Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Physiol Plant ; 176(2): e14296, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38650503

RESUMEN

In Dunaliella tertiolecta, a microalga renowned for its extraordinary tolerance to high salinity levels up to 4.5 M NaCl, the mechanisms underlying its stress response have largely remained a mystery. In a groundbreaking discovery, this study identifies a choline dehydrogenase enzyme, termed DtCHDH, capable of converting choline to betaine aldehyde. Remarkably, this is the first identification of such an enzyme not just in D. tertiolecta but across the entire Chlorophyta. A 3D model of DtCHDH was constructed, and molecular docking with choline was performed, revealing a potential binding site for the substrate. The enzyme was heterologously expressed in E. coli Rosetta (DE3) and subsequently purified, achieving enzyme activity of 672.2 U/mg. To elucidate the role of DtCHDH in the salt tolerance of D. tertiolecta, RNAi was employed to knock down DtCHDH gene expression. The results indicated that the Ri-12 strain exhibited compromised growth under both high and low salt conditions, along with consistent levels of DtCHDH gene expression and betaine content. Additionally, fatty acid analysis indicated that DtCHDH might also be a FAPs enzyme, catalyzing reactions with decarboxylase activity. This study not only illuminates the role of choline metabolism in D. tertiolecta's adaptation to high salinity but also identifies a novel target for enhancing the NaCl tolerance of microalgae in biotechnological applications.


Asunto(s)
Betaína , Colina-Deshidrogenasa , Tolerancia a la Sal , Betaína/metabolismo , Tolerancia a la Sal/genética , Colina-Deshidrogenasa/metabolismo , Colina-Deshidrogenasa/genética , Colina/metabolismo , Chlorophyceae/genética , Chlorophyceae/fisiología , Chlorophyceae/enzimología , Chlorophyceae/metabolismo , Microalgas/genética , Microalgas/enzimología , Microalgas/metabolismo , Simulación del Acoplamiento Molecular , Cloruro de Sodio/farmacología
2.
J Phycol ; 60(2): 275-298, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38439561

RESUMEN

Thick-walled rosette-like snow algae were long thought to be a life stage of various other species of snow algae. Rosette-like cells have not been cultured, but by manually isolating cells from 38 field samples in southern British Columbia, we assigned a variety of rosette morphologies to DNA sequence. Phylogenetic analysis of Rubisco large-subunit (rbcL) gene, ribosomal internal transcribed spacer 2 (ITS2) rRNA region, and 18S rRNA gene revealed that the rosette-like cells form a new clade within the phylogroup Chloromonadinia. Based on these data, we designate a new genus, Rosetta, which comprises five novel species: R. castellata, R. floranivea, R. stellaria, R. rubriterra, and R. papavera. In a survey of 762 snow samples from British Columbia, we observed R. floranivea exclusively on snow overlying high-elevation glaciers, whereas R. castellata was observed at lower elevations, near the tree line. The other three species were rarely observed. Spherical red cells enveloped in a thin translucent sac were conspecific with Rosetta, possibly a developmental stage. These results highlight the unexplored diversity among snow algae and emphasize the utility of single-cell isolation to advance the centuries-old problem of disentangling life stages and cryptic species.


Asunto(s)
Chlorophyceae , Chlorophyta , Rhodophyta , Filogenia , Chlorophyta/genética , Chlorophyceae/genética , ARN Ribosómico 18S/genética , Rhodophyta/genética
3.
Am J Bot ; 110(11): e16238, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37661934

RESUMEN

PREMISE: Chaetopeltidales is a small, understudied order of the green algal class Chlorophyceae, that is slowly expanding with the occasional discoveries of novel algae. Here we demonstrate that hitherto unrecognized chaetopeltidaleans also exist among previously described but neglected and misclassified species. METHODS: Strain SAG 40.91 of Characium acuminatum, shown by previous preliminary evidence to have affinities with the orders Oedogoniales, Chaetophorales, and Chaetopeltidales (together constituting the OCC clade), was investigated with light and electron microscopy to characterize its morphology and ultrastructure. Sequence assemblies of the organellar and nuclear genomes were obtained and utilized in bioinformatic and phylogenetic analyses to address the phylogenetic position of the alga and its salient genomic features. RESULTS: The characterization of strain SAG 40.91 and a critical literature review led us to reinstate the forgotten genus Hydrocytium A.Braun 1855, with SAG 40.91 representing its type species, Hydrocytium acuminatum. Independent molecular markers converged on placing H. acuminatum as a deeply diverged lineage of the order Chaetopeltidales, formalized as the new family Hydrocytiaceae. Both chloroplast and mitochondrial genomes shared characteristics with other members of Chaetopeltidales and were bloated by repetitive sequences. Notably, the mitochondrial cox2a gene was transferred into the nuclear genome in the H. acuminatum lineage, independently of the same event in Volvocales. The nuclear genome data from H. acuminatum and from another chaetopeltidalean that was reported by others revealed endogenized viral sequences corresponding to novel members of the phylum Nucleocytoviricota. CONCLUSIONS: The resurrected genus Hydrocytium expands the known diversity of chaetopeltidalean algae and provides the first glimpse into their virosphere.


Asunto(s)
Chlorophyceae , Chlorophyta , Genoma Mitocondrial , Secuencia de Bases , Chlorophyceae/genética , Chlorophyta/genética , Genómica , Filogenia
4.
J Phycol ; 59(2): 342-355, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36680562

RESUMEN

The quadriflagellate genus Chlainomonas frequently dominates red snow globally. It is unusual in several respects, with two separated pairs of flagella, apparent cell division via extrusion of cytoplasmic threads, and being nested phylogenetically within the biflagellate genus Chloromonas. Here, we showed that the austral species Chloromonas (Cr.) rubroleosa, originally described from Antarctic red snow, is a close biflagellate relative of Chlainomonas, challenging the monophyly of Chlainomonas as currently conceived. Sequences of the 18S rRNA gene robustly linked Cr. rubroleosa with near-identical environmental sequences from Antarctic red snow and Chlainomonas from North America, Japan, and Europe. Furthermore, the 18S rRNA and rbcL gene sequences of Cr. rubroleosa were almost identical to New Zealand and North American collections of Chlainomonas. Cr. rubroleosa and New Zealand Chlainomonas are separated by only a single-base substitution across the ITS1-5.8S-ITS2 rRNA loci (and according to ITS2, the North American collection is the next closest relative). This again raises the possibility that Chlainomonas is a life-cycle stage of vegetatively biflagellate organisms, although this remains confounded by the scarcity of biflagellates in field populations, the apparent cell division by quadriflagellates, and the absence of Chlainomonas-type cells in cultures of Cr. rubroleosa. The latter species is broadly similar to Chlainomonas, being poor at swimming, with similar pigment, chloroplast arrangement and ultrastructure, and is relatively large. Increased size is a feature of the wider clade of "Group D" snow algae. A synthesis of field and laboratory investigations may be needed to unravel the life cycle and correct the systematics of this group.


Asunto(s)
Chlorophyceae , Chlorophyceae/genética , Filogenia , Cloroplastos , Europa (Continente) , ARN Ribosómico 18S/genética
5.
J Phycol ; 59(4): 775-784, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37261838

RESUMEN

Species identification of Scenedesmus-like microalgae, comprising Desmodesmus, Tetradesmus, and Scenedesmus, has been challenging due to their high morphological and genetic similarity. After developing a DNA signaturing tool for Desmodesmus identification, we built a DNA signaturing database for Tetradesmus. The DNA signaturing tool contained species-specific nucleotide sequences of Tetradesmus species or strain groups with high similarity in ITS2 sequences. To construct DNA signaturing, we collected data on ITS2 sequences, aligned the sequences, organized the data by ITS2 sequence homology, and determined signature sequences according to hemi-compensatory base changes (hCBC)/CBC data from previous studies. Four Tetradesmus species and 11 strain groups had DNA signatures. The signature sequence of the genus Tetradesmus, TTA GAG GCT TAA GCA AGG ACCC, recognized 86% (157/183) of the collected Tetradesmus strains. Phylogenetic analysis of Scenedesmus-like species revealed that the Tetradesmus species were monophyletic and closely related to each other based on branch lengths. Desmodesmus was suggested to split into two subgenera due to their genetic and morphological distinction. Scenedesmus must be analyzed along with other genera of the Scenedesmaceae family to determine their genetic relationships. Importantly, DNA signaturing was integrated into a database for identifying Scenedesmus-like species through BLAST.


Asunto(s)
Chlorophyceae , Microalgas , Scenedesmus , Filogenia , Scenedesmus/genética , Microalgas/genética , Chlorophyceae/genética , ADN
6.
Proc Natl Acad Sci U S A ; 117(29): 17438-17445, 2020 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-32636259

RESUMEN

Among green plants, desiccation tolerance is common in seeds and spores but rare in leaves and other vegetative green tissues. Over the last two decades, genes have been identified whose expression is induced by desiccation in diverse, desiccation-tolerant (DT) taxa, including, e.g., late embryogenesis abundant proteins (LEA) and reactive oxygen species scavengers. This up-regulation is observed in DT resurrection plants, mosses, and green algae most closely related to these Embryophytes. Here we test whether this same suite of protective genes is up-regulated during desiccation in even more distantly related DT green algae, and, importantly, whether that up-regulation is unique to DT algae or also occurs in a desiccation-intolerant relative. We used three closely related aquatic and desert-derived green microalgae in the family Scenedesmaceae and capitalized on extraordinary desiccation tolerance in two of the species, contrasting with desiccation intolerance in the third. We found that during desiccation, all three species increased expression of common protective genes. The feature distinguishing gene expression in DT algae, however, was extensive down-regulation of gene expression associated with diverse metabolic processes during the desiccation time course, suggesting a switch from active growth to energy-saving metabolism. This widespread downshift did not occur in the desiccation-intolerant taxon. These results show that desiccation-induced up-regulation of expression of protective genes may be necessary but is not sufficient to confer desiccation tolerance. The data also suggest that desiccation tolerance may require induced protective mechanisms operating in concert with massive down-regulation of gene expression controlling numerous other aspects of metabolism.


Asunto(s)
Adaptación Fisiológica/genética , Chlorophyta/genética , Chlorophyta/fisiología , Desecación , Regulación de la Expresión Génica de las Plantas , Chlorophyceae/genética , Chlorophyceae/fisiología , Regulación hacia Abajo , Extremófilos/fisiología , Ontología de Genes , Genes de Plantas/genética , Factores de Transcripción , Transcriptoma , Regulación hacia Arriba
7.
Plant Cell ; 31(3): 579-601, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30787178

RESUMEN

Light and nutrients are critical regulators of photosynthesis and metabolism in plants and algae. Many algae have the metabolic flexibility to grow photoautotrophically, heterotrophically, or mixotrophically. Here, we describe reversible Glc-dependent repression/activation of oxygenic photosynthesis in the unicellular green alga Chromochloris zofingiensis. We observed rapid and reversible changes in photosynthesis, in the photosynthetic apparatus, in thylakoid ultrastructure, and in energy stores including lipids and starch. Following Glc addition in the light, C. zofingiensis shuts off photosynthesis within days and accumulates large amounts of commercially relevant bioproducts, including triacylglycerols and the high-value nutraceutical ketocarotenoid astaxanthin, while increasing culture biomass. RNA sequencing reveals reversible changes in the transcriptome that form the basis of this metabolic regulation. Functional enrichment analyses show that Glc represses photosynthetic pathways while ketocarotenoid biosynthesis and heterotrophic carbon metabolism are upregulated. Because sugars play fundamental regulatory roles in gene expression, physiology, metabolism, and growth in both plants and animals, we have developed a simple algal model system to investigate conserved eukaryotic sugar responses as well as mechanisms of thylakoid breakdown and biogenesis in chloroplasts. Understanding regulation of photosynthesis and metabolism in algae could enable bioengineering to reroute metabolism toward beneficial bioproducts for energy, food, pharmaceuticals, and human health.


Asunto(s)
Chlorophyceae/fisiología , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Glucosa/farmacología , Oxígeno/metabolismo , Fotosíntesis/efectos de los fármacos , Transcriptoma/efectos de los fármacos , Antioxidantes/metabolismo , Bioingeniería , Carbono/metabolismo , Chlorophyceae/genética , Chlorophyceae/efectos de la radiación , Chlorophyceae/ultraestructura , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Fotosíntesis/efectos de la radiación , Tilacoides/metabolismo , Tilacoides/ultraestructura , Transcriptoma/efectos de la radiación , Xantófilas/metabolismo
8.
Int J Mol Sci ; 23(6)2022 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-35328543

RESUMEN

Haematococcus pluvialis has high economic value because of its high astaxanthin-producing ability. The mutation breeding of Haematococcus pluvialis is an important method to improve the yield of astaxanthin. Fluoridone, an inhibitor of phytoene dehydrogenase, can be used as a screening reagent for mutation breeding of Haematococcus pluvialis. This study describes the effect of fluridone on the biomass, chlorophyll, and astaxanthin content of Haematococcus pluvialis at different growth stages. Five fluridone concentrations (0.00 mg/L, 0.25 mg/L, 0.50 mg/L, 1.00 mg/L, and 2.00 mg/L) were set to treat Haematococcus pluvialis. It was found that fluridone significantly inhibited the growth and accumulation of astaxanthin in the red dormant stage. In addition, transcriptome sequencing was used to analyze the expression of genes related to four metabolic pathways in photosynthesis, carotenoid synthesis, fatty acid metabolism, and cellular antioxidant in algae after fluridone treatment. The results showed that six genes related to photosynthesis were downregulated. FPPS, lcyB genes related to carotenoid synthesis are downregulated, but carotenoid ß-cyclic hydroxylase gene (LUT5), which plays a role in the conversion of carotenoid to abscisic acid (ABA), was upregulated, while the expression of phytoene dehydrogenase gene did not change. Two genes related to cell antioxidant capacity were upregulated. In the fatty acid metabolism pathway, the acetyl-CoA carboxylase gene (ACACA) was downregulated in the green stage, but upregulated in the red stage, and the stearoyl-CoA desaturase gene (SAD) was upregulated. According to the transcriptome results, fluridone can affect the astaxanthin accumulation and growth of Haematococcus pluvialis by regulating the synthesis of carotenoids, chlorophyll, fatty acids, and so on. It is expected to be used as a screening agent for the breeding of Haematococcus pluvialis. This research also provides an experimental basis for research on the mechanism of astaxanthin metabolism in Haematococcus pluvialis.


Asunto(s)
Chlorophyceae , Chlorophyta , Antioxidantes/farmacología , Carotenoides/metabolismo , Chlorophyceae/genética , Clorofila/metabolismo , Chlorophyta/genética , Chlorophyta/metabolismo , Ácidos Grasos/metabolismo , Fitomejoramiento , Piridonas , Transcriptoma
9.
Plant J ; 102(1): 153-164, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31762135

RESUMEN

Dunaliella has been extensively studied due to its intriguing adaptation to high salinity. Its di-domain glycerol-3-phosphate dehydrogenase (GPDH) isoform is likely to underlie the rapid production of the osmoprotectant glycerol. Here, we report the structure of the chimeric Dunaliella salina GPDH (DsGPDH) protein featuring a phosphoserine phosphatase-like domain fused to the canonical glycerol-3-phosphate (G3P) dehydrogenase domain. Biochemical assays confirm that DsGPDH can convert dihydroxyacetone phosphate (DHAP) directly to glycerol, whereas a separate phosphatase protein is required for this conversion process in most organisms. The structure of DsGPDH in complex with its substrate DHAP and co-factor nicotinamide adenine dinucleotide (NAD) allows the identification of the residues that form the active sites. Furthermore, the structure reveals an intriguing homotetramer form that likely contributes to the rapid biosynthesis of glycerol.


Asunto(s)
Chlorophyceae/enzimología , Dihidroxiacetona Fosfato/metabolismo , Glicerol/metabolismo , Glicerolfosfato Deshidrogenasa/metabolismo , Dominio Catalítico , Chlorophyceae/genética , Chlorophyceae/metabolismo , Glicerolfosfato Deshidrogenasa/química , Glicerolfosfato Deshidrogenasa/genética , NAD/metabolismo , Estructura Terciaria de Proteína , Alineación de Secuencia
10.
BMC Plant Biol ; 21(1): 20, 2021 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-33407140

RESUMEN

BACKGROUND: Haematococcus lacustris is an ideal source of astaxanthin (AST), which is stored in oil bodies containing esterified AST (EAST) and triacylglycerol (TAG). Diacylglycerol acyltransferases (DGATs) catalyze the last step of acyl-CoA-dependent TAG biosynthesis and are also considered as crucial enzymes involved in EAST biosynthesis in H. lacustris. Previous studies have identified four putative DGAT2-encoding genes in H. lacustris, and only HpDGAT2D allowed the recovery of TAG biosynthesis, but the engineering potential of HpDGAT2s in TAG biosynthesis remains ambiguous. RESULTS: Five putative DGAT2 genes (HpDGAT2A, HpDGAT2B, HpDGAT2C, HpDGAT2D, and HpDGAT2E) were identified in H. lacustris. Transcription analysis showed that the expression levels of the HpDGAT2A, HpDGAT2D, and HpDGAT2E genes markedly increased under high light and nitrogen deficient conditions with distinct patterns, which led to significant TAG and EAST accumulation. Functional complementation demonstrated that HpDGAT2A, HpDGAT2B, HpDGAT2D, and HpDGAT2E had the capacity to restore TAG synthesis in a TAG-deficient yeast strain (H1246) showing a large difference in enzymatic activity. Fatty acid (FA) profile assays revealed that HpDGAT2A, HpDGAT2D, and HpDGAT2E, but not HpDGAT2B, preferred monounsaturated fatty acyl-CoAs (MUFAs) for TAG synthesis in yeast cells, and showed a preference for polyunsaturated fatty acyl-CoAs (PUFAs) based on their feeding strategy. The heterologous expression of HpDGAT2D in Arabidopsis thaliana and Chlamydomonas reinhardtii significantly increased the TAG content and obviously promoted the MUFAs and PUFAs contents. CONCLUSIONS: Our study represents systematic work on the characterization of HpDGAT2s by integrating expression patterns, AST/TAG accumulation, functional complementation, and heterologous expression in yeast, plants, and algae. These results (1) update the gene models of HpDGAT2s, (2) prove the TAG biosynthesis capacity of HpDGAT2s, (3) show the strong preference for MUFAs and PUFAs, and (4) offer target genes to modulate TAG biosynthesis by using genetic engineering methods.


Asunto(s)
Chlorophyceae/enzimología , Chlorophyceae/genética , Diacilglicerol O-Acetiltransferasa/genética , Diacilglicerol O-Acetiltransferasa/metabolismo , Genes de Plantas , Triglicéridos/biosíntesis , Triglicéridos/genética , Regulación de la Expresión Génica de las Plantas
11.
J Eukaryot Microbiol ; 68(5): e12858, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34022092

RESUMEN

Filamentous green algae Chaetophorales present numerous taxonomic problems as many other green algae. Phylogenetic analyses based on nuclear genes have limited solutions. Studies with appropriate chloroplast molecular markers may solve this problems; however, suitable molecular markers for the order Chaetophorales are still unknown. In this study, 50 chloroplast genomes of Chlorophyceae, including 15 of Chaetophorales, were subjected to single protein-coding gene phylogenetic analyses, and substitution rate and evolutionary rate assays, and PCR amplification verification was conducted to screen the suitable molecular markers. Phylogenetic analyses of three chloroplast representative genes (psaB, tufA, and rbcL) amplified from 124 strains of Chaetophorales showed that phylogenetic relationships were not improved by increasing the number of samples, implying that the genes themselves, rather than limited samples, were the reason for the unsupported Topology I. Seven genes (atpF, atpI, ccsA, cemA, chlB, psbB, and rpl2) with robust support were selected to be the most suitable molecular markers for phylogenetic analyses of Chaetophorales, and the concatenated seven genes could replace the time-consuming and labor-intensive phylogenetic analyses based on chloroplast genome to some extent. To further solve the taxonomic problems of Chaetophorales, suitable chloroplast markers combined with more taxon-rich approach could be helpful and efficient.


Asunto(s)
Chlorophyceae , Chlorophyta , Genoma del Cloroplasto , Secuencia de Bases , Chlorophyceae/genética , Chlorophyta/genética , ADN de Cloroplastos/genética , Evolución Molecular , Filogenia
12.
Int J Mol Sci ; 22(3)2021 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-33525606

RESUMEN

The oleaginous microalgae species Chlorococcum sphacosum GD is a promising feedstock for biodiesel production from soil. However, its metabolic mechanism of lipid production remains unclear. In this study, the lipid accumulation and metabolism mechanisms of Chlorococcum sphacosum GD were analyzed under salt stress based on transcriptome sequencing. The biomass and lipid content of the alga strain were determined under different NaCl concentrations, and total RNA from fresh cells were isolated and sequenced by HiSeq 2000 high throughput sequencing technology. As the salt concentration increased in culture medium, the algal lipid content increased but the biomass decreased. Following transcriptome sequencing by assembly and splicing, 24,128 unigenes were annotated, with read lengths mostly distributed in the 200-300 bp interval. Statistically significant differentially expressed unigenes were observed in different experimental groups, with 2051 up-regulated genes and 1835 down-regulated genes. The lipid metabolism pathway analysis showed that, under salt stress, gene-related fatty acid biosynthesis (ACCase, KASII, KAR, HAD, FATA) was significantly up-regulated, but some gene-related fatty acid degradation was significantly down-regulated. The comprehensive results showed that salt concentration can affect the lipid accumulation and metabolism of C. sphacosum GD, and the lipid accumulation is closely related to the fatty acid synthesis pathway.


Asunto(s)
Proteínas Algáceas/genética , Chlorophyceae/fisiología , Perfilación de la Expresión Génica/métodos , Suelo/química , Chlorophyceae/genética , Regulación de la Expresión Génica/efectos de los fármacos , Redes Reguladoras de Genes , Secuenciación de Nucleótidos de Alto Rendimiento , Lípidos/biosíntesis , Anotación de Secuencia Molecular , Estrés Salino , Análisis de Secuencia de ARN , Cloruro de Sodio/farmacología
13.
Int J Mol Sci ; 22(21)2021 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-34768970

RESUMEN

The papain-like cysteine proteases (PLCPs), the most important group of cysteine proteases, have been reported to participate in the regulation of growth, senescence, and abiotic stresses in plants. However, the functions of PLCPs and their roles in stress response in microalgae was rarely reported. The responses to different abiotic stresses in Haematococcus pluvialis were often observed, including growth regulation and astaxanthin accumulation. In this study, the cDNA of HpXBCP3 containing 1515 bp open reading frame (ORF) was firstly cloned from H. pluvialis by RT-PCR. The analysis of protein domains and molecular evolution showed that HpXBCP3 was closely related to AtXBCP3 from Arabidopsis. The expression pattern analysis revealed that it significantly responds to NaCl stress in H. pluvialis. Subsequently, transformants expressing HpXBCP3 in Chlamydomonas reinhardtii were obtained and subjected to transcriptomic analysis. Results showed that HpXBCP3 might affect the cell cycle regulation and DNA replication in transgenic Chlamydomonas, resulting in abnormal growth of transformants. Moreover, the expression of HpXBCP3 might increase the sensitivity to NaCl stress by regulating ubiquitin and the expression of WD40 proteins in microalgae. Furthermore, the expression of HpXBCP3 might improve chlorophyll content by up-regulating the expression of NADH-dependent glutamate synthases in C. reinhardtii. This study indicated for the first time that HpXBCP3 was involved in the regulation of cell growth, salt stress response, and chlorophyll synthesis in microalgae. Results in this study might enrich the understanding of PLCPs in microalgae and provide a novel perspective for studying the mechanism of environmental stress responses in H. pluvialis.


Asunto(s)
Proteínas Algáceas/metabolismo , Chlorophyceae/enzimología , Proteasas de Cisteína/metabolismo , Microalgas/crecimiento & desarrollo , Microalgas/fisiología , Proteínas Algáceas/química , Proteínas Algáceas/genética , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/crecimiento & desarrollo , Chlamydomonas reinhardtii/fisiología , Chlorophyceae/genética , Clorofila/biosíntesis , Proteasas de Cisteína/química , Proteasas de Cisteína/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Ontología de Genes , Redes y Vías Metabólicas/genética , Redes y Vías Metabólicas/fisiología , Microalgas/genética , Filogenia , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Tolerancia a la Sal/genética , Tolerancia a la Sal/fisiología , Estrés Fisiológico/genética , Estrés Fisiológico/fisiología , Transformación Genética
14.
Plant J ; 98(6): 1060-1077, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30828893

RESUMEN

Chromochloris zofingiensis, featured due to its capability to simultaneously synthesize triacylglycerol (TAG) and astaxanthin, is emerging as a leading candidate alga for production uses. To better understand the oleaginous mechanism of this alga, we conducted a multiomics analysis by systematically integrating time-resolved transcriptomes, lipidomes and metabolomes in response to nitrogen deprivation. The data analysis unraveled the distinct mechanism of TAG accumulation, which involved coordinated stimulation of multiple biological processes including supply of energy and reductants, carbon reallocation from protein and starch, and 'pushing' and 'pulling' carbon to TAG synthesis. Unlike the model alga Chlamydomonas, de novo fatty acid synthesis in C. zofingiensis was promoted, together with enhanced turnover of both glycolipids and phospholipids, supporting the drastic need of acyls for TAG assembly. Moreover, genomewide analysis identified many key functional enzymes and transcription factors that had engineering potential for TAG modulation. Two genes encoding glycerol-3-phosphate acyltransferase (GPAT), the first committed enzyme for TAG assembly, were found in the C. zofingiensis genome; in vivo functional characterization revealed that extrachloroplastic GPAT instead of chloroplastic GPAT played a central role in TAG synthesis. These findings illuminate distinct oleaginousness mechanisms in C. zofingiensis and pave the way towards rational manipulation of this alga to becone an emerging model for trait improvements.


Asunto(s)
Chlorophyceae/genética , Lipidómica , Metaboloma , Transcriptoma , Triglicéridos/metabolismo , Transporte Biológico , Carbono/metabolismo , Chlorophyceae/metabolismo , Cloroplastos/metabolismo , Biología Computacional , Glucolípidos/metabolismo , Nitrógeno/deficiencia , Fenotipo , Fosfolípidos/metabolismo , Xantófilas/metabolismo
15.
BMC Genomics ; 21(1): 477, 2020 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-32652928

RESUMEN

BACKGROUND: Picophytoplankton are abundant and can contribute greatly to primary production in eutrophic lakes. Mychonastes species are among the common eukaryotic picophytoplankton in eutrophic lakes. We used third-generation sequencing technology to sequence the whole genome of Mychonastes homosphaera isolated from Lake Chaohu, a eutrophic freshwater lake in China. RESULT: The 24.23 Mbp nuclear genome of M.homosphaera, harboring 6649 protein-coding genes, is more compact than the genomes of the closely related Sphaeropleales species. This genome streamlining may be caused by a reduction in gene family number, intergenic size and introns. The genome sequence of M.homosphaera reveals the strategies adopted by this organism for environmental adaptation in the eutrophic lake. Analysis of cultures and the protein complement highlight the metabolic flexibility of M.homosphaera, the genome of which encodes genes involved in light harvesting, carbohydrate metabolism, and nitrogen and microelement metabolism, many of which form functional gene clusters. Reconstruction of the bioenergetic metabolic pathways of M.homosphaera, such as the lipid, starch and isoprenoid pathways, reveals characteristics that make this species suitable for biofuel production. CONCLUSION: The analysis of the whole genome of M. homosphaera provides insights into the genome streamlining, the high lipid yield, the environmental adaptation and phytoplankton evolution.


Asunto(s)
Adaptación Fisiológica/genética , Chlorophyceae/clasificación , Chlorophyceae/fisiología , Evolución Molecular , Fitoplancton/clasificación , Fitoplancton/fisiología , Biocombustibles , China , Chlorophyceae/genética , Eutrofización , Genoma del Cloroplasto , Genoma Mitocondrial , Lagos , Sistemas de Lectura Abierta/genética , Filogenia , Fitoplancton/genética
16.
BMC Genomics ; 21(1): 442, 2020 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-32590931

RESUMEN

BACKGROUND: Order Chaetophorales currently includes six families, namely Schizomeridaceae, Aphanochaetaceae, Barrancaceae, Uronemataceae, Fritschiellaceae, and Chaetophoraceae. The phylogenetic relationships of Chaetophorales have been inferred primarily based on short and less informative rDNA sequences. This study aimed to phylogenetically reconstruct order Chaetophorales and determine the taxonomic scheme, and to further understand the evolution of order Chaetophorales. RESULTS: In the present study, seven complete and five fragmentary chloroplast genomes were harvested. Phylogenomic and comparative genomic analysis were performed to determine the taxonomic scheme within Chaetophorales. Consequently, Oedogoniales was found to be a sister to a clade linking Chaetophorales and Chaetopeltidales. Schizomeriaceae, and Aphanochaetaceae clustered into a well-resolved basal clade in Chaetophorales, inconsistent with the results of phylogenetic analysis based on rDNA sequences. Comparative genomic analyses revealed that the chloroplast genomes of Schizomeriaceae and Aphanochaetaceae were highly conserved and homologous, highlighting the closest relationship in this order. Germination types of zoospores precisely correlated with the phylogenetic relationships. CONCLUSIONS: chloroplast genome structure analyses, synteny analyses, and zoospore germination analyses were concurrent with phylogenetic analyses based on the chloroplast genome, and all of them robustly determined the unique taxonomic scheme of Chaetophorales and the relationships of Oedogoniales, Chaetophorales, and Chaetopeltidales.


Asunto(s)
Chlorophyceae/clasificación , Cloroplastos/genética , Análisis de Secuencia de ADN/métodos , Chlorophyceae/genética , Chlorophyceae/crecimiento & desarrollo , ADN Ribosómico/genética , Evolución Molecular , Genoma del Cloroplasto , Genómica , Germinación , Filogenia , Sintenía
17.
J Cell Sci ; 131(7)2018 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-29487180

RESUMEN

Microscopic green algae inhabiting desert microbiotic crusts are remarkably diverse phylogenetically, and many desert lineages have independently evolved from aquatic ancestors. Here we worked with five desert and aquatic species within the family Scenedesmaceae to examine mechanisms that underlie desiccation tolerance and release of unicellular versus multicellular progeny. Live cell staining and time-lapse confocal imaging coupled with transmission electron microscopy established that the desert and aquatic species all divide by multiple (rather than binary) fission, although progeny were unicellular in three species and multicellular (joined in a sheet-like coenobium) in two. During division, Golgi complexes were localized near nuclei, and all species exhibited dynamic rotation of the daughter cell mass within the mother cell wall at cytokinesis. Differential desiccation tolerance across the five species, assessed from photosynthetic efficiency during desiccation/rehydration cycles, was accompanied by differential accumulation of intracellular reactive oxygen species (ROS) detected using a dye sensitive to intracellular ROS. Further comparative investigation will aim to understand the genetic, ultrastructural and physiological characteristics supporting unicellular versus multicellular coenobial morphology, and the ability of representatives in the Scenedesmaceae to colonize ecologically diverse, even extreme, habitats.


Asunto(s)
Chlorophyceae/genética , Chlorophyta/genética , Fotosíntesis/genética , Filogenia , Núcleo Celular/química , Núcleo Celular/genética , Núcleo Celular/ultraestructura , Chlorophyceae/clasificación , Chlorophyceae/crecimiento & desarrollo , Chlorophyta/crecimiento & desarrollo , Chlorophyta/ultraestructura , Citocinesis/genética , Ecosistema , Aparato de Golgi/química , Aparato de Golgi/ultraestructura , Luz , Especies Reactivas de Oxígeno/metabolismo , Imagen de Lapso de Tiempo
18.
Plant Cell Environ ; 43(5): 1212-1229, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31994740

RESUMEN

VIPP proteins aid thylakoid biogenesis and membrane maintenance in cyanobacteria, algae, and plants. Some members of the Chlorophyceae contain two VIPP paralogs termed VIPP1 and VIPP2, which originate from an early gene duplication event during the evolution of green algae. VIPP2 is barely expressed under nonstress conditions but accumulates in cells exposed to high light intensities or H2 O2 , during recovery from heat stress, and in mutants with defective integration (alb3.1) or translocation (secA) of thylakoid membrane proteins. Recombinant VIPP2 forms rod-like structures in vitro and shows a strong affinity for phosphatidylinositol phosphate. Under stress conditions, >70% of VIPP2 is present in membrane fractions and localizes to chloroplast membranes. A vipp2 knock-out mutant displays no growth phenotypes and no defects in the biogenesis or repair of photosystem II. However, after exposure to high light intensities, the vipp2 mutant accumulates less HSP22E/F and more LHCSR3 protein and transcript. This suggests that VIPP2 modulates a retrograde signal for the expression of nuclear genes HSP22E/F and LHCSR3. Immunoprecipitation of VIPP2 from solubilized cells and membrane-enriched fractions revealed major interactions with VIPP1 and minor interactions with HSP22E/F. Our data support a distinct role of VIPP2 in sensing and coping with chloroplast membrane stress.


Asunto(s)
Chlorophyceae/metabolismo , Cloroplastos/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de la Membrana/fisiología , Proteínas de Plantas/fisiología , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/metabolismo , Chlamydomonas reinhardtii/fisiología , Chlamydomonas reinhardtii/ultraestructura , Chlorophyceae/genética , Chlorophyceae/fisiología , Chlorophyceae/ultraestructura , Cloroplastos/fisiología , Cloroplastos/ultraestructura , Clonación Molecular , Inmunoprecipitación , Espectrometría de Masas , Proteínas de la Membrana/metabolismo , Microscopía Electrónica de Transmisión , Microscopía Fluorescente , Filogenia , Proteínas de Plantas/metabolismo , Proteínas Recombinantes , Tilacoides/metabolismo
19.
Ecotoxicol Environ Saf ; 201: 110737, 2020 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-32505758

RESUMEN

Macrolide antibiotics are common contaminants in the aquatic environment. They are toxic to a wide range of primary producers, inhibiting the algal growth and further hindering the delivery of several ecosystem services. Yet the molecular mechanisms of macrolides in algae remain undetermined. The objectives of this study were therefore to: 1. evaluate whether macrolides at the environmentally relevant level inhibit the growth of algae; and 2. test the hypothesis that macrolides bind to ribosome and inhibit protein translocation in algae, as it does in bacteria. In this study, transcriptomic analysis was applied to elucidate the toxicological mechanism in a model green alga Raphidocelis subcapitata treated with 5 and 90 µg L-1 of a typical macrolide roxithromycin (ROX). While exposure to ROX at 5 µg L-1 for 7 days did not affect algal growth and the transciptome, ROX at 90 µg L-1 resulted in 45% growth inhibition and 2306 (983 up- and 1323 down-regulated) DEGs, which were primarily enriched in the metabolism of energy, lipid, vitamins, and DNA replication and repair pathways. Nevertheless, genes involved in pathways in relation to translation and protein translocation and processing were dysregulated. Surprisingly, we found that genes involved in the base excision repair process were mostly repressed, suggesting that ROX may be genotoxic and cause DNA damage in R. subcapitata. Taken together, ROX was unlikely to pose a threat to green algae in the environment and the mode of action of macrolides in bacteria may not be directly extrapolated to green algae.


Asunto(s)
Antibacterianos/toxicidad , Chlorophyceae/efectos de los fármacos , Reparación del ADN/efectos de los fármacos , Roxitromicina/toxicidad , Contaminantes Químicos del Agua/toxicidad , Chlorophyceae/genética , Chlorophyceae/crecimiento & desarrollo , Daño del ADN/genética , Reparación del ADN/genética , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Transcriptoma/efectos de los fármacos
20.
Biochem Biophys Res Commun ; 509(2): 341-347, 2019 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-30585150

RESUMEN

The mitochondrial ATP synthase of Polytomella exhibits a peripheral stalk and a dimerization domain built by the Asa subunits, unique to chlorophycean algae. The topology of these subunits has been extensively studied. Here we explored the interactions of subunit Asa3 using Far Western blotting and subcomplex reconstitution, and found it associates with Asa1 and Asa8. We also identified the novel interactions Asa1-Asa2 and Asa1-Asa7. In silico analyses of Asa3 revealed that it adopts a HEAT repeat-like structure that points to its location within the enzyme based on the available 3D-map of the algal ATP synthase. We suggest that subunit Asa3 is instrumental in securing the attachment of the peripheral stalk to the membrane sector, thus stabilizing the dimeric mitochondrial ATP synthase.


Asunto(s)
Proteínas Algáceas/química , Membrana Celular/química , Chlorophyceae/química , ATPasas de Translocación de Protón Mitocondriales/química , Subunidades de Proteína/química , Proteínas Algáceas/genética , Proteínas Algáceas/metabolismo , Secuencias de Aminoácidos , Sitios de Unión , Membrana Celular/metabolismo , Membrana Celular/ultraestructura , Chlorophyceae/enzimología , Chlorophyceae/genética , Chlorophyceae/ultraestructura , Clonación Molecular , Microscopía por Crioelectrón , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , ATPasas de Translocación de Protón Mitocondriales/genética , ATPasas de Translocación de Protón Mitocondriales/metabolismo , Modelos Moleculares , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA