Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 965
Filtrar
Más filtros

Intervalo de año de publicación
1.
Nature ; 630(8016): 387-391, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38839953

RESUMEN

Threatened species are by definition species that are in need of assistance. In the absence of suitable conservation interventions, they are likely to disappear soon1. There is limited understanding of how and where conservation interventions are applied globally, or how well they work2,3. Here, using information from the International Union for Conservation of Nature Red List and other global databases, we find that for species at risk from three of the biggest drivers of biodiversity loss-habitat loss, overexploitation for international trade and invasive species4-many appear to lack the appropriate types of conservation interventions. Indeed, although there has been substantial recent expansion of the protected area network, we still find that 91% of threatened species have insufficient representation of their habitats within protected areas. Conservation interventions are not implemented uniformly across different taxa and regions and, even when present, have infrequently led to substantial improvements in the status of species. For 58% of the world's threatened terrestrial species, we find conservation interventions to be notably insufficient or absent. We cannot determine whether such species are truly neglected, or whether efforts to recover them are not included in major conservation databases. If they are indeed neglected, the outlook for many of the world's threatened species is grim without more and better targeted action.


Asunto(s)
Biodiversidad , Conservación de los Recursos Naturales , Especies en Peligro de Extinción , Internacionalidad , Animales , Conservación de los Recursos Naturales/métodos , Conservación de los Recursos Naturales/estadística & datos numéricos , Bases de Datos Factuales , Especies en Peligro de Extinción/estadística & datos numéricos , Extinción Biológica , Especies Introducidas/estadística & datos numéricos
2.
Nature ; 629(8011): 370-375, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38600390

RESUMEN

Roads are expanding at the fastest pace in human history. This is the case especially in biodiversity-rich tropical nations, where roads can result in forest loss and fragmentation, wildfires, illicit land invasions and negative societal effects1-5. Many roads are being constructed illegally or informally and do not appear on any existing road map6-10; the toll of such 'ghost roads' on ecosystems is poorly understood. Here we use around 7,000 h of effort by trained volunteers to map ghost roads across the tropical Asia-Pacific region, sampling 1.42 million plots, each 1 km2 in area. Our intensive sampling revealed a total of 1.37 million km of roads in our plots-from 3.0 to 6.6 times more roads than were found in leading datasets of roads globally. Across our study area, road building almost always preceded local forest loss, and road density was by far the strongest correlate11 of deforestation out of 38 potential biophysical and socioeconomic covariates. The relationship between road density and forest loss was nonlinear, with deforestation peaking soon after roads penetrate a landscape and then declining as roads multiply and remaining accessible forests largely disappear. Notably, after controlling for lower road density inside protected areas, we found that protected areas had only modest additional effects on preventing forest loss, implying that their most vital conservation function is limiting roads and road-related environmental disruption. Collectively, our findings suggest that burgeoning, poorly studied ghost roads are among the gravest of all direct threats to tropical forests.


Asunto(s)
Automóviles , Conservación de los Recursos Naturales , Agricultura Forestal , Bosques , Árboles , Clima Tropical , Asia , Conservación de los Recursos Naturales/estadística & datos numéricos , Conservación de los Recursos Naturales/tendencias , Árboles/crecimiento & desarrollo , Conjuntos de Datos como Asunto , Agricultura Forestal/métodos , Agricultura Forestal/estadística & datos numéricos , Agricultura Forestal/tendencias
3.
Nature ; 623(7986): 340-346, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37853124

RESUMEN

Understanding the effects of cash crop expansion on natural forest is of fundamental importance. However, for most crops there are no remotely sensed global maps1, and global deforestation impacts are estimated using models and extrapolations. Natural rubber is an example of a principal commodity for which deforestation impacts have been highly uncertain, with estimates differing more than fivefold1-4. Here we harnessed Earth observation satellite data and cloud computing5 to produce high-resolution maps of rubber (10 m pixel size) and associated deforestation (30 m pixel size) for Southeast Asia. Our maps indicate that rubber-related forest loss has been substantially underestimated in policy, by the public and in recent reports6-8. Our direct remotely sensed observations show that deforestation for rubber is at least twofold to threefold higher than suggested by figures now widely used for setting policy4. With more than 4 million hectares of forest loss for rubber since 1993 (at least 2 million hectares since 2000) and more than 1 million hectares of rubber plantations established in Key Biodiversity Areas, the effects of rubber on biodiversity and ecosystem services in Southeast Asia could be extensive. Thus, rubber deserves more attention in domestic policy, within trade agreements and in incoming due-diligence legislation.


Asunto(s)
Conservación de los Recursos Naturales , Bosques , Mapeo Geográfico , Goma , Imágenes Satelitales , Asia Sudoriental , Biodiversidad , Nube Computacional , Conservación de los Recursos Naturales/estadística & datos numéricos , Conservación de los Recursos Naturales/tendencias
4.
Nature ; 624(7990): 92-101, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37957399

RESUMEN

Forests are a substantial terrestrial carbon sink, but anthropogenic changes in land use and climate have considerably reduced the scale of this system1. Remote-sensing estimates to quantify carbon losses from global forests2-5 are characterized by considerable uncertainty and we lack a comprehensive ground-sourced evaluation to benchmark these estimates. Here we combine several ground-sourced6 and satellite-derived approaches2,7,8 to evaluate the scale of the global forest carbon potential outside agricultural and urban lands. Despite regional variation, the predictions demonstrated remarkable consistency at a global scale, with only a 12% difference between the ground-sourced and satellite-derived estimates. At present, global forest carbon storage is markedly under the natural potential, with a total deficit of 226 Gt (model range = 151-363 Gt) in areas with low human footprint. Most (61%, 139 Gt C) of this potential is in areas with existing forests, in which ecosystem protection can allow forests to recover to maturity. The remaining 39% (87 Gt C) of potential lies in regions in which forests have been removed or fragmented. Although forests cannot be a substitute for emissions reductions, our results support the idea2,3,9 that the conservation, restoration and sustainable management of diverse forests offer valuable contributions to meeting global climate and biodiversity targets.


Asunto(s)
Secuestro de Carbono , Carbono , Conservación de los Recursos Naturales , Bosques , Biodiversidad , Carbono/análisis , Carbono/metabolismo , Conservación de los Recursos Naturales/estadística & datos numéricos , Conservación de los Recursos Naturales/tendencias , Actividades Humanas , Restauración y Remediación Ambiental/tendencias , Desarrollo Sostenible/tendencias , Calentamiento Global/prevención & control
5.
Nature ; 621(7978): 318-323, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37612502

RESUMEN

The Amazon forest carbon sink is declining, mainly as a result of land-use and climate change1-4. Here we investigate how changes in law enforcement of environmental protection policies may have affected the Amazonian carbon balance between 2010 and 2018 compared with 2019 and 2020, based on atmospheric CO2 vertical profiles5,6, deforestation7 and fire data8, as well as infraction notices related to illegal deforestation9. We estimate that Amazonia carbon emissions increased from a mean of 0.24 ± 0.08 PgC year-1 in 2010-2018 to 0.44 ± 0.10 PgC year-1 in 2019 and 0.52 ± 0.10 PgC year-1 in 2020 (± uncertainty). The observed increases in deforestation were 82% and 77% (94% accuracy) and burned area were 14% and 42% in 2019 and 2020 compared with the 2010-2018 mean, respectively. We find that the numbers of notifications of infractions against flora decreased by 30% and 54% and fines paid by 74% and 89% in 2019 and 2020, respectively. Carbon losses during 2019-2020 were comparable with those of the record warm El Niño (2015-2016) without an extreme drought event. Statistical tests show that the observed differences between the 2010-2018 mean and 2019-2020 are unlikely to have arisen by chance. The changes in the carbon budget of Amazonia during 2019-2020 were mainly because of western Amazonia becoming a carbon source. Our results indicate that a decline in law enforcement led to increases in deforestation, biomass burning and forest degradation, which increased carbon emissions and enhanced drying and warming of the Amazon forests.


Asunto(s)
Dióxido de Carbono , Secuestro de Carbono , Conservación de los Recursos Naturales , Política Ambiental , Aplicación de la Ley , Bosque Lluvioso , Biomasa , Brasil , Dióxido de Carbono/análisis , Dióxido de Carbono/metabolismo , Política Ambiental/legislación & jurisprudencia , Atmósfera/química , Incendios Forestales/estadística & datos numéricos , Conservación de los Recursos Naturales/estadística & datos numéricos , El Niño Oscilación del Sur , Sequías/estadística & datos numéricos
6.
Nature ; 615(7952): 436-442, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36922608

RESUMEN

The globally important carbon sink of intact, old-growth tropical humid forests is declining because of climate change, deforestation and degradation from fire and logging1-3. Recovering tropical secondary and degraded forests now cover about 10% of the tropical forest area4, but how much carbon they accumulate remains uncertain. Here we quantify the aboveground carbon (AGC) sink of recovering forests across three main continuous tropical humid regions: the Amazon, Borneo and Central Africa5,6. On the basis of satellite data products4,7, our analysis encompasses the heterogeneous spatial and temporal patterns of growth in degraded and secondary forests, influenced by key environmental and anthropogenic drivers. In the first 20 years of recovery, regrowth rates in Borneo were up to 45% and 58% higher than in Central Africa and the Amazon, respectively. This is due to variables such as temperature, water deficit and disturbance regimes. We find that regrowing degraded and secondary forests accumulated 107 Tg C year-1 (90-130 Tg C year-1) between 1984 and 2018, counterbalancing 26% (21-34%) of carbon emissions from humid tropical forest loss during the same period. Protecting old-growth forests is therefore a priority. Furthermore, we estimate that conserving recovering degraded and secondary forests can have a feasible future carbon sink potential of 53 Tg C year-1 (44-62 Tg C year-1) across the main tropical regions studied.


Asunto(s)
Secuestro de Carbono , Carbono , Conservación de los Recursos Naturales , Bosques , Humedad , Árboles , Clima Tropical , Carbono/metabolismo , Conservación de los Recursos Naturales/métodos , Conservación de los Recursos Naturales/estadística & datos numéricos , Conservación de los Recursos Naturales/tendencias , Árboles/metabolismo , Agricultura Forestal/estadística & datos numéricos , Imágenes Satelitales , Temperatura , Bosque Lluvioso , Borneo , África Central , Brasil
7.
Nature ; 622(7981): 101-106, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37758956

RESUMEN

Protected areas (PAs) are the primary strategy for slowing terrestrial biodiversity loss. Although expansion of PA coverage is prioritized under the Convention on Biological Diversity, it remains unknown whether PAs mitigate declines across the tetrapod tree of life and to what extent land cover and climate change modify PA effectiveness1,2. Here we analysed rates of change in abundance of 2,239 terrestrial vertebrate populations across the globe. On average, vertebrate populations declined five times more slowly within PAs (-0.4% per year) than at similar sites lacking protection (-1.8% per year). The mitigating effects of PAs varied both within and across vertebrate classes, with amphibians and birds experiencing the greatest benefits. The benefits of PAs were lower for amphibians in areas with converted land cover and lower for reptiles in areas with rapid climate warming. By contrast, the mitigating impacts of PAs were consistently augmented by effective national governance. This study provides evidence for the effectiveness of PAs as a strategy for slowing tetrapod declines. However, optimizing the growing PA network requires targeted protection of sensitive clades and mitigation of threats beyond PA boundaries. Provided the conditions of targeted protection, adequate governance and well-managed landscapes are met, PAs can serve a critical role in safeguarding tetrapod biodiversity.


Asunto(s)
Biodiversidad , Conservación de los Recursos Naturales , Especies en Peligro de Extinción , Filogenia , Vertebrados , Animales , Aves/clasificación , Conservación de los Recursos Naturales/métodos , Conservación de los Recursos Naturales/estadística & datos numéricos , Vertebrados/clasificación , Especies en Peligro de Extinción/estadística & datos numéricos , Especies en Peligro de Extinción/tendencias , Anfibios/clasificación , Reptiles/clasificación , Calentamiento Global/estadística & datos numéricos
8.
Nature ; 595(7867): 388-393, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34262208

RESUMEN

Amazonia hosts the Earth's largest tropical forests and has been shown to be an important carbon sink over recent decades1-3. This carbon sink seems to be in decline, however, as a result of factors such as deforestation and climate change1-3. Here we investigate Amazonia's carbon budget and the main drivers responsible for its change into a carbon source. We performed 590 aircraft vertical profiling measurements of lower-tropospheric concentrations of carbon dioxide and carbon monoxide at four sites in Amazonia from 2010 to 20184. We find that total carbon emissions are greater in eastern Amazonia than in the western part, mostly as a result of spatial differences in carbon-monoxide-derived fire emissions. Southeastern Amazonia, in particular, acts as a net carbon source (total carbon flux minus fire emissions) to the atmosphere. Over the past 40 years, eastern Amazonia has been subjected to more deforestation, warming and moisture stress than the western part, especially during the dry season, with the southeast experiencing the strongest trends5-9. We explore the effect of climate change and deforestation trends on carbon emissions at our study sites, and find that the intensification of the dry season and an increase in deforestation seem to promote ecosystem stress, increase in fire occurrence, and higher carbon emissions in the eastern Amazon. This is in line with recent studies that indicate an increase in tree mortality and a reduction in photosynthesis as a result of climatic changes across Amazonia1,10.


Asunto(s)
Ciclo del Carbono , Secuestro de Carbono , Cambio Climático/estadística & datos numéricos , Conservación de los Recursos Naturales/estadística & datos numéricos , Bosques , Atmósfera/química , Dióxido de Carbono/análisis , Monóxido de Carbono/análisis , Actividades Humanas , Fotosíntesis , Lluvia , Estaciones del Año , Temperatura
9.
Nature ; 583(7818): 801-806, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32699418

RESUMEN

Decades of overexploitation have devastated shark populations, leaving considerable doubt as to their ecological status1,2. Yet much of what is known about sharks has been inferred from catch records in industrial fisheries, whereas far less information is available about sharks that live in coastal habitats3. Here we address this knowledge gap using data from more than 15,000 standardized baited remote underwater video stations that were deployed on 371 reefs in 58 nations to estimate the conservation status of reef sharks globally. Our results reveal the profound impact that fishing has had on reef shark populations: we observed no sharks on almost 20% of the surveyed reefs. Reef sharks were almost completely absent from reefs in several nations, and shark depletion was strongly related to socio-economic conditions such as the size and proximity of the nearest market, poor governance and the density of the human population. However, opportunities for the conservation of reef sharks remain: shark sanctuaries, closed areas, catch limits and an absence of gillnets and longlines were associated with a substantially higher relative abundance of reef sharks. These results reveal several policy pathways for the restoration and management of reef shark populations, from direct top-down management of fishing to indirect improvement of governance conditions. Reef shark populations will only have a high chance of recovery by engaging key socio-economic aspects of tropical fisheries.


Asunto(s)
Conservación de los Recursos Naturales/estadística & datos numéricos , Arrecifes de Coral , Ecosistema , Explotaciones Pesqueras/economía , Explotaciones Pesqueras/estadística & datos numéricos , Tiburones/fisiología , Animales , Mapeo Geográfico , Densidad de Población , Factores Socioeconómicos
10.
Nature ; 586(7828): 217-227, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-33028996

RESUMEN

Humanity will soon define a new era for nature-one that seeks to transform decades of underwhelming responses to the global biodiversity crisis. Area-based conservation efforts, which include both protected areas and other effective area-based conservation measures, are likely to extend and diversify. However, persistent shortfalls in ecological representation and management effectiveness diminish the potential role of area-based conservation in stemming biodiversity loss. Here we show how the expansion of protected areas by national governments since 2010 has had limited success in increasing the coverage across different elements of biodiversity (ecoregions, 12,056 threatened species, 'Key Biodiversity Areas' and wilderness areas) and ecosystem services (productive fisheries, and carbon services on land and sea). To be more successful after 2020, area-based conservation must contribute more effectively to meeting global biodiversity goals-ranging from preventing extinctions to retaining the most-intact ecosystems-and must better collaborate with the many Indigenous peoples, community groups and private initiatives that are central to the successful conservation of biodiversity. The long-term success of area-based conservation requires parties to the Convention on Biological Diversity to secure adequate financing, plan for climate change and make biodiversity conservation a far stronger part of land, water and sea management policies.


Asunto(s)
Conservación de los Recursos Naturales/tendencias , Mapeo Geográfico , Animales , Organismos Acuáticos , Biodiversidad , Conservación de los Recursos Naturales/economía , Conservación de los Recursos Naturales/estadística & datos numéricos , Ecología/estadística & datos numéricos , Ecología/tendencias , Historia del Siglo XXI , Vida Silvestre
11.
Nature ; 577(7791): 514-518, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31969725

RESUMEN

River deltas rank among the most economically and ecologically valuable environments on Earth. Even in the absence of sea-level rise, deltas are increasingly vulnerable to coastal hazards as declining sediment supply and climate change alter their sediment budget, affecting delta morphology and possibly leading to erosion1-3. However, the relationship between deltaic sediment budgets, oceanographic forces of waves and tides, and delta morphology has remained poorly quantified. Here we show how the morphology of about 11,000 coastal deltas worldwide, ranging from small bayhead deltas to mega-deltas, has been affected by river damming and deforestation. We introduce a model that shows that present-day delta morphology varies across a continuum between wave (about 80 per cent), tide (around 10 per cent) and river (about 10 per cent) dominance, but that most large deltas are tide- and river-dominated. Over the past 30 years, despite sea-level rise, deltas globally have experienced a net land gain of 54 ± 12 square kilometres per year (2 standard deviations), with the largest 1 per cent of deltas being responsible for 30 per cent of all net land area gains. Humans are a considerable driver of these net land gains-25 per cent of delta growth can be attributed to deforestation-induced increases in fluvial sediment supply. Yet for nearly 1,000 deltas, river damming4 has resulted in a severe (more than 50 per cent) reduction in anthropogenic sediment flux, forcing a collective loss of 12 ± 3.5 square kilometres per year (2 standard deviations) of deltaic land. Not all deltas lose land in response to river damming: deltas transitioning towards tide dominance are currently gaining land, probably through channel infilling. With expected accelerated sea-level rise5, however, recent land gains are unlikely to be sustained throughout the twenty-first century. Understanding the redistribution of sediments by waves and tides will be critical for successfully predicting human-driven change to deltas, both locally and globally.


Asunto(s)
Conservación de los Recursos Naturales/estadística & datos numéricos , Sedimentos Geológicos/análisis , Centrales Eléctricas/provisión & distribución , Ríos , Movimientos del Agua , Cambio Climático/estadística & datos numéricos , Mapeo Geográfico , Actividades Humanas/estadística & datos numéricos , Humanos , Internacionalidad , Modelos Teóricos , Elevación del Nivel del Mar/estadística & datos numéricos
12.
Nature ; 554(7693): 519-522, 2018 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-29443966

RESUMEN

Remote sensing enables the quantification of tropical deforestation with high spatial resolution. This in-depth mapping has led to substantial advances in the analysis of continent-wide fragmentation of tropical forests. Here we identified approximately 130 million forest fragments in three continents that show surprisingly similar power-law size and perimeter distributions as well as fractal dimensions. Power-law distributions have been observed in many natural phenomena such as wildfires, landslides and earthquakes. The principles of percolation theory provide one explanation for the observed patterns, and suggest that forest fragmentation is close to the critical point of percolation; simulation modelling also supports this hypothesis. The observed patterns emerge not only from random deforestation, which can be described by percolation theory, but also from a wide range of deforestation and forest-recovery regimes. Our models predict that additional forest loss will result in a large increase in the total number of forest fragments-at maximum by a factor of 33 over 50 years-as well as a decrease in their size, and that these consequences could be partly mitigated by reforestation and forest protection.


Asunto(s)
Conservación de los Recursos Naturales/estadística & datos numéricos , Agricultura Forestal/estadística & datos numéricos , Bosques , Mapeo Geográfico , Árboles/crecimiento & desarrollo , Clima Tropical , Biomasa , Imágenes Satelitales
15.
Nature ; 564(7735): 249-253, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30542169

RESUMEN

Land-use changes are critical for climate policy because native vegetation and soils store abundant carbon and their losses from agricultural expansion, together with emissions from agricultural production, contribute about 20 to 25 per cent of greenhouse gas emissions1,2. Most climate strategies require maintaining or increasing land-based carbon3 while meeting food demands, which are expected to grow by more than 50 per cent by 20501,2,4. A finite global land area implies that fulfilling these strategies requires increasing global land-use efficiency of both storing carbon and producing food. Yet measuring the efficiency of land-use changes from the perspective of greenhouse gas emissions is challenging, particularly when land outputs change, for example, from one food to another or from food to carbon storage in forests. Intuitively, if a hectare of land produces maize well and forest poorly, maize should be the more efficient use of land, and vice versa. However, quantifying this difference and the yields at which the balance changes requires a common metric that factors in different outputs, emissions from different agricultural inputs (such as fertilizer) and the different productive potentials of land due to physical factors such as rainfall or soils. Here we propose a carbon benefits index that measures how changes in the output types, output quantities and production processes of a hectare of land contribute to the global capacity to store carbon and to reduce total greenhouse gas emissions. This index does not evaluate biodiversity or other ecosystem values, which must be analysed separately. We apply the index to a range of land-use and consumption choices relevant to climate policy, such as reforesting pastures, biofuel production and diet changes. We find that these choices can have much greater implications for the climate than previously understood because standard methods for evaluating the effects of land use4-11 on greenhouse gas emissions systematically underestimate the opportunity of land to store carbon if it is not used for agriculture.


Asunto(s)
Agricultura/estadística & datos numéricos , Biocombustibles/estadística & datos numéricos , Huella de Carbono/estadística & datos numéricos , Conservación de los Recursos Naturales/métodos , Dieta/estadística & datos numéricos , Efecto Invernadero/prevención & control , Suelo/química , Animales , Biocombustibles/provisión & distribución , Brasil , Secuestro de Carbono , Conservación de los Recursos Naturales/estadística & datos numéricos , Productos Agrícolas/metabolismo , Fertilizantes/provisión & distribución , Abastecimiento de Alimentos , Agricultura Forestal/estadística & datos numéricos , Bosques , Calentamiento Global/prevención & control , Humanos , Ganado/metabolismo , Lluvia
16.
Bull Math Biol ; 86(8): 97, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38935181

RESUMEN

We introduce a model that can be used for the description of the distribution of species when there is scarcity of data, based on our previous work (Ballesteros et al. J Math Biol 85(4):31, 2022). We address challenges in modeling species that are seldom observed in nature, for example species included in The International Union for Conservation of Nature's Red List of Threatened Species (IUCN 2023). We introduce a general method and test it using a case study of a near threatened species of amphibians called Plectrohyla Guatemalensis (see IUCN 2023) in a region of the UNESCO natural reserve "Tacaná Volcano", in the border between Mexico and Guatemala. Since threatened species are difficult to find in nature, collected data can be extremely reduced. This produces a mathematical problem in the sense that the usual modeling in terms of Markov random fields representing individuals associated to locations in a grid generates artificial clusters around the observations, which are unreasonable. We propose a different approach in which our random variables describe yearly averages of expectation values of the number of individuals instead of individuals (and they take values on a compact interval). Our approach takes advantage of intuitive insights from environmental properties: in nature individuals are attracted or repulsed by specific features (Ballesteros et al. J Math Biol 85(4):31, 2022). Drawing inspiration from quantum mechanics, we incorporate quantum Hamiltonians into classical statistical mechanics (i.e. Gibbs measures or Markov random fields). The equilibrium between spreading and attractive/repulsive forces governs the behavior of the species, expressed through a global control problem involving an energy operator.


Asunto(s)
Conservación de los Recursos Naturales , Especies en Peligro de Extinción , Cadenas de Markov , Conceptos Matemáticos , Modelos Biológicos , Densidad de Población , Animales , Especies en Peligro de Extinción/estadística & datos numéricos , México , Conservación de los Recursos Naturales/estadística & datos numéricos , Guatemala , Anuros/fisiología , Ecosistema , Distribución Animal , Dinámica Poblacional/estadística & datos numéricos
17.
J Math Biol ; 89(1): 5, 2024 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-38761189

RESUMEN

Phylogenetic diversity indices provide a formal way to apportion evolutionary history amongst living species. Understanding the properties of these measures is key to determining their applicability in conservation biology settings. In this work, we investigate some questions posed in a recent paper by Fischer et al. (Syst Biol 72(3):606-615, 2023). In that paper, it is shown that under certain extinction scenarios, the ranking of the surviving species by their Fair Proportion index scores may be the complete reverse of their ranking beforehand. Our main results here show that this behaviour extends to a large class of phylogenetic diversity indices, including the Equal-Splits index. We also provide a necessary condition for reversals of Fair Proportion rankings to occur on phylogenetic trees whose edge lengths obey the ultrametric constraint. Specific examples of rooted phylogenetic trees displaying these behaviours are given and the impact of our results on the use of phylogenetic diversity indices more generally is discussed.


Asunto(s)
Biodiversidad , Extinción Biológica , Filogenia , Animales , Conceptos Matemáticos , Conservación de los Recursos Naturales/estadística & datos numéricos , Evolución Biológica , Modelos Biológicos
18.
Proc Natl Acad Sci U S A ; 118(7)2021 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-33558246

RESUMEN

In the Amazon rainforest, land use following deforestation is diverse and dynamic. Mounting evidence indicates that the climatic impacts of forest loss can also vary considerably, depending on specific features of the affected areas. The size of the deforested patches, for instance, was shown to modulate the characteristics of local climatic impacts. Nonetheless, the influence of different types of land use and management strategies on the magnitude of local climatic changes remains uncertain. Here, we evaluated the impacts of large-scale commodity farming and rural settlements on surface temperature, rainfall patterns, and energy fluxes. Our results reveal that changes in land-atmosphere coupling are induced not only by deforestation size but also, by land use type and management patterns inside the deforested areas. We provide evidence that, in comparison with rural settlements, deforestation caused by large-scale commodity agriculture is more likely to reduce convective rainfall and increase land surface temperature. We demonstrate that these differences are mainly caused by a more intensive management of the land, resulting in significantly lower vegetation cover throughout the year, which reduces latent heat flux. Our findings indicate an urgent need for alternative agricultural practices, as well as forest restoration, for maintaining ecosystem processes and mitigating change in the local climates across the Amazon basin.


Asunto(s)
Agricultura/estadística & datos numéricos , Procesos Climáticos , Conservación de los Recursos Naturales/estadística & datos numéricos , Ecosistema
19.
Proc Natl Acad Sci U S A ; 118(29)2021 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-34253600

RESUMEN

Rapid deforestation is a major driver of greenhouse-gas emissions (1). One proposed policy tool to halt deforestation is community forest management. Even though communities manage an increasing proportion of the world's forests, we lack good evidence of successful approaches to community forest management. Prior studies suggest that successful approaches require a number of "design conditions" to be met. However, causal evidence on the effectiveness of individual design conditions is scarce. This study isolates one design condition, community-led monitoring of the forest, and provides causal evidence on its potential to reduce forest use. The study employs a randomized controlled trial to investigate the impact of community monitoring on forest use in 110 villages in Uganda. We explore the impact of community monitoring in both monitored and unmonitored areas of the forest, using exceptionally detailed data from on-the-ground measurements and satellite imagery. Estimates indicate that community monitoring does not affect our main outcome of interest, a forest-use index. However, treatment villages see a relative increase in forest loss outside of monitored forest areas compared to control villages. This increase is seen both in nonmonitored areas adjacent to treatment villages and in nonmonitored areas adjacent to neighboring villages not included in the study. We tentatively conclude that at least part of the increase in forest loss in nonmonitored areas is due to displacement of forest use by members of treatment villages due to fear of sanctions. Interventions to reduce deforestation should take this potentially substantial effect into consideration.


Asunto(s)
Conservación de los Recursos Naturales/métodos , Bosques , Participación de la Comunidad , Conservación de los Recursos Naturales/estadística & datos numéricos , Agricultura Forestal/estadística & datos numéricos , Humanos , Uganda
20.
Proc Natl Acad Sci U S A ; 118(29)2021 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-34253609

RESUMEN

Generating credible answers to key policy questions is crucial but difficult in most coupled human and natural systems because complex feedback mechanisms can confound identification of the causal mechanisms behind observed phenomena. By using explicit research designs intended to isolate the causal effects of specific interventions on community monitoring of common property resources, and on the well-being of those resources and their human neighbors, the papers in this Special Feature offer an important advance in empirical sustainability science research. Like earlier advances in my own field of development economics, however, they suffer some avoidable interpretive and ethical errors. This essay celebrates the powerful potential of design-based sustainability science studies, much of it admirably reflected in this set of papers, while simultaneously flagging opportunities to improve future work in this tradition.


Asunto(s)
Conservación de los Recursos Naturales/estadística & datos numéricos , Conservación de los Recursos Naturales/legislación & jurisprudencia , Interpretación Estadística de Datos , Investigación Empírica , Política Ambiental , Humanos , Análisis de Mediación , Ensayos Clínicos Controlados Aleatorios como Asunto/ética , Ensayos Clínicos Controlados Aleatorios como Asunto/estadística & datos numéricos , Proyectos de Investigación/normas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA