV6, a cation channel of the TRP (Transient Receptor Potential) family. Thus, the overexpression of the IK(Ca1) channel is likely to promote carcinogenesis in human prostate tissue.


Asunto(s)
Calcio/metabolismo , Canales de Potasio de Conductancia Intermedia Activados por el Calcio/fisiología , Neoplasias de la Próstata/patología , Bencimidazoles/farmacología , Canales de Calcio/fisiología , Línea Celular Tumoral , Proliferación Celular , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/análisis , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Inhibidor p27 de las Quinasas Dependientes de la Ciclina , Fase G1 , Humanos , Canales de Potasio de Conductancia Intermedia Activados por el Calcio/análisis , Péptidos y Proteínas de Señalización Intracelular/análisis , Masculino , Potenciales de la Membrana , Neoplasias de la Próstata/metabolismo , ARN Mensajero/análisis , Proteínas S100/análisis , Canales Catiónicos TRPV/fisiología , Proteína p53 Supresora de Tumor/fisiología
7.
J Pharmacol Exp Ther ; 320(2): 544-51, 2007 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-17082310

RESUMEN

Acetylcholine (ACh) induces hyperpolarization and dilation in a variety of blood vessels, including the cochlear spiral modiolar artery (SMA) via the endothelium-derived hyperpolarization factor (EDHF). We demonstrated previously that the ACh-induced hyperpolarization in the SMA originated in the endothelial cells (ECs) by activating a Ca(2+)-activated K(+) channel (K(Ca)); the hyperpolarization in smooth muscle cells was mainly an electrotonic spread via gap junction coupling. In the present study, using intracellular recording, immunohistology, and vascular diameter tracking techniques on in vitro SMA preparations, we found that 1) ACh-induced hyperpolarization was suppressed by intermediate-conductance K(Ca) (IK) blockers clotrimazole (IC(50) = 116 nM) and nitrendipine and by the calmodulin antagonist trifluoperazine, but it was not suppressed by the big-conductance K(Ca) blocker iberiotoxin. The immunoreactivity to anti-SK4/IK1 antibody was localized mainly in ECs. 2) The three dihydropyridines--nifedipine, nitrendipine, and nimodipine--all concentration-dependently inhibited the ACh-induced hyperpolarization, with an IC(50) value of 455, 34, and 3.2 nM, respectively. 3) Among other L-type Ca(2+) channel (I(L)) blockers, 10 microM verapamil exerted a 20% inhibition on ACh-induced hyperpolarization, whereas diltiazem and the metal ion Ca(2+) channel blockers Cd(2+) and Ni(2+) had no effect. 4) Nitrendipine and charybdotoxin abolished ACh-induced dilation in the SMA. We conclude that ACh-induced hyperpolarization in the SMA is generated mainly by activation of the IK in the ECs, and dihydropyridines suppress the EDHF-mediated hyperpolarization by blocking the IK channel, not the I(L) channel. The clinical relevance of this dihydropyridine action is discussed.


Asunto(s)
Acetilcolina/farmacología , Bloqueadores de los Canales de Calcio/farmacología , Cóclea/irrigación sanguínea , Canales de Potasio de Conductancia Intermedia Activados por el Calcio/antagonistas & inhibidores , Nitrendipino/farmacología , Bloqueadores de los Canales de Potasio/farmacología , Animales , Arterias/efectos de los fármacos , Arterias/fisiología , Factores Biológicos/fisiología , Relación Dosis-Respuesta a Droga , Cobayas , Inmunohistoquímica , Canales de Potasio de Conductancia Intermedia Activados por el Calcio/análisis , Potenciales de la Membrana/efectos de los fármacos , Vasoconstricción/efectos de los fármacos
8.
J Anat ; 208(2): 219-29, 2006 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-16441566

RESUMEN

Intermediate-conductance, calcium-activated, potassium (IK) channels were first identified by their roles in cell volume regulation, and were later shown to be involved in control of proliferation of lymphocytes and to provide a K+ current for epithelial secretory activity. Until now, there has been no systematic investigation of IK channel localization within different epithelia. IK channel immunoreactivity was present in most epithelia, where it occurred in surface membranes of epithelial cells. It was found in all stratified epithelia, including skin, cornea, oral mucosa, vaginal mucosa, urothelium and the oesophageal lining. It occurred in the ducts of fluid-secreting glands, the salivary glands, lacrimal glands and pancreas, and in the respiratory epithelium. A low level of expression was seen in serous acinar cells. It was also found in other epithelia with fluid-exchange properties, the choroid plexus epithelium, the ependyma, visceral pleura and peritoneum, bile ducts and intestinal lining epithelium. However, there was little or no expression in vascular endothelial cells, kidney tubules or collecting ducts, lung alveoli, or in sebaceous glands. It is concluded that the channel is present in surface epithelia (e.g. skin) where it has a cell-protective role against osmotic challenge, and in epithelia where there is anion secretion that is facilitated by a K+ current-dependent hyperpolarization. It was also in some epithelial cells where its roles are as yet unknown.


Asunto(s)
Células Epiteliales/química , Glándulas Exocrinas/química , Canales de Potasio de Conductancia Intermedia Activados por el Calcio/análisis , Membrana Mucosa/química , Animales , Conductos Biliares , Córnea , Esófago , Femenino , Inmunohistoquímica/métodos , Canales de Potasio de Conductancia Intermedia Activados por el Calcio/genética , Aparato Lagrimal , Masculino , Glándulas Mamarias Animales , Mucosa Bucal , Ósmosis , Páncreas , ARN Mensajero/análisis , Ratas , Ratas Sprague-Dawley , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Glándulas Salivales , Piel , Glándulas Sudoríparas , Urotelio , Vagina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA