Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Subcell Biochem ; 96: 273-295, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33252733

RESUMEN

The complement system is essential for immune defence against infection and modulation of proinflammatory responses. Activation of the terminal pathway of complement triggers formation of the membrane attack complex (MAC), a multi-protein pore that punctures membranes. Recent advances in structural biology, specifically cryo-electron microscopy (cryoEM), have provided atomic resolution snapshots along the pore formation pathway. These structures have revealed dramatic conformational rearrangements that enable assembly and membrane rupture. Here we review the structural basis for MAC formation and show how soluble proteins transition into a giant ß-barrel pore. We also discuss regulatory complexes of the terminal pathway and their impact on structure-guided drug discovery of complement therapeutics.


Asunto(s)
Complejo de Ataque a Membrana del Sistema Complemento/química , Complejo de Ataque a Membrana del Sistema Complemento/ultraestructura , Diseño de Fármacos , Microscopía por Crioelectrón , Humanos
2.
Proc Natl Acad Sci U S A ; 116(8): 2897-2906, 2019 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-30728296

RESUMEN

The crystal structure of the Gram-negative insecticidal protein, GNIP1Aa, has been solved at 2.5-Å resolution. The protein consists of two structurally distinct domains, a MACPF (membrane attack complex/PerForin) and a previously uncharacterized type of domain. GNIP1Aa is unique in being a prokaryotic MACPF member to have both its structure and function identified. It was isolated from a Chromobacterium piscinae strain and is specifically toxic to Diabrotica virgifera virgifera larvae upon feeding. In members of the MACPF family, the MACPF domain has been shown to be important for protein oligomerization and formation of transmembrane pores, while accompanying domains define the specificity of the target of the toxicity. In GNIP1Aa the accompanying C-terminal domain has a unique fold composed of three pseudosymmetric subdomains with shared sequence similarity, a feature not obvious from the initial sequence examination. Our analysis places this domain into a protein family, named here ß-tripod. Using mutagenesis, we identified functionally important regions in the ß-tripod domain, which may be involved in target recognition.


Asunto(s)
Proteínas Bacterianas/química , Chromobacterium/química , Escarabajos/genética , Perforina/química , Secuencia de Aminoácidos/genética , Animales , Proteínas Bacterianas/genética , Complejo de Ataque a Membrana del Sistema Complemento/química , Complejo de Ataque a Membrana del Sistema Complemento/genética , Cristalografía por Rayos X , Insecticidas/química , Modelos Moleculares , Perforina/genética , Proteínas Citotóxicas Formadoras de Poros/química , Proteínas Citotóxicas Formadoras de Poros/genética , Dominios Proteicos , Estructura Terciaria de Proteína
3.
J Struct Biol ; 211(2): 107531, 2020 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-32446810

RESUMEN

The Membrane Attack Complex-Perforin (MACPF) family is ubiquitously found in all kingdoms. They have diverse cellular roles, however MACPFs with pore-forming toxic function in venoms and poisons are very rare in animals. Here we present the structure of PmPV2, a MACPF toxin from the poisonous apple snail eggs, that can affect the digestive and nervous systems of potential predators. We report the three-dimensional structure of PmPV2, at 17.2 Å resolution determined by negative-stain electron microscopy and its solution structure by small angle X-ray scattering (SAXS). We found that PV2s differ from nearly all MACPFs in two respects: it is a dimer in solution and protomers combine two immune proteins into an AB toxin. The MACPF chain is linked by a single disulfide bond to a tachylectin chain, and two heterodimers are arranged head-to-tail by non-covalent forces in the native protein. MACPF domain is fused with a putative new Ct-accessory domain exclusive to invertebrates. The tachylectin is a six-bladed ß-propeller, similar to animal tectonins. We experimentally validated the predicted functions of both subunits and demonstrated for the first time that PV2s are true pore-forming toxins. The tachylectin "B" delivery subunit would bind to target membranes, and then the MACPF "A" toxic subunit would disrupt lipid bilayers forming large pores altering the plasma membrane conductance. These results indicate that PV2s toxicity evolved by linking two immune proteins where their combined preexisting functions gave rise to a new toxic entity with a novel role in defense against predation. This structure is an unparalleled example of protein exaptation.


Asunto(s)
Complejo de Ataque a Membrana del Sistema Complemento/ultraestructura , Lectinas/ultraestructura , Perforina/ultraestructura , Conformación Proteica , Secuencia de Aminoácidos/genética , Animales , Membrana Celular/química , Membrana Celular/ultraestructura , Complejo de Ataque a Membrana del Sistema Complemento/química , Complejo de Ataque a Membrana del Sistema Complemento/inmunología , Cristalografía por Rayos X , Dimerización , Lectinas/química , Lectinas/inmunología , Modelos Moleculares , Perforina/química , Perforina/inmunología , Subunidades de Proteína/genética , Dispersión del Ángulo Pequeño , Caracoles/ultraestructura , Difracción de Rayos X
4.
Parasite Immunol ; 42(2): e12686, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31745990

RESUMEN

The current study aimed to detect the complement-binding proteins in the excretory-secretory (ES) products of adult filarial parasite Setaria equina (SeqES). Tests for complement activation pathways (CH50 and APH50 ) in normal human serum (NHS) after incubation with SeqES were performed. Quantitative detection of complement activation products like C3d and sC5b-9 by ELISA in inulin-activated NHS before and after addition of SeqES was estimated. Immunoblotting for 1D and 2D electrophoresed SeqES were performed for detection of C9-binding protein. MALDI mass sequencing and multiple sequence alignment were performed for identification of the protein. The results showed an inhibitory effect of SeqES for complement activation pathways. This was confirmed by an obvious reduction in C3d and sC5b-9 in inulin-activated NHS. Immunoblotting showed the reaction of a protein at 21 kDa with human C9. The latter protein was identified as OV-16 based on MALDI mass sequencing and multiple sequence alignment. In conclusion, S equina OV-16 is the complement regulatory protein by its ability to bind C9 and inhibit the classical and alternative pathways of complement activation. This protein can be used as a target for therapeutic treatment or as an anti-inflammatory agent in human diseases.


Asunto(s)
Antígenos Helmínticos/inmunología , Complejo de Ataque a Membrana del Sistema Complemento/inmunología , Setaria (Nematodo)/inmunología , Secuencia de Aminoácidos , Animales , Proteínas Portadoras , Activación de Complemento , Complemento C9 , Complejo de Ataque a Membrana del Sistema Complemento/química , Proteínas del Sistema Complemento , Descubrimiento de Drogas , Ensayo de Inmunoadsorción Enzimática , Femenino , Humanos , Alineación de Secuencia
5.
J Cell Sci ; 129(11): 2125-33, 2016 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-27179071

RESUMEN

The membrane attack complex and perforin proteins (MACPFs) and bacterial cholesterol-dependent cytolysins (CDCs) are two branches of a large and diverse superfamily of pore-forming proteins that function in immunity and pathogenesis. During pore formation, soluble monomers assemble into large transmembrane pores through conformational transitions that involve extrusion and refolding of two α-helical regions into transmembrane ß-hairpins. These transitions entail a dramatic refolding of the protein structure, and the resulting assemblies create large holes in cellular membranes, but they do not use any external source of energy. Structures of the membrane-bound assemblies are required to mechanistically understand and modulate these processes. In this Commentary, we discuss recent advances in the understanding of assembly mechanisms and molecular details of the conformational changes that occur during MACPF and CDC pore formation.


Asunto(s)
Colesterol/metabolismo , Complejo de Ataque a Membrana del Sistema Complemento/metabolismo , Citotoxinas/metabolismo , Perforina/metabolismo , Animales , Complejo de Ataque a Membrana del Sistema Complemento/química , Citotoxinas/química , Humanos , Modelos Moleculares , Complejos Multiproteicos/metabolismo , Perforina/química
6.
Blood ; 127(22): 2701-10, 2016 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-27006390

RESUMEN

Uncontrolled activation of the complement system against endothelial and blood cells is central to the pathogenesis of atypical hemolytic uremic syndrome (aHUS). aHUS patients frequently carry mutations in the inhibitory complement regulator factor H (FH). Mutations cluster in domains 19 and 20 (FH19-20), which are critical for recognizing self surfaces. On endothelial cells, binding of FH is generally attributed to heparan sulfate. This theory, however, is questioned by the puzzling observation that some aHUS-associated mutations markedly enhance FH binding to heparin and endothelial cells. In this article, we show that, instead of disturbed heparin interactions, the impaired ability of C-terminal mutant FH molecules to recognize sialic acid in the context of surface-bound C3b explains their pathogenicity. By using recombinant FH19-20 as a competitor for FH and measuring erythrocyte lysis and deposition of complement C3b and C5b-9 on endothelial cells and platelets, we now show that several aHUS-associated mutations, which have been predicted to impair FH19-20 binding to sialic acid, prevent FH19-20 from antagonizing FH function on cells. When sialic acid was removed, the wild-type FH19-20 also lost its ability to interfere with FH function on cells. These results indicate that sialic acid is critical for FH-mediated complement regulation on erythrocytes, endothelial cells, and platelets. The inability of C-terminal mutant FH molecules to simultaneously bind sialic acid and C3b on cells provides a unifying explanation for their association with aHUS. Proper formation of FH-sialic acid-C3b complexes on surfaces exposed to plasma is essential for preventing cell damage and thrombogenesis characteristic of aHUS.


Asunto(s)
Síndrome Hemolítico Urémico Atípico/metabolismo , Complemento C3b/metabolismo , Factor H de Complemento/metabolismo , Complejo de Ataque a Membrana del Sistema Complemento/metabolismo , Mutación Missense , Ácido N-Acetilneuramínico/metabolismo , Sustitución de Aminoácidos , Síndrome Hemolítico Urémico Atípico/genética , Sitios de Unión , Plaquetas , Complemento C3b/química , Factor H de Complemento/química , Factor H de Complemento/genética , Complejo de Ataque a Membrana del Sistema Complemento/química , Células Endoteliales , Humanos , Ácido N-Acetilneuramínico/química , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
7.
PLoS Biol ; 13(2): e1002049, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25654333

RESUMEN

Membrane attack complex/perforin-like (MACPF) proteins comprise the largest superfamily of pore-forming proteins, playing crucial roles in immunity and pathogenesis. Soluble monomers assemble into large transmembrane pores via conformational transitions that remain to be structurally and mechanistically characterised. Here we present an 11 Å resolution cryo-electron microscopy (cryo-EM) structure of the two-part, fungal toxin Pleurotolysin (Ply), together with crystal structures of both components (the lipid binding PlyA protein and the pore-forming MACPF component PlyB). These data reveal a 13-fold pore 80 Å in diameter and 100 Å in height, with each subunit comprised of a PlyB molecule atop a membrane bound dimer of PlyA. The resolution of the EM map, together with biophysical and computational experiments, allowed confident assignment of subdomains in a MACPF pore assembly. The major conformational changes in PlyB are a ∼70° opening of the bent and distorted central ß-sheet of the MACPF domain, accompanied by extrusion and refolding of two α-helical regions into transmembrane ß-hairpins (TMH1 and TMH2). We determined the structures of three different disulphide bond-trapped prepore intermediates. Analysis of these data by molecular modelling and flexible fitting allows us to generate a potential trajectory of ß-sheet unbending. The results suggest that MACPF conformational change is triggered through disruption of the interface between a conserved helix-turn-helix motif and the top of TMH2. Following their release we propose that the transmembrane regions assemble into ß-hairpins via top down zippering of backbone hydrogen bonds to form the membrane-inserted ß-barrel. The intermediate structures of the MACPF domain during refolding into the ß-barrel pore establish a structural paradigm for the transition from soluble monomer to pore, which may be conserved across the whole superfamily. The TMH2 region is critical for the release of both TMH clusters, suggesting why this region is targeted by endogenous inhibitors of MACPF function.


Asunto(s)
Membrana Celular/química , Complejo de Ataque a Membrana del Sistema Complemento/química , Proteínas Fúngicas/química , Proteínas Hemolisinas/química , Pleurotus/química , Proteínas Recombinantes de Fusión/química , Animales , Complejo de Ataque a Membrana del Sistema Complemento/metabolismo , Microscopía por Crioelectrón , Cristalografía por Rayos X , Eritrocitos/química , Eritrocitos/citología , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Expresión Génica , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/metabolismo , Modelos Moleculares , Unión Proteica , Pliegue de Proteína , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Ovinos
8.
Proc Natl Acad Sci U S A ; 112(50): 15360-5, 2015 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-26627714

RESUMEN

The lethal factor in stonefish venom is stonustoxin (SNTX), a heterodimeric cytolytic protein that induces cardiovascular collapse in humans and native predators. Here, using X-ray crystallography, we make the unexpected finding that SNTX is a pore-forming member of an ancient branch of the Membrane Attack Complex-Perforin/Cholesterol-Dependent Cytolysin (MACPF/CDC) superfamily. SNTX comprises two homologous subunits (α and ß), each of which comprises an N-terminal pore-forming MACPF/CDC domain, a central focal adhesion-targeting domain, a thioredoxin domain, and a C-terminal tripartite motif family-like PRY SPla and the RYanodine Receptor immune recognition domain. Crucially, the structure reveals that the two MACPF domains are in complex with one another and arranged into a stable early prepore-like assembly. These data provide long sought after near-atomic resolution insights into how MACPF/CDC proteins assemble into prepores on the surface of membranes. Furthermore, our analyses reveal that SNTX-like MACPF/CDCs are distributed throughout eukaryotic life and play a broader, possibly immune-related function outside venom.


Asunto(s)
Venenos de los Peces/química , Perforina/química , Secuencia de Aminoácidos , Animales , Membrana Celular/metabolismo , Colesterol/química , Complejo de Ataque a Membrana del Sistema Complemento/química , Cristalografía por Rayos X , Microscopía Electrónica de Transmisión , Modelos Moleculares , Datos de Secuencia Molecular , Filogenia , Unión Proteica , Multimerización de Proteína , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Subunidades de Proteína/química , Solubilidad , Homología Estructural de Proteína
9.
J Immunol ; 194(5): 2309-18, 2015 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-25637016

RESUMEN

Shiga toxin (Stx)-producing Escherichia coli (STEC) cause hemolytic uremic syndrome (HUS). This study investigated whether Stx2 induces hemolysis and whether complement is involved in the hemolytic process. RBCs and/or RBC-derived microvesicles from patients with STEC-HUS (n = 25) were investigated for the presence of C3 and C9 by flow cytometry. Patients exhibited increased C3 deposition on RBCs compared with controls (p < 0.001), as well as high levels of C3- and C9-bearing RBC-derived microvesicles during the acute phase, which decreased after recovery. Stx2 bound to P1 (k) and P2 (k) phenotype RBCs, expressing high levels of the P(k) Ag (globotriaosylceramide), the known Stx receptor. Stx2 induced the release of hemoglobin and lactate dehydrogenase in whole blood, indicating hemolysis. Stx2-induced hemolysis was not demonstrated in the absence of plasma and was inhibited by heat inactivation, as well as by the terminal complement pathway Ab eculizumab, the purinergic P2 receptor antagonist suramin, and EDTA. In the presence of whole blood or plasma/serum, Stx2 induced the release of RBC-derived microvesicles coated with C5b-9, a process that was inhibited by EDTA, in the absence of factor B, and by purinergic P2 receptor antagonists. Thus, complement-coated RBC-derived microvesicles are elevated in HUS patients and induced in vitro by incubation of RBCs with Stx2, which also induced hemolysis. The role of complement in Stx2-mediated hemolysis was demonstrated by its occurrence only in the presence of plasma and its abrogation by heat inactivation, EDTA, and eculizumab. Complement activation on RBCs could play a role in the hemolytic process occurring during STEC-HUS.


Asunto(s)
Vesículas Cubiertas/efectos de los fármacos , Eritrocitos/efectos de los fármacos , Infecciones por Escherichia coli/sangre , Escherichia coli O157/patogenicidad , Síndrome Hemolítico-Urémico/sangre , Toxina Shiga/toxicidad , Adulto , Anciano , Anticuerpos Monoclonales Humanizados/farmacología , Niño , Preescolar , Vesículas Cubiertas/química , Vesículas Cubiertas/inmunología , Activación de Complemento/efectos de los fármacos , Complemento C3/química , Complemento C9/química , Complejo de Ataque a Membrana del Sistema Complemento/química , Ácido Edético/farmacología , Eritrocitos/química , Eritrocitos/inmunología , Eritrocitos/patología , Infecciones por Escherichia coli/inmunología , Infecciones por Escherichia coli/microbiología , Infecciones por Escherichia coli/patología , Escherichia coli O157/inmunología , Escherichia coli O157/metabolismo , Femenino , Expresión Génica , Hemólisis/efectos de los fármacos , Síndrome Hemolítico-Urémico/inmunología , Síndrome Hemolítico-Urémico/microbiología , Síndrome Hemolítico-Urémico/patología , Humanos , Lactante , L-Lactato Deshidrogenasa/metabolismo , Masculino , Persona de Mediana Edad , Antagonistas del Receptor Purinérgico P2/farmacología , Receptores Purinérgicos P2/genética , Receptores Purinérgicos P2/inmunología , Toxina Shiga/química , Toxina Shiga/inmunología , Suramina/farmacología , Trihexosilceramidas/inmunología
10.
Infect Immun ; 83(3): 888-97, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25534939

RESUMEN

Upon infection, pathogenic Leptospira species bind several complement regulators in order to overcome host innate immunity. We previously characterized a 20-kDa leptospiral surface protein which interacts with C4b binding protein (C4BP): leptospiral complement regulator-acquiring protein A (LcpA). Here we show that LcpA also interacts with human factor H (FH), which remains functionally active once bound to the protein. Antibodies directed against short consensus repeat 20 (SCR20) inhibited binding of FH to LcpA by approximately 90%, thus confirming that this particular domain is involved in the interaction. We have also shown for the first time that leptospires bind human vitronectin and that the interaction is mediated by LcpA. Coincubation with heparin blocked LcpA-vitronectin interaction in a dose-dependent manner, strongly suggesting that binding may occur through the heparin binding domains of vitronectin. LcpA also bound to the terminal pathway component C9 and inhibited Zn(2+)-induced polymerization and membrane attack complex (MAC) formation. Competitive binding assays indicated that LcpA interacts with C4BP, FH, and vitronectin through distinct sites. Taken together, our findings indicate that LcpA may play a role in leptospiral immune evasion.


Asunto(s)
Proteínas Bacterianas/química , Leptospira interrogans/química , Leptospira/química , Fragmentos de Péptidos/química , Vitronectina/química , Anticuerpos Monoclonales/química , Proteínas Bacterianas/antagonistas & inhibidores , Proteínas Bacterianas/inmunología , Sitios de Unión , Unión Competitiva , Activación de Complemento , Proteína de Unión al Complemento C4b/química , Proteína de Unión al Complemento C4b/inmunología , Complemento C9/química , Complemento C9/inmunología , Factor H de Complemento/química , Factor H de Complemento/inmunología , Complejo de Ataque a Membrana del Sistema Complemento/química , Heparina/química , Humanos , Evasión Inmune , Leptospira/inmunología , Leptospira/patogenicidad , Leptospira interrogans/inmunología , Leptospira interrogans/patogenicidad , Fragmentos de Péptidos/antagonistas & inhibidores , Fragmentos de Péptidos/inmunología , Unión Proteica , Vitronectina/inmunología , Zinc/química
11.
Mol Microbiol ; 94(6): 1361-74, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25339613

RESUMEN

Bacteroidales are the most abundant Gram-negative bacteria of the human intestinal microbiota comprising more than half of the bacteria in many individuals. Some of the factors that these bacteria use to establish and maintain themselves in this ecosystem are beginning to be identified. However, ecological competition, especially interference competition where one organism directly harms another, is largely unexplored. To begin to understand the relevance of this ecological principle as it applies to these abundant gut bacteria and factors that may promote such competition, we screened Bacteroides fragilis for the production of antimicrobial molecules. We found that the production of extracellularly secreted antimicrobial molecules is widespread in this species. The first identified molecule, described in this manuscript, contains a membrane attack complex/perforin (MACPF) domain present in host immune molecules that kill bacteria and virally infected cells by pore formation, and mutations affecting key residues of this domain abrogated its activity. This antimicrobial molecule, termed BSAP-1, is secreted from the cell in outer membrane vesicles and no additional proteins are required for its secretion, processing or immunity of the producing cell. This study provides the first insight into secreted molecules that promote competitive interference among Bacteroidales strains of the human gut.


Asunto(s)
Antiinfecciosos/metabolismo , Proteínas Bacterianas/metabolismo , Bacteroides fragilis/crecimiento & desarrollo , Intestinos/microbiología , Antiinfecciosos/química , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/inmunología , Bacteroides fragilis/clasificación , Bacteroides fragilis/genética , Complejo de Ataque a Membrana del Sistema Complemento/química , Genoma Bacteriano , Humanos , Intestinos/inmunología , Mutagénesis Sitio-Dirigida , Perforina/química
12.
Subcell Biochem ; 80: 83-116, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24798009

RESUMEN

The complement system is an intricate network of serum proteins that mediates humoral innate immunity through an amplification cascade that ultimately leads to recruitment of inflammatory cells or opsonisation or killing of pathogens. One effector arm of this network is the terminal pathway of complement, which leads to the formation of the membrane attack complex (MAC) composed of complement components C5b, C6, C7, C8 and C9. Upon formation of C5 convertases via the classical or alternative pathways of complement activation, C5b is generated from C5 by proteolytic cleavage, nucleating a series of association and polymerisation reactions of the MAC-constituting complement components that culminate in pore formation of pathogenic membranes. Recent structures of MAC components and homologous proteins significantly increased our understanding of oligomerisation, membrane association and integration, shedding light onto the molecular mechanism of this important branch of the innate immune system.


Asunto(s)
Complejo de Ataque a Membrana del Sistema Complemento/química , Animales , Complejo de Ataque a Membrana del Sistema Complemento/metabolismo , Proteínas del Sistema Complemento/química , Proteínas del Sistema Complemento/metabolismo , Humanos , Modelos Moleculares , Proteínas Citotóxicas Formadoras de Poros/química , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Conformación Proteica , Multimerización de Proteína
13.
Subcell Biochem ; 80: 255-69, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24798016

RESUMEN

Chlamydiae are obligate intracellular bacterial parasites that infect a wide range of metazoan hosts. Some Chlamydia species are important causes of chronic inflammatory diseases of the ocular, genital and respiratory tracts in humans. Genes located in a variable region of chlamydial genomes termed the plasticity zone are known to be key determinants of pathogenic diversity. The plasticity zone protein CT153, present only in select species, contains a membrane attack complex/perforin (MACPF) domain, which may mediate chlamydial interactions with the host cell. CT153 is present throughout the C. trachomatis developmental cycle and is processed into polypeptides that interact with membranes differently than does the parent protein. Chlamydiae interact extensively with membranes from the time of invasion until they eventually exit host cells, so numerous roles for a MACPF protein in pathogenesis of these pathogens are conceivable. Here, we present an overview of what is known about CT153 and highlight potential roles of a MACPF family protein in a group of pathogens whose intracellular development is marked by a series of interactions with host cell membranes and organelles. Finally, we identify new strategies for identifying CT153 functions made feasible by the recent development of a basic toolset for genetic manipulation of chlamydiae.


Asunto(s)
Proteínas Bacterianas/fisiología , Chlamydia trachomatis , Complejo de Ataque a Membrana del Sistema Complemento/fisiología , Perforina/fisiología , Animales , Proteínas Bacterianas/química , Infecciones por Chlamydia/microbiología , Chlamydia trachomatis/genética , Chlamydia trachomatis/crecimiento & desarrollo , Chlamydia trachomatis/patogenicidad , Complejo de Ataque a Membrana del Sistema Complemento/química , Interacciones Huésped-Patógeno , Humanos , Perforina/química
14.
Subcell Biochem ; 80: 7-30, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24798005

RESUMEN

Membrane Attack Complex/Perforin (MACPF) and Cholesterol-Dependent Cytolysins (CDC) form the MACPF/CDC superfamily of important effector proteins widespread in nature. MACPFs and CDCs were discovered separately with no sequence similarity at that stage being apparent between the two protein families such that they were not, until recently, considered evolutionary related. The breakthrough showing they are came with recent structural work that also shed light on the molecular mechanism of action of various MACPF proteins. Similarity in structural properties and conserved functional features indicate that both protein families have the same evolutionary origin. We will describe the distribution of MACPF/CDC proteins in nature and discuss briefly their similarity and functional role in different biological processes.


Asunto(s)
Complejo de Ataque a Membrana del Sistema Complemento/clasificación , Citotoxinas/clasificación , Perforina/genética , Secuencia de Aminoácidos , Animales , Colesterol/química , Colesterol/fisiología , Complejo de Ataque a Membrana del Sistema Complemento/química , Complejo de Ataque a Membrana del Sistema Complemento/genética , Citotoxinas/química , Citotoxinas/genética , Evolución Molecular , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Perforina/química , Perforina/metabolismo , Filogenia
15.
Subcell Biochem ; 80: 47-62, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24798007

RESUMEN

Five different cholesterol-dependent cytolysins (CDCs) have now had their atomic structures solved. Here their structures are compared and shown to vary less in the C-terminal region than they do in their N-terminal MACPF/CDC homology region. The most variable region of the C-terminal domain is the undecapeptide, which is observed in two clusters of conformations, and comparison of this domain with the C2 domain of perforin shows that the two structures have a common ancestor. Structural studies of CDC pre-pore and pore oligomers by cryo-electron microscopy and atomic force microscopy have revealed much about their mechanism of action. Understanding the activity of CDCs has required a combination of structural, biophysical and functional assays but current models of pore formation still require development to account for variable functional pore size.


Asunto(s)
Colesterol/metabolismo , Complejo de Ataque a Membrana del Sistema Complemento/química , Citotoxinas/química , Perforina/química , Animales , Colesterol/química , Complejo de Ataque a Membrana del Sistema Complemento/genética , Complejo de Ataque a Membrana del Sistema Complemento/metabolismo , Citotoxinas/genética , Humanos , Modelos Moleculares , Perforina/genética , Perforina/metabolismo , Filogenia , Polimerizacion , Conformación Proteica
16.
Subcell Biochem ; 80: 119-44, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24798010

RESUMEN

The cell membrane is crucial for protection of the cell from its environment. MACPF/CDC proteins are a large superfamily known to be essential for bacterial pathogenesis and proper functioning of the immune system. The three most studied groups of MACPF/CDC proteins are cholesterol-dependent cytolysins from bacteria, the membrane attack complex of complement and human perforin. Their primary function is to form transmembrane pores in target cell membranes. The common mechanism of action comprises water-soluble monomeric proteins binding to the host cell membrane, oligomerization, and formation of a functional pore. This causes a disturbance in gradients of ions and other molecules across the membrane and can lead to cell death. Cells react to this form of attack in a complex manner. Responses can be general, like removing the perforated part of the membrane, or more specific, in many cases depending on binding of proteins to specific receptors to trigger various signalling cascades.


Asunto(s)
Membrana Celular/metabolismo , Complejo de Ataque a Membrana del Sistema Complemento/metabolismo , Citotoxinas/metabolismo , Perforina/metabolismo , Animales , Membrana Celular/química , Colesterol/metabolismo , Complejo de Ataque a Membrana del Sistema Complemento/química , Citotoxinas/química , Humanos , Lípidos de la Membrana/química , Lípidos de la Membrana/metabolismo , Perforina/química , Proteínas Citotóxicas Formadoras de Poros/química , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Unión Proteica
17.
Subcell Biochem ; 80: 241-53, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24798015

RESUMEN

Apicomplexans are eukaryotic parasites of major medical and veterinary importance. They have complex life cycles through frequently more than one host, interact with many cell types in their hosts, and can breach host cell membranes during parasite traversal of, or egress from, host cells. Some of these parasites make a strikingly heavy use of the pore-forming MACPF domain, and encode up to 10 different MACPF domain-containing proteins. In this chapter, we focus on the two most studied and medically important apicomplexans, Plasmodium and Toxoplasma, and describe the known functions of their MACPF polypeptide arsenal. Apicomplexan MACPF proteins appear to be involved in a variety of membrane-damaging events, making them an attractive model to dissect the structure-function relationships of the MACPF domain.


Asunto(s)
Apicomplexa/metabolismo , Complejo de Ataque a Membrana del Sistema Complemento/fisiología , Perforina/fisiología , Plasmodium falciparum/metabolismo , Animales , Apicomplexa/crecimiento & desarrollo , Complejo de Ataque a Membrana del Sistema Complemento/química , Humanos , Estadios del Ciclo de Vida , Malaria/parasitología , Perforina/química , Plasmodium falciparum/crecimiento & desarrollo , Proteínas Protozoarias/química , Proteínas Protozoarias/metabolismo
18.
Subcell Biochem ; 80: 271-91, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24798017

RESUMEN

Proteins with membrane-attack complex/perforin (MACPF) domains are found in almost all kingdoms of life, and they have a variety of biological roles, including defence and attack, organism development, and cell adhesion and signalling. The distribution of these proteins in fungi appears to be restricted to some Pezizomycotina and Basidiomycota species only, in correlation with another group of proteins with unknown biological function, known as aegerolysins. These two protein groups coincide in only a few species, and they might operate in concert as cytolytic bi-component pore-forming agents. Representative proteins here include pleurotolysin B, which has a MACPF domain, and the aegerolysin-like protein pleurotolysin A, and the very similar ostreolysin A, which have been purified from oyster mushroom (Pleurotus ostreatus). These have been shown to act in concert to perforate natural and artificial lipid membranes with high cholesterol and sphingomyelin content. The aegerolysin-like proteins provide the membrane cholesterol/sphingomyelin selectivity and recruit oligomerised pleurotolysin B molecules, to create a membrane-inserted pore complex. The resulting protein structure has been imaged with electron microscopy, and it has a 13-meric rosette-like structure, with a central lumen that is ~4-5 nm in diameter. The opened transmembrane pore is non-selectively permeable for ions and smaller neutral solutes, and is a cause of cytolysis of a colloid-osmotic type. The biological significance of these proteins for the fungal life-style is discussed.


Asunto(s)
Complejo de Ataque a Membrana del Sistema Complemento/fisiología , Proteínas Fúngicas/fisiología , Proteínas Hemolisinas/fisiología , Perforina/fisiología , Proteínas Citotóxicas Formadoras de Poros/fisiología , Secuencia de Aminoácidos , Animales , Complejo de Ataque a Membrana del Sistema Complemento/química , Proteínas Fúngicas/química , Proteínas Hemolisinas/química , Humanos , Datos de Secuencia Molecular , Perforina/química , Filogenia , Pleurotus/genética , Pleurotus/patogenicidad , Proteínas Citotóxicas Formadoras de Poros/química , Multimerización de Proteína/fisiología , Homología de Secuencia de Aminoácido
19.
Subcell Biochem ; 80: 293-319, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24798018

RESUMEN

Structural and biochemical investigations have helped illuminate many of the important details of MACPF/CDC pore formation. However, conventional techniques are limited in their ability to tackle many of the remaining key questions, and new biophysical techniques might provide the means to improve our understanding. Here we attempt to identify the properties of MACPF/CDC proteins that warrant further study, and explore how new developments in fluorescence imaging are able to probe these properties.


Asunto(s)
Complejo de Ataque a Membrana del Sistema Complemento/química , Microscopía Fluorescente/métodos , Imagen Óptica/métodos , Perforina/química , Proteínas Citotóxicas Formadoras de Poros/química , Animales , Colesterol/química , Colesterol/metabolismo , Complejo de Ataque a Membrana del Sistema Complemento/metabolismo , Humanos , Membrana Dobles de Lípidos/química , Membrana Dobles de Lípidos/metabolismo , Perforina/metabolismo , Proteínas Citotóxicas Formadoras de Poros/metabolismo
20.
Biochemistry ; 53(12): 1908-15, 2014 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-24597946

RESUMEN

The complement terminal pathway clears pathogens by generating cytotoxic membrane attack complex (MAC) pores on target cells. For more than 40 years, biochemical and cellular assays have been used to characterize the lytic nature of the MAC and to define its protein composition. Although models for pore formation have been inferred from structures of bacterial cytolysins, it was only recently that we were able to visualize how complement components come together during MAC assembly. This review highlights structural analyses of terminal pathway complexes to explore molecular mechanisms underlying MAC formation.


Asunto(s)
Complejo de Ataque a Membrana del Sistema Complemento/química , Complejo de Ataque a Membrana del Sistema Complemento/fisiología , Sustancias Macromoleculares/química , Animales , Humanos , Sustancias Macromoleculares/metabolismo , Sustancias Macromoleculares/uso terapéutico , Neoplasias/química , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA