Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Emerg Infect Dis ; 29(6): 1202-1205, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37209672

RESUMEN

We detected a novel poxvirus from a gray seal (Halichoerus grypus) from the North Sea, Germany. The juvenile animal showed pox-like lesions and deteriorating overall health condition and was finally euthanized. Histology, electron microscopy, sequencing, and PCR confirmed a previously undescribed poxvirus of the Chordopoxvirinae subfamily, tentatively named Wadden Sea poxvirus.


Asunto(s)
Chordopoxvirinae , Poxviridae , Phocidae , Animales , Poxviridae/genética , Mar del Norte , Alemania/epidemiología
2.
J Virol ; 95(19): e0101221, 2021 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-34260287

RESUMEN

Vaccinia virus produces two types of virions known as single-membraned intracellular mature virus (MV) and double-membraned extracellular enveloped virus (EV). EV production peaks earlier when initial MVs are further wrapped and secreted to spread infection within the host. However, late during infection, MVs accumulate intracellularly and become important for host-to-host transmission. The process that regulates this switch remains elusive and is thought to be influenced by host factors. Here, we examined the hypothesis that EV and MV production are regulated by the virus through expression of F13 and the MV-specific protein A26. By switching the promoters and altering the expression kinetics of F13 and A26, we demonstrate that A26 expression downregulates EV production and plaque size, thus limiting viral spread. This process correlates with A26 association with the MV surface protein A27 and exclusion of F13, thus reducing EV titers. Thus, MV maturation is controlled by the abundance of the viral A26 protein, independently of other factors, and is rate limiting for EV production. The A26 gene is conserved within vertebrate poxviruses but is strikingly lost in poxviruses known to be transmitted exclusively by biting arthropods. A26-mediated virus maturation thus has the appearance to be an ancient evolutionary adaptation to enhance transmission of poxviruses that has subsequently been lost from vector-adapted species, for which it may serve as a genetic signature. The existence of virus-regulated mechanisms to produce virions adapted to fulfill different functions represents a novel level of complexity in mammalian viruses with major impacts on evolution, adaptation, and transmission. IMPORTANCE Chordopoxviruses are mammalian viruses that uniquely produce a first type of virion adapted to spread within the host and a second type that enhances transmission between hosts, which can take place by multiple ways, including direct contact, respiratory droplets, oral/fecal routes, or via vectors. Both virion types are important to balance intrahost dissemination and interhost transmission, so virus maturation pathways must be tightly controlled. Here, we provide evidence that the abundance and kinetics of expression of the viral protein A26 regulates this process by preventing formation of the first form and shifting maturation toward the second form. A26 is expressed late after the initial wave of progeny virions is produced, so sufficient viral dissemination is ensured, and A26 provides virions with enhanced environmental stability. Conservation of A26 in all vertebrate poxviruses, but not in those transmitted exclusively via biting arthropods, reveals the importance of A26-controlled virus maturation for transmission routes involving environmental exposure.


Asunto(s)
Regiones Promotoras Genéticas , Virus Vaccinia/fisiología , Proteínas Virales/metabolismo , Animales , Línea Celular , Chordopoxvirinae/genética , Chordopoxvirinae/metabolismo , Ingeniería Genética , Humanos , Orthopoxvirus/genética , Orthopoxvirus/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Viral/genética , ARN Viral/metabolismo , Virus Vaccinia/genética , Ensayo de Placa Viral , Proteínas Virales/genética
3.
Vet Pathol ; 57(2): 296-310, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32096438

RESUMEN

Cervidpoxvirus is one of the more recently designated genera within the subfamily Chordopoxvirinae, with Deerpox virus (DPV) as the only recognized species to date. In this study, the authors describe spontaneous disease and infection in the North American moose (Alces americanus) by a novel Cervidpoxvirus, here named Moosepox virus (MPV). Three 4-month-old moose calves developed a multifocal subacute-to-chronic, necrotizing, suppurative-to-granulomatous dermatitis that affected the face and the extremities. Ultrastructurally, all stages of MPV morphogenesis-that is, crescents, spherical immature particles, mature particles, and enveloped mature virus-were observed in skin tissue. In vitro infection with MPV confirmed that its morphogenesis was similar to that of the prototype vaccinia virus. The entire coding region, including 170 putative genes of this MPV, was sequenced and annotated. The sequence length was 164,258 bp with 98.5% nucleotide identity with DPV (strain W-1170-84) based on the whole genome. The genome of the study virus was distinct from that of the reference strain (W-1170-84) in certain genes, including the CD30-like protein (83.9% nucleotide, 81.6% amino acid), the endothelin precursor (73.2% nucleotide including some indels, 51.4% amino acid), and major histocompatibility class (MHC) class I-like protein (81.0% nucleotide, 68.2% amino acid). This study provides biological characterization of a new Cervidpoxvirus attained through in vivo and in vitro ultrastructural analyses. It also demonstrates the importance of whole-genome sequencing in the molecular characterization of poxviruses identified in taxonomically related hosts.


Asunto(s)
Chordopoxvirinae/genética , Ciervos/virología , Dermatitis/veterinaria , Genoma Viral/genética , Animales , Chordopoxvirinae/aislamiento & purificación , Chordopoxvirinae/ultraestructura , Dermatitis/diagnóstico por imagen , Dermatitis/patología , Dermatitis/virología , Femenino , Secuenciación de Nucleótidos de Alto Rendimiento/veterinaria , Masculino , Microscopía Electrónica de Transmisión/veterinaria , Reacción en Cadena de la Polimerasa/veterinaria , Análisis de Secuencia de ADN/veterinaria , Piel/patología , Piel/virología , Secuenciación Completa del Genoma/veterinaria
4.
Trop Anim Health Prod ; 51(4): 819-829, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30649668

RESUMEN

During September and October 2017, a highly fatal outbreak of a disease clinically indistinguishable from goat pox occurred in the villages around the Kaziranga National Park, Assam, India. This was investigated through clinical examination of affected animals, individual interviews with goat keepers and participatory village meetings. Laboratory confirmation was impractical due to the isolation and poverty of the affected community and unnecessary due to the specific nature of the clinical signs. Respondents reported not having encountered the disease previously, and it would appear that a naïve local population developed within an endemically affected region because of a trend to avoid purchasing animals from outside the village. Local grazing practices appear to have had a role in both the spread and control of the outbreak. Goats are an important form of savings and cash income to people in the locality, and the outbreak may result in considerable financial hardship for affected goat keepers. We provide a detailed description of the clinical disease and the spread of the outbreak in the locality. Awareness of the disease with reference to farming practices will provide opportunities for future disease control to enhance animal welfare and rural prosperity.


Asunto(s)
Bienestar del Animal , Chordopoxvirinae/aislamiento & purificación , Brotes de Enfermedades/veterinaria , Enfermedades de las Cabras/epidemiología , Infecciones por Poxviridae/veterinaria , Animales , Femenino , Enfermedades de las Cabras/transmisión , Cabras , India/epidemiología , Masculino , Parques Recreativos , Infecciones por Poxviridae/epidemiología , Población Rural
5.
J Virol ; 89(18): 9348-67, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26136578

RESUMEN

UNLABELLED: Poxviruses are large DNA viruses of vertebrates and insects causing disease in many animal species, including reptiles, birds, and mammals. Although poxvirus-like particles were detected in diseased farmed koi carp, ayu, and Atlantic salmon, their genetic relationships to poxviruses were not established. Here, we provide the first genome sequence of a fish poxvirus, which was isolated from farmed Atlantic salmon. In the present study, we used quantitative PCR and immunohistochemistry to determine aspects of salmon gill poxvirus disease, which are described here. The gill was the main target organ where immature and mature poxvirus particles were detected. The particles were detected in detaching, apoptotic respiratory epithelial cells preceding clinical disease in the form of lethargy, respiratory distress, and mortality. In moribund salmon, blocking of gas exchange would likely be caused by the adherence of respiratory lamellae and epithelial proliferation obstructing respiratory surfaces. The virus was not found in healthy salmon or in control fish with gill disease without apoptotic cells, although transmission remains to be demonstrated. PCR of archival tissue confirmed virus infection in 14 cases with gill apoptosis in Norway starting from 1995. Phylogenomic analyses showed that the fish poxvirus is the deepest available branch of chordopoxviruses. The virus genome encompasses most key chordopoxvirus genes that are required for genome replication and expression, although the gene order is substantially different from that in other chordopoxviruses. Nevertheless, many highly conserved chordopoxvirus genes involved in viral membrane biogenesis or virus-host interactions are missing. Instead, the salmon poxvirus carries numerous genes encoding unknown proteins, many of which have low sequence complexity and contain simple repeats suggestive of intrinsic disorder or distinct protein structures. IMPORTANCE: Aquaculture is an increasingly important global source of high-quality food. To sustain the growth in aquaculture, disease control in fish farming is essential. Moreover, the spread of disease from farmed fish to wildlife is a concern. Serious poxviral diseases are emerging in aquaculture, but very little is known about the viruses and the diseases that they cause. There is a possibility that viruses with enhanced virulence may spread to new species, as has occurred with the myxoma poxvirus in rabbits. Provision of the first fish poxvirus genome sequence and specific diagnostics for the salmon gill poxvirus in Atlantic salmon may help curb this disease and provide comparative knowledge. Furthermore, because salmon gill poxvirus represents the deepest branch of chordopoxvirus so far discovered, the genome analysis provided substantial insight into the evolution of different functional modules in this important group of viruses.


Asunto(s)
Carpas/virología , Chordopoxvirinae/genética , Enfermedades de los Peces/virología , Branquias/virología , Filogenia , Infecciones por Poxviridae/genética , Salmo salar/virología , Animales , Chordopoxvirinae/metabolismo , Enfermedades de los Peces/genética , Enfermedades de los Peces/metabolismo , Branquias/metabolismo , Infecciones por Poxviridae/metabolismo , Conejos
6.
Viruses ; 14(12)2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-36560705

RESUMEN

The Salmon gill poxvirus (SGPV) has emerged in recent years as the cause of an acute respiratory disease that can lead to high mortality in farmed Atlantic salmon presmolts, known as Salmon gill poxvirus disease. SGPV was first identified in Norway in the 1990s, and its large DNA genome, consisting of over 206 predicted protein-coding genes, was characterized in 2015. This review summarizes current knowledge relating to disease manifestation and its effects on the host immune system and describes dissemination of the virus. It also demonstrates how newly established molecular tools can help us to understand SGPV and its pathogenesis. Finally, we conclude and ask some burning questions that should be addressed in future research.


Asunto(s)
Chordopoxvirinae , Enfermedades de los Peces , Poxviridae , Salmo salar , Animales , Branquias , Poxviridae/genética
7.
Viruses ; 14(9)2022 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-36146656

RESUMEN

Cetacean poxviruses (CePVs) cause 'tattoo' skin lesions in small and large cetaceans worldwide. Although the disease has been known for decades, genomic data for these poxviruses are very limited, with the exception of CePV-Tursiops aduncus, which was completely sequenced in 2020. Using a newly developed pan-pox real-time PCR system targeting a conserved nucleotide sequence located within the Monkeypox virus D6R gene, we rapidly detected the CePV genome in typical skin lesions collected from two Peruvian common bottlenose dolphins (Tursiops truncatus) by-caught off Peru in 1993. Phylogenetic analyses based on the sequencing of the DNA polymerase and DNA topoisomerase genes showed that the two viruses are very closely related to each other, although the dolphins they infected pertained to different ecotypes. The poxviruses described in this study belong to CePV-1, a heterogeneous clade that infects many species of dolphins (Delphinidae) and porpoises (Phocoenidae). Among this clade, the T. truncatus CePVs from Peru were more related to the viruses infecting Delphinidae than to those detected in Phocoenidae. This is the first time that CePVs were identified in free-ranging odontocetes from the Eastern Pacific, surprisingly in 30-year-old samples. These data further suggest a close and long-standing pathogen-host co-evolution, resulting in different lineages of CePVs.


Asunto(s)
Delfín Mular , Chordopoxvirinae , Marsopas , Poxviridae , Animales , Delfín Mular/genética , Cetáceos , Chordopoxvirinae/genética , ADN-Topoisomerasas/genética , ADN Polimerasa Dirigida por ADN/genética , Perú/epidemiología , Filogenia , Marsopas/genética , Poxviridae/genética , Reacción en Cadena en Tiempo Real de la Polimerasa
8.
Vopr Virusol ; 67(4): 304-309, 2022 09 11.
Artículo en Ruso | MEDLINE | ID: mdl-36097711

RESUMEN

INTRODUCTION: Lumpy skin disease (LSD), sheep pox and goat pox are dangerous diseases of domestic ruminants. Representatives of the genus of capripoxviruses are antigenically similar and can be used as a vaccine for three infections, as in the case of representatives of the genus of orthopoxviruses, which includes viruses of smallpox, monkeypox, and cowpox, that all belong to a single family Poxviridae. MATERIALS AND METHODS: In this study, the vaccine strain G20-LKV of the goat pox virus and the virulent strain RIBSP2019/K of the LSD virus were used. The experiments were carried out on clinically healthy cattle of the Kazakh White-headed breed, aged six to eight months. Virological and serological research methods were used in the work. RESULTS: All immunized animals that received different doses of the vaccine showed resistance to the infection challenge, without showing any clinical signs of the disease. In animals that received the lowest doses of the vaccine 15,000, 30,000 and 40,000 TCID50, no adverse events, skin and temperature reactions were observed at the injection site. Those vaccinated with high doses of the vaccine had a local reaction in the form of swelling at the site of vaccine administration. Control animals infected with a virulent virus showed clinical signs of the cattle lumpy skin disease . CONCLUSION: The vaccine, prepared based on the "G20-LKV" strain of the goat virus, is protective for cattle against infection with a virulent LSD virus at immunizing doses from 15,000 to 80,000 TCID50, which are dependent on the LSD epizootic situation in particular region.


Asunto(s)
Capripoxvirus , Chordopoxvirinae , Dermatosis Nodular Contagiosa , Virus de la Dermatosis Nodular Contagiosa , Infecciones por Poxviridae , Poxviridae , Vacunas Virales , Animales , Bovinos , Capripoxvirus/genética , Cabras , Dermatosis Nodular Contagiosa/prevención & control , Virus de la Dermatosis Nodular Contagiosa/genética , Poxviridae/genética , Infecciones por Poxviridae/prevención & control , Infecciones por Poxviridae/veterinaria , Ovinos , Vacunas Virales/genética
9.
J Gen Virol ; 92(Pt 11): 2596-2607, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21752962

RESUMEN

Ankyrin-repeat (ANK) protein-interaction domains are common in cellular proteins but are relatively rare in viruses. Chordopoxviruses, however, encode a large number of ANK domain-containing ORFs of largely unknown function. Recently, a second protein-interaction domain, an F-box-like motif, was identified in several poxvirus ANK proteins. Cellular F-box proteins recruit substrates to the ubiquitination machinery of the cell, a putative function for ANK/poxviral F-box proteins. Using publicly available genome sequence data we examined all 328 predicted ANK proteins encoded by 27 chordopoxviruses that represented the eight vertebrate poxvirus genera whose members encode ANK proteins. Within these we identified 15 putative ANK protein orthologue groups within orthopoxviruses, five within parapoxviruses, 23 within avipoxviruses and seven across members of the genera Leporipoxvirus, Capripoxvirus, Yatapoxvirus, Suipoxvirus and Cervidpoxvirus. Sequence comparisons showed that members of each of these four clusters of orthologues were not closely related to members of any of the other clusters. Of these ORFs, 67% encoded a C-terminal poxviral F-box-like motif, whose absence could largely be attributed to fragmentation of ORFs. Our findings suggest that the large family of poxvirus ANK proteins arose by extensive gene duplication and divergence that occurred independently in four major genus-based groups after the groups diverged from each other. It seems likely that the ancestor ANK proteins of poxviruses contained both the N-terminal ANK repeats and a C-terminal F-box-like domain, with the latter domain subsequently being lost in a small subset of these proteins.


Asunto(s)
Chordopoxvirinae/clasificación , Chordopoxvirinae/genética , Filogenia , Polimorfismo Genético , Proteínas Virales/genética , Repetición de Anquirina , Análisis por Conglomerados , Biología Computacional/métodos
10.
J Clin Microbiol ; 48(1): 268-76, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19906902

RESUMEN

Chordopoxviruses of the subfamily Chordopoxvirinae, family Poxviridae, infect vertebrates and consist of at least eight genera with broad host ranges. For most chordopoxviruses, the number of viral genes and their relative order are highly conserved in the central region. The GC content of chordopoxvirus genomes, however, evolved into two distinct types: those with genome GC content of more than 60% and those with a content of less than 40% GC. Two standard PCR assays were developed to identify chordopoxviruses based on whether the target virus has a low or high GC content. In design of the assays, the genus Avipoxvirus, which encodes major rearrangements of gene clusters, was excluded. These pan-pox assays amplify DNA from more than 150 different isolates and strains, including from primary clinical materials, from all seven targeted genera of chordopoxviruses and four unclassified new poxvirus species. The pan-pox assays represent an important advance for the screening and diagnosis of human and animal poxvirus infections, and the technology used is accessible to many laboratories worldwide.


Asunto(s)
Chordopoxvirinae/aislamiento & purificación , Técnicas de Diagnóstico Molecular/métodos , Reacción en Cadena de la Polimerasa/métodos , Infecciones por Poxviridae/diagnóstico , Infecciones por Poxviridae/veterinaria , Virología/métodos , Animales , Composición de Base , Secuencia de Bases , Chordopoxvirinae/genética , ADN Viral/química , ADN Viral/genética , Humanos , Datos de Secuencia Molecular , Filogenia , Infecciones por Poxviridae/virología , Alineación de Secuencia , Vertebrados
11.
J Virol ; 83(24): 12822-32, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19812151

RESUMEN

The original annotation of the vaccinia virus (VACV) genome was limited to open reading frames (ORFs) of at least 65 amino acids. Here, we characterized a 35-amino-acid ORF (O3L) located between ORFs O2L and I1L. ORFs similar in length to O3L were found at the same genetic locus in all vertebrate poxviruses. Although amino acid identities were low, the presence of a characteristic N-terminal hydrophobic domain strongly suggested that the other poxvirus genes were orthologs. Further studies demonstrated that the O3 protein was expressed at late times after infection and incorporated into the membrane of the mature virion. An O3L deletion mutant was barely viable, producing tiny plaques and a 3-log reduction in infectious progeny. A mutant VACV with a regulated O3L gene had a similar phenotype in the absence of inducer. There was no apparent defect in virus morphogenesis, though O3-deficient virus had low infectivity. The impairment was shown to be at the stage of virus entry, as cores were not detected in the cytoplasm after virus adsorption. Furthermore, O3-deficient virus did not induce fusion of infected cells when triggered by low pH. These characteristics are hallmarks of a group of proteins that form the entry/fusion complex (EFC). Affinity purification experiments demonstrated an association of O3 with EFC proteins. In addition, the assembly or stability of the EFC was impaired when expression of O3 was repressed. Thus, O3 is the newest recognized component of the EFC and the smallest VACV protein shown to have a function.


Asunto(s)
Virus Vaccinia/química , Proteínas Virales/fisiología , Secuencia de Aminoácidos , Chordopoxvirinae/química , Citoplasma/química , Fusión de Membrana , Datos de Secuencia Molecular , Sistemas de Lectura Abierta , Virus Vaccinia/fisiología , Proteínas Virales/química , Virión/química , Virión/fisiología , Replicación Viral
12.
Mol Ther ; 16(9): 1637-42, 2008 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-18628758

RESUMEN

JX-594 is a targeted oncolytic poxvirus that is designed to eradicate cancer cells having cell-cycle defects, through replication, cell lysis, and spread within tumors; oncolysis-induced tumor vascular shutdown and immunostimulation are augmented by granulocyte monocyte-colony-stimulating factor (GM-CSF) transgene expression. We have previously shown, in animal models of hepatocellular carcinoma (HCC), that JX-594 is a promising anticancer agent. We tested JX-594 in three patients with advanced refractory hepatitis B virus (HBV)-associated HCC through intratumoral administration. JX-594 treatment was well-tolerated and resulted in antitumoral efficacy in all three patients, despite the presence of high levels of neutralizing antibodies. JX-594 replication, its release into the circulation, distant tumor targeting were demonstrated. JX-594 administration resulted in the induction of antivascular cytokines, and was associated with tumor vascular shutdown. We also showed, for the first time, that oncolytic virotherapy can suppress underlying HBV replication in HCC patients, and that tumor tissue could be the primary source of acute HBV replication and acute post-treatment HBV release. JX-594 treatment in HBV-associated HCC warrants further clinical testing; a Phase II trial is underway.


Asunto(s)
Carcinoma Hepatocelular/irrigación sanguínea , Carcinoma Hepatocelular/terapia , Chordopoxvirinae/genética , Hepatitis B/terapia , Viroterapia Oncolítica , Replicación Viral , Anciano , Carcinoma Hepatocelular/secundario , Citocinas/genética , Citocinas/inmunología , Citocinas/metabolismo , ADN Viral/genética , Factor Estimulante de Colonias de Granulocitos y Macrófagos/genética , Factor Estimulante de Colonias de Granulocitos y Macrófagos/inmunología , Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo , Hepatitis B/inmunología , Hepatitis B/virología , Virus de la Hepatitis B/genética , Virus de la Hepatitis B/inmunología , Virus de la Hepatitis B/metabolismo , Humanos , Neoplasias Hepáticas/irrigación sanguínea , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/terapia , Masculino , Persona de Mediana Edad , Tomografía de Emisión de Positrones , Tomografía Computarizada por Rayos X , Resultado del Tratamiento , Factor A de Crecimiento Endotelial Vascular/metabolismo
13.
Nucleic Acids Res ; 35(22): 7714-20, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17984076

RESUMEN

The E3L gene is essential for pathogenesis in vaccinia virus. The E3L gene product consists of an N-terminal Z alpha domain and a C-terminal double-stranded RNA (dsRNA) binding domain; the left-handed Z-DNA-binding activity of the Z alpha domain of E3L is required for viral pathogenicity in mice. E3L is highly conserved among poxviruses, including the smallpox virus, and it is likely that the orthologous Z alpha domains play similar roles. To better understand the biological function of E3L proteins, we have investigated the Z-DNA-binding behavior of five representative Z alpha domains from poxviruses. Using surface plasmon resonance (SPR), we have demonstrated that these viral Z alpha domains bind Z-DNA tightly. Ability of Z alpha(E3L) converting B-DNA to Z-DNA was measured by circular dichroism (CD). The extents to which these Z alphas can stabilize Z-DNA vary considerably. Mutational studies demonstrate that residues in the loop of the beta-wing play an important role in this stabilization. Notably the Z alpha domain of vaccinia E3L acquires ability to convert B-DNA to Z-DNA by mutating amino acid residues in this region. Differences in the host cells of the various poxviruses may require different abilities to stabilize Z-DNA; this may be reflected in the observed differences in behavior in these Zalpha proteins.


Asunto(s)
ADN de Forma Z/química , Proteínas de Unión al ADN/química , Proteínas de Unión al ARN/química , Proteínas Virales/química , Secuencia de Aminoácidos , Chordopoxvirinae , ADN/química , Lisina/química , Datos de Secuencia Molecular , Mutación , Estructura Terciaria de Proteína , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Alineación de Secuencia , Resonancia por Plasmón de Superficie , Treonina/química , Proteínas Virales/genética , Proteínas Virales/metabolismo
14.
Dis Aquat Organ ; 85(3): 225-37, 2009 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-19750811

RESUMEN

The presence of tattoo skin disease (TSD) was examined in 1392 free-ranging and dead odontocetes comprising 17 species from the Americas, Europe, South Africa, New Zealand and Greenland. We investigated whether TSD prevalence varied with sex, age and health status. TSD was encountered in cetaceans from the Pacific and Atlantic Oceans as well as in those from the North, Mediterranean and Tasman Seas. No clear patterns related to geography and host phylogeny were detected, except that prevalence of TSD in juveniles and, in 2 species (dusky dolphin Lagenorhynchus obscurus and Burmeister's porpoise Phocoena spinipinnis), in adults was remarkably high in samples from Peru. Environmental factors and virus properties may be responsible for this finding. Sex did not significantly influence TSD prevalence except in the case of Peruvian P. spinipinnis. Generally, there was a pattern of TSD increase in juveniles compared to calves, attributed to the loss of maternal immunity. Also, in most samples, juveniles seemed to have a higher probability of suffering TSD than adults, presumably because more adults had acquired active immunity following infection. This holo-endemic pattern was inverted in poor health short-beaked common dolphins Delphinus delphis and harbour porpoises Phocoena phocoena from the British Isles, and in Chilean dolphins Cephalorhynchus eutropia from Patagonia, where adults showed a higher TSD prevalence than juveniles. Very large tattoos were seen in some adult odontocetes from the SE Pacific, NE Atlantic and Portugal's Sado Estuary, which suggest impaired immune response. The epidemiological pattern of TSD may be an indicator of cetacean population health.


Asunto(s)
Cetáceos/fisiología , Infecciones por Poxviridae/epidemiología , Enfermedades de la Piel/epidemiología , Distribución por Edad , Enfermedades de los Animales/epidemiología , Enfermedades de los Animales/virología , Animales , Chordopoxvirinae/fisiología , Femenino , Masculino , Factores Sexuales , Enfermedades de la Piel/virología
15.
Viruses ; 11(6)2019 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-31248065

RESUMEN

Interest in bat-related viruses has increased considerably during the last decade, leading to the discovery of a rising number of new viruses in several bat species. Poxviridae are a large, diverse family of DNA viruses that can infect a wide range of vertebrates and invertebrates. To date, only a few documented detections of poxviruses have been described in bat populations on three different continents (America, Africa, and Australia). These viruses are phylogenetically dissimilar and have diverse clinical impacts on their hosts. Herein, we report the isolation, nearly complete genome sequencing, and annotation of a novel poxvirus detected from an insectivorous bat (Hypsugo savii) in Northern Italy. The virus is tentatively named Hypsugopoxvirus (HYPV) after the bat species from which it was isolated. The nearly complete genome size is 166,600 nt and it encodes 161 genes. Genome analyses suggest that HYPV belongs to the Chordopoxvirinae subfamily, with the highest nucleotide identity (85%) to Eptesipoxvirus (EPTV) detected from a microbat Eptesicus fuscus in WA, USA, in 2011. To date, HYPV represents the first poxvirus detected in bats in Europe; thus, its viral ecology and disease associations should be investigated further.


Asunto(s)
Quirópteros/virología , Chordopoxvirinae/clasificación , Chordopoxvirinae/aislamiento & purificación , Infecciones por Poxviridae/veterinaria , Animales , Chordopoxvirinae/genética , ADN Viral/química , ADN Viral/genética , Italia , Filogenia , Infecciones por Poxviridae/virología , Análisis de Secuencia de ADN
16.
Viruses ; 11(12)2019 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-31810339

RESUMEN

Saltwater crocodilepox virus (SwCRV), belonging to the genus Crocodylidpoxvirus, are large DNA viruses posing an economic risk to Australian saltwater crocodile (Crocodylus porosus) farms by extending production times. Although poxvirus-like particles and sequences have been confirmed, their infection dynamics, inter-farm genetic variability and evolutionary relationships remain largely unknown. In this study, a poxvirus infection dynamics study was conducted on two C. porosus farms. One farm (Farm 2) showed twice the infection rate, and more concerningly, an increase in the number of early- to late-stage poxvirus lesions as crocodiles approached harvest size, reflecting the extended production periods observed on this farm. To determine if there was a genetic basis for this difference, 14 complete SwCRV genomes were isolated from lesions sourced from five Australian farms. They encompassed all the conserved genes when compared to the two previously reported SwCRV genomes and fell within three major clades. Farm 2's SwCRV sequences were distributed across all three clades, highlighting the likely mode of inter-farm transmission. Twenty-four recombination events were detected, with one recombination event resulting in consistent fragmentation of the P4c gene in the majority of the Farm 2 SwCRV isolates. Further investigation into the evolution of poxvirus infection in farmed crocodiles may offer valuable insights in evolution of this viral family and afford the opportunity to obtain crucial information into natural viral selection processes in an in vivo setting.


Asunto(s)
Caimanes y Cocodrilos/virología , Enfermedades de los Animales/virología , Chordopoxvirinae/clasificación , Chordopoxvirinae/genética , Evolución Molecular , Genoma Viral , Genómica , Infecciones por Poxviridae/veterinaria , Secuencia de Aminoácidos , Enfermedades de los Animales/epidemiología , Animales , Australia , Genómica/métodos , Filogenia , Prevalencia , Recombinación Genética
17.
Sci Rep ; 8(1): 5623, 2018 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-29618766

RESUMEN

Crocodilepox virus is a large dsDNA virus belonging to the genus Crocodylidpoxvirus, which infects a wide range of host species in the order Crocodylia worldwide. Here, we present genome sequences for a novel saltwater crocodilepox virus, with two subtypes (SwCRV-1 and -2), isolated from the Australian saltwater crocodile. Affected belly skins of juvenile saltwater crocodiles were used to sequence complete viral genomes, and perform electron microscopic analysis that visualized immature and mature virions. Analysis of the SwCRV genomes showed a high degree of sequence similarity to CRV (84.53% and 83.70%, respectively), with the novel SwCRV-1 and -2 complete genome sequences missing 5 and 6 genes respectively when compared to CRV, but containing 45 and 44 predicted unique genes. Similar to CRV, SwCRV also lacks the genes involved in virulence and host range, however, considering the presence of numerous hypothetical and or unique genes in the SwCRV genomes, it is completely reasonable that the genes encoding these functions are present but not recognized. Phylogenetic analysis suggested a monophyletic relationship between SwCRV and CRV, however, SwCRV is quite distinct from other chordopoxvirus genomes. These are the first SwCRV complete genome sequences isolated from saltwater crocodile skin lesions.


Asunto(s)
Caimanes y Cocodrilos/virología , Chordopoxvirinae/genética , Genoma Viral , Genómica/métodos , Infecciones por Poxviridae/genética , Enfermedades de la Piel/genética , Animales , Australia , Chordopoxvirinae/clasificación , Filogenia , Infecciones por Poxviridae/virología , Análisis de Secuencia de ADN , Enfermedades de la Piel/virología , Virulencia
18.
Sci Rep ; 7(1): 16472, 2017 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-29184134

RESUMEN

Poxviruses are large DNA viruses with varying zoonotic potential, and are recognised in a broad range of wildlife. Although poxviruses have been detected in kangaroos, their genetic relationships to poxviruses in other animals and humans is not well understood. Here, we present a novel genome sequence of a marsupial poxvirus, the Eastern grey kangaroopox virus (EKPV-NSW), isolated from a wild eastern grey kangaroo. In the present study, histopathologically confirmed epidermal pox lesions were used to recover the full-length viral genome and perform electron microscopic analysis, with both immature virions and intracellular mature virions detected. Subsequent analysis of the EKPV-NSW genome demonstrated the highest degree of sequence similarity with EKPV-SC strain (91.51%), followed by WKPV-WA (87.93%), and MOCV1 (44.05%). The novel EKPV-NSW complete genome encompasses most of the chordopoxviruses protein coding genes (138) that are required for genome replication and expression, with only three essential protein coding genes being absent. The novel EKPV-NSW is missing 28 predicted genes compared to the recently isolated EKPV-SC, and carries 21 additional unique genes, encoding unknown proteins. Phylogenetic and recombination analyses showed EKPV-NSW to be the distinct available candidate genome of chordopoxviruses.


Asunto(s)
Chordopoxvirinae/genética , Chordopoxvirinae/ultraestructura , Genoma Viral , Genómica , Animales , Chordopoxvirinae/clasificación , Biología Computacional/métodos , Genómica/métodos , Macropodidae , Masculino , Anotación de Secuencia Molecular , Filogenia , Infecciones por Poxviridae/diagnóstico , Infecciones por Poxviridae/veterinaria
19.
Virus Res ; 108(1-2): 39-43, 2005 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-15681053

RESUMEN

A large open reading frame (ORF) has been identified in two German cowpox virus strains. The ORFs (5676 and 5679 nt, respectively) differ in 10 nucleotides, resulting in an amino acid homology of 99.8%. In searching GenBank nucleotide sequences (>90% identity) were present in several small ORFs in variola major, variola minor and camelpox virus genomes. Alignments revealed that these small ORFs are fragments of a large ORF. However, sequences of the ORF described here are entirely absent in the two cowpox virus reference strains. Databank analysis revealed amino acid identities (ranging from 25 to 39%) with so-called B22R-like poxviral proteins with unknown function encoded by several chordopoxviruses. Further sequencing of one cowpox virus strain under study identified an ORF (5790 nt) which displays high levels of nucleotide identity to ORFs present in several orthopoxvirus species. Taken together, the two cowpox viruses analyzed here contain one large ORF which is conserved within the genus Orthopoxvirus and a unique, more distantly related ORF of similar size, which is conserved in the subfamily Chordopoxvirinae.


Asunto(s)
Virus de la Viruela Vacuna/genética , Genes Virales , Sistemas de Lectura Abierta , Orthopoxvirus/genética , Homología de Secuencia , Virus de la Viruela/genética , Chordopoxvirinae/genética , Secuencia Conservada , Virus de la Viruela Vacuna/aislamiento & purificación , ADN Viral/química , ADN Viral/aislamiento & purificación , Datos de Secuencia Molecular , Orthopoxvirus/aislamiento & purificación , Filogenia , Alineación de Secuencia , Análisis de Secuencia de ADN
20.
Viruses ; 7(4): 2126-46, 2015 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-25912716

RESUMEN

To investigate gene loss in poxviruses belonging to the Chordopoxvirinae subfamily, we assessed the gene content of representative members of the subfamily, and determined whether individual genes present in each genome were intact, truncated, or fragmented. When nonintact genes were identified, the early stop mutations (ESMs) leading to gene truncation or fragmentation were analyzed. Of all the ESMs present in these poxvirus genomes, over 65% co-localized with microsatellites-simple sequence nucleotide repeats. On average, microsatellites comprise 24% of the nucleotide sequence of these poxvirus genomes. These simple repeats have been shown to exhibit high rates of variation, and represent a target for poxvirus protein variation, gene truncation, and reductive evolution.


Asunto(s)
Chordopoxvirinae/genética , Variación Genética , Genoma Viral , Inestabilidad Genómica , Repeticiones de Microsatélite , Codón sin Sentido , Biología Computacional , Evolución Molecular , Eliminación de Gen
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA