Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 133
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Am Chem Soc ; 146(17): 12138-12154, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38635392

RESUMEN

Protein lipidation dynamically controls protein localization and function within cellular membranes. A unique form of protein O-fatty acylation in Corynebacterium, termed protein O-mycoloylation, involves the attachment of mycolic acids─unusually large and hydrophobic fatty acids─to serine residues of proteins in these organisms' outer mycomembrane. However, as with other forms of protein lipidation, the scope and functional consequences of protein O-mycoloylation are challenging to investigate due to the inherent difficulties of enriching and analyzing lipidated peptides. To facilitate the analysis of protein lipidation and enable the comprehensive profiling and site mapping of protein O-mycoloylation, we developed a chemical proteomics strategy integrating metabolic labeling, click chemistry, cleavable linkers, and a novel liquid chromatography-tandem mass spectrometry (LC-MS/MS) method employing LC separation and complementary fragmentation methods tailored to the analysis of lipophilic, MS-labile O-acylated peptides. Using these tools in the model organism Corynebacterium glutamicum, we identified approximately 30 candidate O-mycoloylated proteins, including porins, mycoloyltransferases, secreted hydrolases, and other proteins with cell envelope-related functions─consistent with a role for O-mycoloylation in targeting proteins to the mycomembrane. Site mapping revealed that many of the proteins contained multiple spatially proximal modification sites, which occurred predominantly at serine residues surrounded by conformationally flexible peptide motifs. Overall, this study (i) discloses the putative protein O-mycoloylome for the first time, (ii) yields new insights into the undercharacterized proteome of the mycomembrane, which is a hallmark of important pathogens (e.g., Corynebacterium diphtheriae, Mycobacterium tuberculosis), and (iii) provides generally applicable chemical strategies for the proteomic analysis of protein lipidation.


Asunto(s)
Proteínas Bacterianas , Corynebacterium glutamicum , Proteómica , Proteómica/métodos , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química , Corynebacterium glutamicum/metabolismo , Corynebacterium glutamicum/química , Ácidos Micólicos/metabolismo , Ácidos Micólicos/química , Espectrometría de Masas en Tándem , Cromatografía Liquida , Acilación , Química Clic
2.
Protein Expr Purif ; 195-196: 106091, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35338005

RESUMEN

Cell surface protein B (CspB) from Corynebacterium glutamicum has been developed as a reversible pH-responsive tag for protein purification. CspB fusion proteins precipitate at acidic pH, after that they completely dissolve at neutral pH. This property has been used in a non-chromatographic protein purification method named pH-responsive Precipitation-Redissolution of CspB tag Purification (pPRCP). However, it is difficult to apply pPRCP to proteins that are unstable under acidic conditions. In an effort to shift the precipitation pH to a milder range, we investigated the solution conditions of CspB-fused Teriparatide (CspB50TEV-Teriparatide) during the process of pH-responsive precipitation using pPRCP. The purified CspB50TEV-Teriparatide in buffer without additives precipitated at pH 5.3. By contrast, CspB50TEV-Teriparatide in buffer with 0.5 M Na2SO4 precipitated at pH 6.6 because of the kosmotropic effect. Interestingly, the pH at which precipitation occurred was independent of the protein concentration. The precipitated CspB50TEV-Teriparatide was fully redissolved at above pH 8.0 in the presence or absence of salt. The discovery that proteins can be precipitated at a mild pH will allow pPRCP to be applied to acid-sensitive proteins.


Asunto(s)
Corynebacterium glutamicum , Teriparatido , Precipitación Química , Cromatografía de Afinidad , Corynebacterium glutamicum/química , Concentración de Iones de Hidrógeno , Proteínas/metabolismo , Teriparatido/metabolismo
3.
Proteins ; 88(1): 237-241, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31294849

RESUMEN

Protein CGL2373 from Corynebacterium glutamicum was previously proposed to be a member of the polyketide_cyc2 family, based on amino-acid sequence and secondary structure features derived from NMR chemical shift assignments. We report here the solution NMR structure of CGL2373, which contains three α-helices and one antiparallel ß-sheet and adopts a helix-grip fold. This structure shows moderate similarities to the representative polyketide cyclases, TcmN, WhiE, and ZhuI. Nevertheless, unlike the structures of these homologs, CGL2373 structure looks like a half-open shell with a much larger pocket, and key residues in the representative polyketide cyclases for binding substrate and catalyzing aromatic ring formation are replaced with different residues in CGL2373. Also, the gene cluster where the CGL2373-encoding gene is located in C. glutamicum contains additional genes encoding nucleoside diphosphate kinase, folylpolyglutamate synthase, and valine-tRNA ligase, different from the typical gene cluster encoding polyketide cyclase in Streptomyces. Thus, although CGL2373 is structurally a polyketide cyclase-like protein, the function of CGL2373 may differ from the known polyketide cyclases and needs to be further investigated. The solution structure of CGL2373 lays a foundation for in silico ligand screening and binding site identifying in future functional study.


Asunto(s)
Proteínas Bacterianas/genética , Corynebacterium glutamicum/ultraestructura , Complejos Multienzimáticos/ultraestructura , Conformación Proteica , Secuencia de Aminoácidos/genética , Proteínas Bacterianas/ultraestructura , Sitios de Unión/genética , Corynebacterium glutamicum/química , Cristalografía por Rayos X , Complejos Multienzimáticos/genética , Policétidos/química , Policétidos/metabolismo , Estructura Secundaria de Proteína , Streptomyces/genética
4.
Appl Environ Microbiol ; 86(8)2020 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-32060028

RESUMEN

PII signal transduction proteins are ubiquitous and highly conserved in bacteria, archaea, and plants and play key roles in controlling nitrogen metabolism. However, research on biological functions and regulatory targets of PII proteins remains limited. Here, we illustrated experimentally that the PII protein Corynebacterium glutamicum GlnK (CgGlnK) increased l-arginine yield when glnK was overexpressed in Corynebacterium glutamicum Data showed that CgGlnK regulated l-arginine biosynthesis by upregulating the expression of genes of the l-arginine metabolic pathway and interacting with N-acetyl-l-glutamate kinase (CgNAGK), the rate-limiting enzyme in l-arginine biosynthesis. Further assays indicated that CgGlnK contributed to alleviation of the feedback inhibition of CgNAGK caused by l-arginine. In silico analysis of the binding interface of CgGlnK-CgNAGK suggested that the B and T loops of CgGlnK mainly interacted with C and N domains of CgNAGK. Moreover, F11, R47, and K85 of CgGlnK were identified as crucial binding sites that interact with CgNAGK via hydrophobic interaction and H bonds, and these interactions probably had a positive effect on maintaining the stability of the complex. Collectively, this study reveals PII-NAGK interaction in nonphotosynthetic microorganisms and further provides insights into the regulatory mechanism of PII on amino acid biosynthesis in corynebacteria.IMPORTANCE Corynebacteria are safe industrial producers of diverse amino acids, including l-glutamic acid and l-arginine. In this study, we showed that PII protein GlnK played an important role in l-glutamic acid and l-arginine biosynthesis in C. glutamicum Through clarifying the molecular mechanism of CgGlnK in l-arginine biosynthesis, the novel interaction between CgGlnK and CgNAGK was revealed. The alleviation of l-arginine inhibition of CgNAGK reached approximately 48.21% by CgGlnK addition, and the semi-inhibition constant of CgNAGK increased 1.4-fold. Furthermore, overexpression of glnK in a high-yield l-arginine-producing strain and fermentation of the recombinant strain in a 5-liter bioreactor led to a remarkably increased production of l-arginine, 49.978 g/liter, which was about 22.61% higher than that of the initial strain. In conclusion, this study provides a new strategy for modifying amino acid biosynthesis in C. glutamicum.


Asunto(s)
Arginina/metabolismo , Proteínas Bacterianas/genética , Corynebacterium glutamicum/genética , Proteínas PII Reguladoras del Nitrógeno/genética , Fosfotransferasas (aceptor de Grupo Carboxilo)/genética , Transducción de Señal , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Sitios de Unión , Corynebacterium glutamicum/química , Corynebacterium glutamicum/metabolismo , Proteínas PII Reguladoras del Nitrógeno/química , Proteínas PII Reguladoras del Nitrógeno/metabolismo , Fosfotransferasas (aceptor de Grupo Carboxilo)/metabolismo , Alineación de Secuencia
5.
Biochem J ; 476(21): 3141-3159, 2019 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-31689352

RESUMEN

MarR (multiple antibiotic resistance regulator) proteins are a family of transcriptional regulators that is prevalent in Corynebacterium glutamicum. Understanding the physiological and biochemical function of MarR homologs in C. glutamicum has focused on cysteine oxidation-based redox-sensing and substrate metabolism-involving regulators. In this study, we characterized the stress-related ligand-binding functions of the C. glutamicum MarR-type regulator CarR (C. glutamicum antibiotic-responding regulator). We demonstrate that CarR negatively regulates the expression of the carR (ncgl2886)-uspA (ncgl2887) operon and the adjacent, oppositely oriented gene ncgl2885, encoding the hypothetical deacylase DecE. We also show that CarR directly activates transcription of the ncgl2882-ncgl2884 operon, encoding the peptidoglycan synthesis operon (PSO) located upstream of carR in the opposite orientation. The addition of stress-associated ligands such as penicillin and streptomycin induced carR, uspA, decE, and PSO expression in vivo, as well as attenuated binding of CarR to operator DNA in vitro. Importantly, stress response-induced up-regulation of carR, uspA, and PSO gene expression correlated with cell resistance to ß-lactam antibiotics and aromatic compounds. Six highly conserved residues in CarR were found to strongly influence its ligand binding and transcriptional regulatory properties. Collectively, the results indicate that the ligand binding of CarR induces its dissociation from the carR-uspA promoter to derepress carR and uspA transcription. Ligand-free CarR also activates PSO expression, which in turn contributes to C. glutamicum stress resistance. The outcomes indicate that the stress response mechanism of CarR in C. glutamicum occurs via ligand-induced conformational changes to the protein, not via cysteine oxidation-based thiol modifications.


Asunto(s)
Antibacterianos/farmacología , Proteínas Bacterianas/metabolismo , Corynebacterium glutamicum/efectos de los fármacos , Corynebacterium glutamicum/metabolismo , Regulación Bacteriana de la Expresión Génica , Factores de Transcripción/metabolismo , Antibacterianos/química , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Sitios de Unión , Corynebacterium glutamicum/química , Corynebacterium glutamicum/genética , Farmacorresistencia Bacteriana , Operón , Regiones Promotoras Genéticas , Factores de Transcripción/química , Factores de Transcripción/genética
6.
J Basic Microbiol ; 60(11-12): 950-961, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33025611

RESUMEN

Plant-growth-promoting rhizobacteria (PGPR) should effectively colonize along the plant root to enhance the plant and soil health. The present investigation aims to improve the PGPR-mediated plant health benefits through above-ground foliar management. A green fluorescent protein-tagged PGPR strain, Pseudomonas chlororaphis (ZSB15-M2) was inoculated in a nonautoclaved agricultural soil before rice culturing. Salicylic acid and cell extracts of Corynebacterium glutamicum and Saccharomyces cerevisiae as a supply of hormonal and inducer compounds were applied on the foliage of the 10-days-old rice plants and subsequently observed the colonizing ability of ZSB15-M2. The cell extracts of Corynebacteria and yeast showed a 100-fold increase in the ZSB15-M2 population in the rhizosphere of rice, whereas salicylic acid had a 10-fold increase in relation to mock control. The rice root exudates collected after the spraying of salicylic acid and microbial extracts showed significantly enhanced release of total carbon, total protein, total sugar, total amino nitrogen, total nitrogen, and phenol content. In vitro assays revealed that these root exudates collected after exogenous spray of these chemicals enhanced the chemotactic motility and biofilm formation of ZSB15-M2 compared to the control plant's root exudate. Metabolomic analysis of root exudates collected from these rice plants by gas chromatography-mass spectrometry revealed that the Corynebacteria and yeast cell extracts enhanced the divergence of metabolites of rice root exudate. Further, due to these cumulative effects in the rice rhizosphere, the total chlorophyll, total protein, total nitrogen, and total phosphorus of rice were significantly improved. These observations provide insights into the rhizosphere functioning of rice plants as modulated by above-ground treatments with improved colonization of inoculant strains as well as the plant growth.


Asunto(s)
Inoculantes Agrícolas/efectos de los fármacos , Oryza/crecimiento & desarrollo , Reguladores del Crecimiento de las Plantas/farmacología , Ácido Salicílico/farmacología , Inoculantes Agrícolas/fisiología , Biopelículas/efectos de los fármacos , Quimiotaxis/efectos de los fármacos , Corynebacterium glutamicum/química , Metaboloma/efectos de los fármacos , Oryza/efectos de los fármacos , Oryza/metabolismo , Oryza/microbiología , Exudados de Plantas/metabolismo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/metabolismo , Pseudomonas chlororaphis/efectos de los fármacos , Pseudomonas chlororaphis/fisiología , Rizosfera , Saccharomyces cerevisiae/química , Microbiología del Suelo
7.
J Struct Biol ; 207(2): 209-217, 2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-31136796

RESUMEN

ArsR As(III)-responsive transcriptional repressors, members of the ArsR/SmtB family of metalloregulatory proteins, have been characterized biochemically but, to date, no As(III)-bound structure has been solved. Here we report two crystal structures of ArsR repressors from Acidithiobacillus ferrooxidans (AfArsR) and Corynebacterium glutamicum (CgArsR) in the As(III)-bound form. AfArsR crystallized in P21 space group and diffracted up to 1.86 Å. CgArsR crystallized in P212121 and diffracted up to 1.6 Å. AfArsR showed one As(III) bound in one subunit of the homodimer, while the CgArsR structure showed two As(III) bound with S3 coordination, one in each monomer. Previous studies indicated that in AfArsR As(III) binds to Cys95, Cys96 and Cys102 from the same monomer, while, in CgArsR, to Cys15, Cys16 from one monomer and Cys55 from the other monomer. The dimer interfaces of these structures showed distinct differences from other members of the ArsR/SmtB family of proteins, which potentially renders multiple options for evolving metal(loid) binding sites in this family of proteins. Also, CgArsR presents a new α2-N binding site, not the previously predicted α3-N site. Despite differences in the location of the binding cysteines in the primary sequences of these proteins, the two metal binding sites are almost congruent on their structures, an example of convergent evolution. Analyses of the electrostatic surface of the proteins at the DNA binding domain indicate that there two different modes of derepression in the ArsR/SmtB family of metalloregulatory proteins.


Asunto(s)
Arsénico/química , Proteínas Bacterianas/química , Conformación Proteica , Transactivadores/química , Acidithiobacillus/química , Secuencia de Aminoácidos/genética , Proteínas Bacterianas/ultraestructura , Sitios de Unión/genética , Corynebacterium glutamicum/química , Cristalografía por Rayos X , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Metales/química , Filogenia , Unión Proteica/genética , Transactivadores/genética , Transcripción Genética
8.
J Am Chem Soc ; 141(23): 9262-9272, 2019 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-31081628

RESUMEN

Despite the ubiquity and importance of glycans in biology, methods to probe their structures in cells are limited. Mammalian glycans can be modulated using metabolic incorporation, a process in which non-natural sugars are taken up by cells, converted to nucleotide-sugar intermediates, and incorporated into glycans via biosynthetic pathways. These studies have revealed that glycan intermediates can be shunted through multiple pathways, and this complexity can be heightened in bacteria, as they can catabolize diverse glycans. We sought to develop a strategy that probes structures recalcitrant to metabolic incorporation and that complements approaches focused on nucleotide sugars. We reasoned that lipid-linked glycans, which are intermediates directly used in glycan biosynthesis, would offer an alternative. We generated synthetic arabinofuranosyl phospholipids to test this strategy in Corynebacterium glutamicum and Mycobacterium smegmatis, organisms that serve as models of Mycobacterium tuberculosis. Using a C. glutamicum mutant that lacks arabinan, we identified synthetic glycosyl donors whose addition restores cell wall arabinan, demonstrating that non-natural glycolipids can serve as biosynthetic intermediates and function in chemical complementation. The addition of an isotopically labeled glycan substrate facilitated cell wall characterization by NMR. Structural analysis revealed that all five known arabinofuranosyl transferases could process the exogenous lipid-linked sugar donor, allowing for the full recovery of the cell envelope. The lipid-based probe could also rescue wild-type cells treated with an inhibitor of cell wall biosynthesis. Our data indicate that surrogates of natural lipid-linked glycans can intervene in the cell's traditional workflow, indicating that biosynthetic incorporation is a powerful strategy for probing glycan structure and function.


Asunto(s)
Pared Celular/química , Corynebacterium glutamicum/química , Glucolípidos/química , Mycobacterium smegmatis/química , Corynebacterium glutamicum/efectos de los fármacos , Galactanos , Espectroscopía de Resonancia Magnética , Microscopía Electrónica , Mycobacterium smegmatis/efectos de los fármacos , Polisacáridos/química , Compuestos de Espiro/farmacología , Tiazinas/farmacología
9.
Microb Cell Fact ; 18(1): 65, 2019 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-30943966

RESUMEN

BACKGROUND: NAD(H/+) and NADP(H/+) are the most important redox cofactors in bacteria. However, the intracellular redox balance is in advantage of the cell growth and production of NAD(P)H-dependent products. RESULTS: In this paper, we rationally engineered glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and isocitrate dehydrogenase (IDH) to switch the nucleotide-cofactor specificity resulting in an increase in final titer [from 85.6 to 121.4 g L-1] and carbon yield [from 0.33 to 0.46 g (g glucose)-1] of L-lysine in strain RGI in fed-batch fermentation. To do this, we firstly analyzed the production performance of original strain JL-6, indicating that the imbalance of intracellular redox was the limiting factor for L-lysine production. Subsequently, we modified the native GAPDH and indicated that recombinant strain RG with nonnative NADP-GAPDH dramatically changed the intracellular levels of NADH and NADPH. However, L-lysine production did not significantly increase because cell growth was harmed at low NADH level. Lastly, the nonnative NAD-IDH was introduced in strain RG to increase the NADH availability and to equilibrate the intracellular redox. The resulted strain RGI showed the stable ratio of NADPH/NADH at about 1.00, which in turn improved cell growth (µmax. = 0.31 h-1) and L-lysine productivity (qLys, max. = 0.53 g g-1 h-1) as compared with strain RG (µmax. = 0.14 h-1 and qLys, max. = 0.42 g g-1 h-1). CONCLUSIONS: This is the first report of balancing the intracellular redox state by switching the nucleotide-cofactor specificity of GAPDH and IDH, thereby improving cell growth and L-lysine production.


Asunto(s)
Coenzimas/metabolismo , Corynebacterium glutamicum/crecimiento & desarrollo , Corynebacterium glutamicum/metabolismo , Lisina/biosíntesis , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Corynebacterium glutamicum/química , Corynebacterium glutamicum/genética , Fermentación , Glucosa/metabolismo , Gliceraldehído-3-Fosfato Deshidrogenasas/genética , Gliceraldehído-3-Fosfato Deshidrogenasas/metabolismo , Isocitrato Deshidrogenasa/genética , Isocitrato Deshidrogenasa/metabolismo , Cinética , Ingeniería Metabólica , NAD/metabolismo , NADP/metabolismo , Oxidación-Reducción
10.
Biochemistry ; 57(5): 557-573, 2018 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-29178787

RESUMEN

Corynebacterium glutamicum is widely used for the industrial production of amino acids, nucleotides, and vitamins. The shikimate pathway enzymes DAHP synthase (CgDS, Cg2391) and chorismate mutase (CgCM, Cgl0853) play a key role in the biosynthesis of aromatic compounds. Here we show that CgCM requires the formation of a complex with CgDS to achieve full activity, and that both CgCM and CgDS are feedback regulated by aromatic amino acids binding to CgDS. Kinetic analysis showed that Phe and Tyr inhibit CgCM activity by inter-enzyme allostery, whereas binding of Trp to CgDS strongly activates CgCM. Mechanistic insights were gained from crystal structures of the CgCM homodimer, tetrameric CgDS, and the heterooctameric CgCM-CgDS complex, refined to 1.1, 2.5, and 2.2 Å resolution, respectively. Structural details from the allosteric binding sites reveal that DAHP synthase is recruited as the dominant regulatory platform to control the shikimate pathway, similar to the corresponding enzyme complex from Mycobacterium tuberculosis.


Asunto(s)
3-Desoxi-7-Fosfoheptulonato Sintasa/metabolismo , Corismato Mutasa/metabolismo , Corynebacterium glutamicum/enzimología , Triptófano/metabolismo , Regulación Alostérica , Aminoácidos Aromáticos/metabolismo , Corismato Mutasa/química , Corynebacterium glutamicum/química , Corynebacterium glutamicum/metabolismo , Cristalografía por Rayos X , Activación Enzimática , Modelos Moleculares , Fenilalanina/metabolismo , Conformación Proteica , Multimerización de Proteína , Ácido Shikímico/metabolismo , Tirosina/metabolismo
11.
Appl Environ Microbiol ; 84(10)2018 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-29523552

RESUMEN

Corynebacterium glutamicum is generally regarded as a moderately salt- and alkali-tolerant industrial organism. However, relatively little is known about the molecular mechanisms underlying these specific adaptations. Here, we found that the Mrp1 antiporter played crucial roles in conferring both environmental Na+ resistance and alkali tolerance whereas the Mrp2 antiporter was necessary in coping with high-KCl stress at alkaline pH. Furthermore, the Δmrp1 Δmrp2 double mutant showed the most-severe growth retardation and failed to grow under high-salt or alkaline conditions. Consistent with growth properties, the Na+/H+ antiporters of C. glutamicum were differentially expressed in response to specific salt or alkaline stress, and an alkaline stimulus particularly induced transcript levels of the Mrp-type antiporters. When the major Mrp1 antiporter was overwhelmed, C. glutamicum might employ alternative coordinate strategies to regulate antiport activities. Site-directed mutagenesis demonstrated that several conserved residues were required for optimal Na+ resistance, such as Mrp1A K299, Mrp1C I76, Mrp1A H230, and Mrp1D E136 Moreover, the chromosomal replacement of lysine 299 in the Mrp1A subunit resulted in a higher intracellular Na+ level and a more alkaline intracellular pH value, thereby causing a remarkable growth attenuation. Homology modeling of the Mrp1 subcomplex suggested two possible ion translocation pathways, and lysine 299 might exert its effect by affecting the stability and flexibility of the cytoplasm-facing channel in the Mrp1A subunit. Overall, these findings will provide new clues to the understanding of salt-alkali adaptation during C. glutamicum stress acclimatization.IMPORTANCE The capacity to adapt to harsh environments is crucial for bacterial survival and product yields, including industrially useful Corynebacterium glutamicum Although C. glutamicum exhibits a marked resistance to salt-alkaline stress, the possible mechanism for these adaptations is still unclear. Here, we present the physiological functions and expression patterns of C. glutamicum putative Na+/H+ antiporters and conserved residues of Mrp1 subunits, which respond to different salt and alkaline stresses. We found that the Mrp-type antiporters, particularly the Mrp1 antiporter, played a predominant role in maintaining intracellular nontoxic Na+ levels and alkaline pH homeostasis. Loss of the major Mrp1 antiporter had a profound effect on gene expression of other antiporters under salt or alkaline conditions. The lysine 299 residue may play its essential roles in conferring salt and alkaline tolerance by affecting the ion translocation channel of the Mrp1A subunit. These findings will contribute to a better understanding of Na+/H+ antiporters in sodium antiport and pH regulation.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Corynebacterium glutamicum/metabolismo , Lisina/genética , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/química , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/metabolismo , Cloruro de Sodio/metabolismo , Álcalis/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Corynebacterium glutamicum/química , Corynebacterium glutamicum/genética , Homeostasis , Concentración de Iones de Hidrógeno , Lisina/química , Lisina/metabolismo , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/genética , Alineación de Secuencia
12.
Protein Expr Purif ; 146: 85-90, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29425938

RESUMEN

Protein purification using non-chromatographic methods is a simple technique that avoids costly resin. Recently, a cell surface protein B (CspB) tag has been developed for a pH-responsive tag for protein purification by solid-liquid separation. Proteins fused with the CspB tag show reversible insolubilization at acidic pH that can be used in solid-liquid separation for protein purification. However, brown-color impurities from co-precipitation hamper further analysis of the target proteins. In this study, we investigated the effect of additives on the co-precipitation of CspB-tagged Teriparatide (CspB50TEV-Teriparatide) expressed in Corynebacterium glutamicum and associated impurities. Arginine (Arg) at 1.0 M was found to be the most effective additive for removing impurities, particularly carotenoids and nucleic acids. Furthermore, all impurities detected in the fluorescence and absorbance spectra were successfully removed by the repetition of precipitation-redissolution in the Arg solution. The precipitation yield of the CspB50TEV-Teriparatide did not change with the addition of Arg and the repetition of the precipitation-redissolution process. Collectively, our findings indicate that the specific desorption of π-electron rich compounds by Arg may be useful in conjunction with the pH-responsive CspB tag for solid-liquid protein purification.


Asunto(s)
Arginina/química , Proteínas Bacterianas/aislamiento & purificación , Corynebacterium glutamicum/química , Proteínas Recombinantes de Fusión/aislamiento & purificación , Teriparatido/química , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Precipitación Química , Corynebacterium glutamicum/genética , Concentración de Iones de Hidrógeno , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Solubilidad , Soluciones
13.
Protein Expr Purif ; 146: 91-96, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29432812

RESUMEN

This paper describes a new pH-responsive peptide tag that adds a protein reversible precipitation and redissolution character. This peptide tag is a part of a cell surface protein B (CspB) derived from Corynebacterium glutamicum. Proinsulin that genetically fused with a peptide of N-terminal 6, 17, 50, or 250 amino acid residues of CspB showed that the reversible precipitation and redissolution depended on the pH. The transition occurred within a physiological and narrow pH range. A CspB50 tag comprising 50 amino acid residues of N-terminal CspB was further evaluated as a representative using other pharmaceutical proteins. Below pH 6.8, almost all CspB50-Teriparatide fusion formed an aggregated state. Subsequent addition of alkali turned the cloudy protein solution transparent above pH 7.3, in which almost all the CspB50-Teriparatide fusion redissolved. The CspB50-Bivalirudin fusion showed a similar behavior with slightly different pH range. This tag is offering a new protein purification method based on liquid-solid separation which does not require an affinity ligand. This sharp response around neutral pH is useful as a pH-responsive tag for the purification of unstable proteins at a non-physiological pH.


Asunto(s)
Proteínas Bacterianas/química , Corynebacterium glutamicum/química , Péptidos/química , Proinsulina/química , Agregado de Proteínas , Proteínas Recombinantes de Fusión/química , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Proteínas Bacterianas/aislamiento & purificación , Cromatografía de Afinidad , Corynebacterium glutamicum/genética , Concentración de Iones de Hidrógeno , Péptidos/genética , Péptidos/aislamiento & purificación , Proinsulina/genética , Proinsulina/aislamiento & purificación , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/aislamiento & purificación , Solubilidad
14.
Nature ; 490(7418): 126-30, 2012 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-22940865

RESUMEN

Betaine and Na(+) symport has been extensively studied in the osmotically regulated transporter BetP from Corynebacterium glutamicum, a member of the betaine/choline/carnitine transporter family, which shares the conserved LeuT-like fold of two inverted structural repeats. BetP adjusts its transport activity by sensing the cytoplasmic K(+) concentration as a measure for hyperosmotic stress via the osmosensing carboxy-terminal domain. BetP needs to be in a trimeric state for communication between individual protomers through several intratrimeric interaction sites. Recently, crystal structures of inward-facing BetP trimers have contributed to our understanding of activity regulation on a molecular level. Here we report new crystal structures, which reveal two conformationally asymmetric BetP trimers, capturing among them three distinct transport states. We observe a total of four new conformations at once: an outward-open apo and an outward-occluded apo state, and two closed transition states--one in complex with betaine and one substrate-free. On the basis of these new structures, we identified local and global conformational changes in BetP that underlie the molecular transport mechanism, which partially resemble structural changes observed in other sodium-coupled LeuT-like fold transporters, but show differences we attribute to the osmolytic nature of betaine, the exclusive substrate specificity and the regulatory properties of BetP.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Betaína/metabolismo , Proteínas Portadoras/química , Proteínas Portadoras/metabolismo , Corynebacterium glutamicum/química , Multimerización de Proteína , Apoproteínas/química , Apoproteínas/metabolismo , Betaína/química , Sitios de Unión , Transporte Biológico , Cristalografía por Rayos X , Citoplasma/metabolismo , Proteínas Transportadoras de GABA en la Membrana Plasmática , Modelos Moleculares , Periplasma/metabolismo , Proteínas de Transporte de Neurotransmisores en la Membrana Plasmática/química , Conformación Proteica , Pliegue de Proteína , Sodio/metabolismo , Relación Estructura-Actividad , Simportadores
15.
Biotechnol Appl Biochem ; 65(3): 435-445, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29072327

RESUMEN

Mycolic acid (MA) plays important role in Corynebacterium glutamicum, but the key enzymes in the biosynthetic pathway of MA in C. glutamicum ATCC13869 have not been characterized. Since the locus BBD29_RS14045 in C. glutamicum ATCC13869 shows high similarity to the gene Cgl2871, which encodes Pks13, the key enzyme for synthesizing MA in C. glutamicum ATCC13032, it was deleted, resulting in the mutant WG001. Compared with the wild-type ATCC13869, MA was not synthesized in WG001, but more phosphatidylglycerol and phosphatidylinositol containing longer unsaturated fatty acids were produced. WG001 cells also show hindered cell growth and defective cell separation when compared with ATCC13869 cells. Transcriptomic analysis shows that many genes relevant to the pathways of fatty acids, inositol, phospholipids, cell wall, and cell division were significantly regulated in WG001 cells when compared with ATCC13869 cells. This study demonstrates that the locus BBD29_RS14045 encodes a key enzyme that plays important role for synthesizing MA in C. glutamicum ATCC13869.


Asunto(s)
Corynebacterium glutamicum/química , Corynebacterium glutamicum/metabolismo , Ácidos Micólicos/metabolismo , Corynebacterium glutamicum/citología , Escherichia coli/química , Escherichia coli/citología , Ácidos Micólicos/química
16.
Biochim Biophys Acta ; 1858(1): 130-8, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26494188

RESUMEN

The mechanosensitive (MS) channel MscCG from the soil bacterium Corynebacterium glutamicum functions as a major glutamate exporter. MscCG belongs to a subfamily of the bacterial MscS-like channels, which play an important role in osmoregulation. To understand the structural and functional features of MscCG, we investigated the role of the carboxyl-terminal domain, whose relevance for the channel gating has been unknown. The chimeric channel MscS-(C-MscCG), which is a fusion protein between the carboxyl terminal domain of MscCG and the MscS channel, was examined by the patch clamp technique. We found that the chimeric channel exhibited MS channel activity in Escherichia coli spheroplasts characterized by a lower activation threshold and slow closing compared to MscS. The chimeric channel MscS-(C-MscCG) was successfully reconstituted into azolectin liposomes and exhibited gating hysteresis in a voltage-dependent manner, especially at high pipette voltages. Moreover, the channel remained open after releasing pipette pressure at membrane potentials physiologically relevant for C. glutamicum. This contribution to the gating hysteresis of the C-terminal domain of MscCG confers to the channel gating properties highly suitable for release of intracellular solutes.


Asunto(s)
Proteínas Bacterianas/química , Corynebacterium glutamicum/química , Escherichia coli/química , Canales Iónicos/química , Proteínas Recombinantes de Fusión/química , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Transporte Biológico , Corynebacterium glutamicum/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Ácido Glutámico/química , Ácido Glutámico/metabolismo , Activación del Canal Iónico , Canales Iónicos/genética , Canales Iónicos/metabolismo , Liposomas/química , Liposomas/metabolismo , Mecanotransducción Celular , Potenciales de la Membrana/fisiología , Datos de Secuencia Molecular , Técnicas de Placa-Clamp , Fosfatidilcolinas/química , Fosfatidilcolinas/metabolismo , Estructura Terciaria de Proteína , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Esferoplastos/química , Esferoplastos/genética , Esferoplastos/metabolismo , Relación Estructura-Actividad
17.
BMC Microbiol ; 17(1): 161, 2017 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-28720084

RESUMEN

BACKGROUND: The eighth step of L-histidine biosynthesis is carried out by an enzyme called histidinol-phosphate phosphatase (HolPase). Three unrelated HolPase families are known so far. Two of them are well studied: HAD-type HolPases known from Gammaproteobacteria like Escherichia coli or Salmonella enterica and PHP-type HolPases known from yeast and Firmicutes like Bacillus subtilis. However, the third family of HolPases, the inositol monophosphatase (IMPase)-like HolPases, present in Actinobacteria like Corynebacterium glutamicum (HisN) and plants, are poorly characterized. Moreover, there exist several IMPase-like proteins in bacteria (e.g. CysQ, ImpA, and SuhB) which are very similar to HisN but most likely do not participate in L-histidine biosynthesis. RESULTS: Deletion of hisN, the gene encoding the IMPase-like HolPase in C. glutamicum, does not result in complete L-histidine auxotrophy. Out of four hisN homologs present in the genome of C. glutamicum (impA, suhB, cysQ, and cg0911), only cg0911 encodes an enzyme with HolPase activity. The enzymatic properties of HisN and Cg0911 were determined, delivering the first available kinetic data for IMPase-like HolPases. Additionally, we analyzed the amino acid sequences of potential HisN, ImpA, SuhB, CysQ and Cg0911 orthologs from bacteria and identified six conserved sequence motifs for each group of orthologs. Mutational studies confirmed the importance of a highly conserved aspartate residue accompanied by several aromatic amino acid residues present in motif 5 for HolPase activity. Several bacterial proteins containing all identified HolPase motifs, but showing only moderate sequence similarity to HisN from C. glutamicum, were experimentally confirmed as IMPase-like HolPases, demonstrating the value of the identified motifs. Based on the confirmed IMPase-like HolPases two profile Hidden Markov Models (HMMs) were build using an iterative approach. These HMMs allow the fast, reliable detection and differentiation of the two paralog groups from each other and other IMPases. CONCLUSION: The kinetic data obtained for HisN from C. glutamicum, as an example for an IMPase-like HolPases, shows remarkable differences in enzyme properties as compared to HAD- or PHP-type HolPases. The six sequence motifs and the HMMs presented in this study can be used to reliably differentiate between IMPase-like HolPases and IMPase-like proteins with no such activity, with the potential to enhance current and future genome annotations. A phylogenetic analysis reveals that IMPase-like HolPases are not only present in Actinobacteria and plant but can be found in further bacterial phyla, including, among others, Proteobacteria, Chlorobi and Planctomycetes.


Asunto(s)
Proteínas Bacterianas/genética , Corynebacterium glutamicum/enzimología , Histidinol-Fosfatasa/genética , Actinobacteria/química , Actinobacteria/clasificación , Actinobacteria/enzimología , Actinobacteria/genética , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Corynebacterium glutamicum/química , Corynebacterium glutamicum/genética , Regulación Bacteriana de la Expresión Génica , Histidinol-Fosfatasa/química , Histidinol-Fosfatasa/metabolismo , Cinética , Datos de Secuencia Molecular , Monoéster Fosfórico Hidrolasas/química , Monoéster Fosfórico Hidrolasas/genética , Monoéster Fosfórico Hidrolasas/metabolismo , Filogenia , Homología de Secuencia de Aminoácido
18.
Appl Microbiol Biotechnol ; 101(13): 5325-5332, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28417169

RESUMEN

Adenosine-5'-triphosphate (ATP) is the energy equivalent of the living system. Polyphosphate (polyP) is the ancient energy storage equivalent of organisms. Polyphosphate kinases (PPKs) catalyze the polyP formation or ATP formation, to store energy or to regenerate ATP, respectively. However, most PPKs are active only in the presence of long polyPs, which are more difficult and more expensive to generate than the short polyPs. We investigated the PPK preference towards polyPs by site-directed mutagenesis and computational simulation, to understand the mechanism and further design enzymes for effective ATP regeneration using short polyPs for in vitro cascade reactions, which are highly desired for research and applications. The results suggest that the short polyPs inhibit PPK by blocking the ADP-binding pocket. Structural comparison between PPK (Corynebacterium glutamicum) and PPK (Sinorhizobium meliloti) indicates that three amino acid residues, i.e., lysine, glutamate, and threonine, are involved in the activity towards short polyP by fixing the adenosine group of ADP in between the subunits of the dimer, while the terminal phosphate group of ADP still offers an active site, which presents a binding pocket for ADP. A proposed triple mutant PPK (SMc02148-KET) demonstrates significant activity towards short polyP to form ATP from ADP. The obtained high glutathione titer (38.79 mM) and glucose-6-phosphate titer (87.35 mM) in cascade reactions with ATP regeneration using the triple mutant PPK (SMc02148-KET) reveal that the tailored PPK establishes the effective ATP regeneration system for ATP-dependent reactions.


Asunto(s)
Adenosina Trifosfato/metabolismo , Fosfotransferasas (Aceptor del Grupo Fosfato)/química , Fosfotransferasas (Aceptor del Grupo Fosfato)/genética , Polifosfatos/metabolismo , Aminoácidos/metabolismo , Productos Biológicos/metabolismo , Catálisis , Dominio Catalítico , Química Bioinorgánica/economía , Química Bioinorgánica/métodos , Simulación por Computador , Corynebacterium glutamicum/química , Corynebacterium glutamicum/enzimología , Escherichia coli/genética , Glucosa-6-Fosfato/biosíntesis , Glutatión/análisis , Glutatión/biosíntesis , Mutagénesis Sitio-Dirigida , Fosfotransferasas (Aceptor del Grupo Fosfato)/metabolismo , Sinorhizobium meliloti/química , Sinorhizobium meliloti/enzimología
19.
Mol Microbiol ; 98(4): 681-93, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26235234

RESUMEN

Aminoacyl-phosphatidylglycerol synthases (aaPGSs) are membrane proteins that utilize aminoacylated tRNAs to modify membrane lipids with amino acids. Aminoacylation of membrane lipids alters the biochemical properties of the cytoplasmic membrane and enables bacteria to adapt to changes in environmental conditions. aaPGSs utilize alanine, lysine and arginine as modifying amino acids, and the primary lipid recipients have heretofore been defined as phosphatidylglycerol (PG) and cardiolipin. Here we identify a new pathway for lipid aminoacylation, conserved in many Actinobacteria, which results in formation of Ala-PG and a novel alanylated lipid, Alanyl-diacylglycerol (Ala-DAG). Ala-DAG formation in Corynebacterium glutamicum is dependent on the activity of an aaPGS homolog, whereas formation of Ala-PG requires the same enzyme acting in concert with a putative esterase encoded upstream. The presence of alanylated lipids is sufficient to enhance the bacterial fitness of C. glutamicum cultured in the presence of certain antimicrobial agents, and elucidation of this system expands the known repertoire of membrane lipids acting as substrates for amino acid modification in bacterial cells.


Asunto(s)
Corynebacterium glutamicum/genética , Corynebacterium glutamicum/metabolismo , Diglicéridos/metabolismo , Fosfatidilgliceroles/metabolismo , ARN de Transferencia/genética , Aminoacilación , Aminoaciltransferasas/genética , Aminoaciltransferasas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Corynebacterium glutamicum/química , Corynebacterium glutamicum/crecimiento & desarrollo , Aptitud Genética , Datos de Secuencia Molecular , Filogenia , ARN Bacteriano/genética , ARN Bacteriano/metabolismo , ARN de Transferencia/metabolismo
20.
Biochem Biophys Res Commun ; 478(2): 759-64, 2016 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-27507216

RESUMEN

Amylomaltase catalyzes intermolecular and intramolecular transglucosylation reactions to form linear and cyclic oligosaccharides, respectively. The aim of this work is to investigate the structure-function relationship of amylomaltase from a mesophilic Corynebacterium glutamicum (CgAM). Site-directed mutagenesis was performed to substitute Tyr for Asn287 (N287Y) to determine its role in controlling amylomaltase activity and product formation. Expression of the wild-type (WT) and N287Y was achieved by cultivating recombinant cells in the medium containing lactose at 16 °C for 14 h. The purified mutated enzyme showed a significant decrease in all transglucosylation activities while hydrolysis activity was not changed. Optimum temperature and pH for disproportionation reaction were slightly changed upon mutation while those for cyclization reaction were not changed. Interestingly, N287Y showed a change in large-ring cyclodextrin (LR-CD) product profile in which the larger size was observed together with an increase in thermostability and substrate preference for G5 in addition to G3. The secondary structure of the mutated enzyme was slightly changed in related to the WT as evidenced from circular dichroism analysis. This work thus demonstrates that N287 is required for transglucosylation activities of CgAM. Having an aromatic residue in this position increased thermostability, changed product profile and substrate preference but demolished most enzyme activities.


Asunto(s)
Sustitución de Aminoácidos , Asparagina/química , Proteínas Bacterianas/química , Corynebacterium glutamicum/química , Sistema de la Enzima Desramificadora del Glucógeno/química , Oligosacáridos/química , Asparagina/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Biocatálisis , Dominio Catalítico , Clonación Molecular , Corynebacterium glutamicum/enzimología , Ciclización , Ciclodextrinas/química , Ciclodextrinas/metabolismo , Estabilidad de Enzimas , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Sistema de la Enzima Desramificadora del Glucógeno/genética , Sistema de la Enzima Desramificadora del Glucógeno/metabolismo , Hidrólisis , Cinética , Lactosa/metabolismo , Mutagénesis Sitio-Dirigida , Mutación , Oligosacáridos/metabolismo , Estructura Secundaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Relación Estructura-Actividad , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA