Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 175
Filtrar
Más filtros

Intervalo de año de publicación
1.
BMC Genomics ; 25(1): 591, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38867206

RESUMEN

BACKGROUND: The Portuguese oyster Crassostrea angulata, a bivalve of significant economic and ecological importance, has faced a decline in both production and natural populations due to pathologies, climate change, and anthropogenic factors. To safeguard its genetic diversity and improve reproductive management, cryopreservation emerges as a valuable strategy. However, the cryopreservation methodologies lead to some damage in structures and functions of the cells and tissues that can affect post-thaw quality. Transcriptomics may help to understand the molecular consequences related to cryopreservation steps and therefore to identify different freezability biomarkers. This study investigates the molecular damage induced by cryopreservation in C. angulata D-larvae, focusing on two critical steps: exposure to cryoprotectant solution and the freezing/thawing process. RESULTS: Expression analysis revealed 3 differentially expressed genes between larvae exposed to cryoprotectant solution and fresh larvae and 611 differentially expressed genes in cryopreserved larvae against fresh larvae. The most significantly enriched gene ontology terms were "carbohydrate metabolic process", "integral component of membrane" and "chitin binding" for biological processes, cellular components and molecular functions, respectively. Kyoto Encyclopedia of Genes and Genomes enrichment analysis identified the "neuroactive ligand receptor interaction", "endocytosis" and "spliceosome" as the most enriched pathways. RNA sequencing results were validate by quantitative RT-PCR, once both techniques presented the same gene expression tendency and a group of 11 genes were considered important molecular biomarkers to be used in further studies for the evaluation of cryodamage. CONCLUSIONS: The current work provided valuable insights into the molecular repercussions of cryopreservation on D-larvae of Crassostrea angulata, revealing that the freezing process had a more pronounced impact on larval quality compared to any potential cryoprotectant-induced toxicity. Additionally, was identify 11 genes serving as biomarkers of freezability for D-larvae quality assessment. This research contributes to the development of more effective cryopreservation protocols and detection methods for cryodamage in this species.


Asunto(s)
Crassostrea , Criopreservación , Crioprotectores , Perfilación de la Expresión Génica , Larva , Animales , Crassostrea/genética , Crassostrea/crecimiento & desarrollo , Crioprotectores/farmacología , Crioprotectores/toxicidad , Larva/genética , Larva/efectos de los fármacos , Larva/crecimiento & desarrollo , Transcriptoma , Ontología de Genes
2.
Artículo en Inglés | MEDLINE | ID: mdl-38797241

RESUMEN

Crassostrea angulata, a major shellfish cultivated in Southern China, has experienced a notable surge in commercial value in recent years. Understanding the molecular mechanisms governing their reproductive processes holds significant implications for advancing aquaculture practices. In this study, we cloned the orphan nuclear receptor gene, Fushi Tarazu transcription factor 1 (FTZ-F1), of C. angulata and investigated its functional role in the gonadal development. The full-length cDNA of FTZ-F1 spans 2357 bp and encodes a protein sequence of 530 amino acids. Notably, the amino acid sequence of FTZ-F1 in C. angulata shares remarkable similarity with its homologues in other species, particularly in the DNA-binding region (>90%) and ligand-binding region (>44%). In C. angulata, the highest expression level of FTZ-F1 was observed in the ovary, exhibiting more than a 200-fold increase during the maturation stage compared to the initiation stage (P < 0.001). Specifically, FTZ-F1 was mainly expressed in the follicular cells surrounding the oocytes of C. angulata. Upon inhibiting FTZ-F1 gene expression in C. angulata through RNA interference (RNAi), a substantial reduction in the expression of genes involved in the synthesis of sex steroids in the gonads, including 3ß-HSD, Cyp17, and follistatin, was observed. In addition, estradiol (E2) and testosterone (T) levels also showed a decrease upon FTZ-F1 silencing, resulting in a delayed gonadal development. These results indicate that FTZ-F1 acts as a steroidogenic factor, participating in the synthesis and regulation of steroid hormones and thus playing an important role in the reproductive and endocrine systems within oysters.


Asunto(s)
Crassostrea , Gónadas , Factores de Transcripción , Animales , Crassostrea/genética , Crassostrea/crecimiento & desarrollo , Crassostrea/metabolismo , Gónadas/metabolismo , Gónadas/crecimiento & desarrollo , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Femenino , Secuencia de Aminoácidos , Regulación del Desarrollo de la Expresión Génica , Filogenia , Clonación Molecular , Hormonas Esteroides Gonadales/metabolismo , Hormonas Esteroides Gonadales/biosíntesis , Ovario/metabolismo , Ovario/crecimiento & desarrollo , Esteroides/metabolismo , Esteroides/biosíntesis
3.
Dev Biol ; 469: 144-159, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-33131707

RESUMEN

Bivalve metamorphosis is a developmental transition from a free-living larva to a benthic juvenile (spat), regulated by a complex interaction of neurotransmitters and neurohormones such as L-DOPA and epinephrine (catecholamine). We recently suggested an N-Methyl-D-aspartate (NMDA) receptor pathway as an additional and previously unknown regulator of bivalve metamorphosis. To explore this theory further, we successfully induced metamorphosis in the Pacific oyster, Crassostrea gigas, by exposing competent larvae to L-DOPA, epinephrine, MK-801 and ifenprodil. Subsequently, we cloned three NMDA receptor subunits CgNR1, CgNR2A and CgNR2B, with sequence analysis suggesting successful assembly of functional NMDA receptor complexes and binding to natural occurring agonists and the channel blocker MK-801. NMDA receptor subunits are expressed in competent larvae, during metamorphosis and in spat, but this expression is neither self-regulated nor regulated by catecholamines. In-situ hybridisation of CgNR1 in competent larvae identified NMDA receptor presence in the apical organ/cerebral ganglia area with a potential sensory function, and in the nervous network of the foot indicating an additional putative muscle regulatory function. Furthermore, phylogenetic analyses identified molluscan-specific gene expansions of key enzymes involved in catecholamine biosynthesis. However, exposure to MK-801 did not alter the expression of selected key enzymes, suggesting that NMDA receptors do not regulate the biosynthesis of catecholamines via gene expression.


Asunto(s)
Catecolaminas/biosíntesis , Crassostrea/crecimiento & desarrollo , Metamorfosis Biológica , Receptores de N-Metil-D-Aspartato/fisiología , Animales , Clonación Molecular , Crassostrea/enzimología , Crassostrea/genética , Crassostrea/metabolismo , Filogenia , Subunidades de Proteína/química , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Subunidades de Proteína/fisiología , Receptores de N-Metil-D-Aspartato/química , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Alineación de Secuencia , Análisis de Secuencia de Proteína
4.
J Invertebr Pathol ; 183: 107601, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33964304

RESUMEN

French commercial hatcheries are massively producing Crassostrea gigas selected for their higher resistance to OsHV-1, and soon should also implement selection for increasing resistance to Vibrio aestuarianus. The first objective of this study was to optimize the breeding programs for dual resistance to OsHV-1 and V. aestuarianus to determine the earliest life stage for which oysters are able to develop disease resistance. Wild stocks and selected families were tested using experimental infections by both pathogens at the larval, spat and juvenile stages. Oyster families could be evaluated for OsHV-1 as soon as the larval stage by a bath method, but this only highlighted the most resistant families; those that showed the highest resistance to V. aestuarianus could be determined using the cohabitation method at the juvenile stage. The second objective of this study was to determine if selection to increase/decrease the resistance to OsHV-1 and V. aestuarianus could have an impact on other major pathogens currently detected in hatchery at the larval stage, and in nursery and field at the spat/juveniles stages (V. coralliilyticus, V. crassostreae, V. tasmaniensis, V. neptunius, V. europaeus, V. harveyi, V. chagasi). No relationship was found between mortality caused by V. aestuarianus/OsHV-1 and the mortality caused by the other virulent bacterial strains tested regardless the stages, except between OsHV-1 and V. tasmaniensis at the juvenile stage. Finally, miscellaneous findings were evidenced such as (1) bath for bacterial challenges was not adapted for spat, (2) the main pathogens at the larval stage were OsHV-1 and V. coralliilyticus using bath, while it was V. coralliilyticus, V. europaeus, and V. neptunius at the juvenile stage by injection, and (4) variation in mortality was observed among families/wild controls for all pathogens at larval and juvenile stages, except for V. harveyi for larvae.


Asunto(s)
Crassostrea/microbiología , Virus ADN/aislamiento & purificación , Vibrio/aislamiento & purificación , Animales , Acuicultura , Crassostrea/crecimiento & desarrollo , Crassostrea/virología , Larva/crecimiento & desarrollo , Larva/microbiología , Larva/virología
5.
J Therm Biol ; 100: 103072, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34503809

RESUMEN

The eastern oyster, Crassostrea virginica, provides critical ecosystem services and supports valuable fishery and aquaculture industries in northern Gulf of Mexico (nGoM) subtropical estuaries where it is grown subtidally. Its upper critical thermal limit is not well defined, especially when combined with extreme salinities. The cumulative mortalities of the progenies of wild C. virginica from four nGoM estuaries differing in mean annual salinity, acclimated to low (4.0), moderate (20.0), and high (36.0) salinities at 28.9 °C (84 °F) and exposed to increasing target temperatures of 33.3 °C (92 °F), 35.6 °C (96 °F) or 37.8 °C (100 °F), were measured over a three-week period. Oysters of all stocks were the most sensitive to increasing temperatures at low salinity, dying quicker (i.e., lower median lethal time, LT50) than at the moderate and high salinities and resulting in high cumulative mortalities at all target temperatures. Oysters of all stocks at moderate salinity died the slowest with high cumulative mortalities only at the two highest temperatures. The F1 oysters from the more southern and hypersaline Upper Laguna Madre estuary were generally more tolerant to prolonged higher temperatures (higher LT50) than stocks originating from lower salinity estuaries, most notably at the highest salinity. Using the measured temperatures oysters were exposed to, 3-day median lethal Celsius degrees (LD50) were estimated for each stock at each salinity. The lowest 3-day LD50 (35.1-36.0 °C) for all stocks was calculated at a salinity of 4.0, while the highest 3-day LD50 (40.1-44.0 °C) was calculated at a salinity of 20.0.


Asunto(s)
Crassostrea/fisiología , Calentamiento Global , Tolerancia a la Sal , Animales , Biomasa , Crassostrea/crecimiento & desarrollo , Golfo de México , Termotolerancia
6.
BMC Dev Biol ; 20(1): 23, 2020 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-33228520

RESUMEN

BACKGROUND: Nitric oxide (NO) is presumed to be a regulator of metamorphosis in many invertebrate species, and although NO pathways have been comparatively well-investigated in gastropods, annelids and crustaceans, there has been very limited research on the effects of NO on metamorphosis in bivalve shellfish. RESULTS: In this paper, we investigate the effects of NO pathway inhibitors and NO donors on metamorphosis induction in larvae of the Pacific oyster, Crassostrea gigas. The nitric oxides synthase (NOS) inhibitors s-methylisothiourea hemisulfate salt (SMIS), aminoguanidine hemisulfate salt (AGH) and 7-nitroindazole (7-NI) induced metamorphosis at 75, 76 and 83% respectively, and operating in a concentration-dependent manner. Additional induction of up to 54% resulted from exposures to 1H-[1,2,4]Oxadiazole[4,3-a]quinoxalin-1-one (ODQ), an inhibitor of soluble guanylyl cyclase, with which NO interacts to catalyse the synthesis of cyclic guanosine monophosphate (cGMP). Conversely, high concentrations of the NO donor sodium nitroprusside dihydrate in combination with metamorphosis inducers epinephrine, MK-801 or SMIS, significantly decreased metamorphosis, although a potential harmful effect of excessive NO unrelated to metamorphosis pathway cannot be excluded. Expression of CgNOS also decreased in larvae after metamorphosis regardless of the inducers used, but intensified again post-metamorphosis in spat. Fluorescent detection of NO in competent larvae with DAF-FM diacetate and localisation of the oyster nitric oxide synthase CgNOS expression by in-situ hybridisation showed that NO occurs primarily in two key larval structures, the velum and foot. cGMP was also detected in the foot using immunofluorescent assays, and is potentially involved in the foot's smooth muscle relaxation. CONCLUSION: Together, these results suggest that the NO pathway acts as a negative regulator of metamorphosis in Pacific oyster larvae, and that NO reduction induces metamorphosis by inhibiting swimming or crawling behaviour, in conjunction with a cascade of additional neuroendocrine downstream responses.


Asunto(s)
Crassostrea/crecimiento & desarrollo , Metamorfosis Biológica , Óxido Nítrico/metabolismo , Animales , Crassostrea/efectos de los fármacos , Crassostrea/metabolismo , GMP Cíclico/metabolismo , Inhibidores Enzimáticos/farmacología , Larva/efectos de los fármacos , Larva/crecimiento & desarrollo , Larva/metabolismo , Metamorfosis Biológica/efectos de los fármacos , Donantes de Óxido Nítrico/farmacología , Óxido Nítrico Sintasa/antagonistas & inhibidores , Óxido Nítrico Sintasa/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Transducción de Señal
7.
BMC Genomics ; 21(1): 675, 2020 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-32993483

RESUMEN

BACKGROUND: The Fujian oyster Crassostrea angulata is an economically important species that has typical settlement and metamorphosis stages. The development of the oyster involves complex morphological and physiological changes, the molecular mechanisms of which are as yet unclear. RESULTS: In this study, changes in proteins were investigated during larval settlement and metamorphosis of Crassostrea angulata using epinephrine induction. Protein abundance and identity were characterized using label-free quantitative proteomics, tandem mass spectrometry (MS/ MS), and Mascot methods. The results showed that more than 50% (764 out of 1471) of the quantified proteins were characterized as differentially expressed. Notably, more than two-thirds of the differentially expressed proteins were down-regulated in epinephrine-induced larvae. The results showed that "metabolic process" was closely related to the development of settlement and metamorphosis; 5 × 10- 4 M epinephrine induced direct metamorphosis of larvae and was non-toxic. Calmodulin and MAPK pathways were involved in the regulation of settlement of the oyster. Expression levels of immune-related proteins increased during metamorphosis. Hepatic lectin-like proteins, cadherins, calmodulin, calreticulin, and cytoskeletal proteins were involved in metamorphosis. The nervous system may be remodeled in larval metamorphosis induced by epinephrine. Expression levels of proteins that were enriched in the epinephrine signaling pathway may reflect the developmental stage of the larvae, that may reflect whether or not larvae were directly involved in metamorphosis when the larvae were treated with epinephrine. CONCLUSION: The study provides insight into proteins that function in energy metabolism, immune responses, settlement and metamorphosis, and shell formation in C. angulata. The results contribute valuable information for further research on larval settlement and metamorphosis.


Asunto(s)
Crassostrea/genética , Metamorfosis Biológica , Proteoma/genética , Animales , Calmodulina/genética , Calmodulina/metabolismo , Calreticulina/genética , Calreticulina/metabolismo , Crassostrea/crecimiento & desarrollo , Crassostrea/metabolismo , Citoesqueleto/genética , Citoesqueleto/metabolismo , Epinefrina/farmacología , Larva/efectos de los fármacos , Larva/genética , Larva/metabolismo , Proteínas Quinasas Activadas por Mitógenos/genética , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Proteoma/metabolismo
8.
Dev Genes Evol ; 230(1): 39-45, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31960123

RESUMEN

The molluscan larval shell formation is a complicated process. There is evidence that the mantle of the primary larva (trochophore) contains functionally different cell populations with distinct gene expression profiles. However, it remains unclear how these cells are specified. In the present study, we identified three cell populations from the shell gland in earlier stages (gastrula) from the bivalve mollusc Crassostrea gigas. These cell populations were determined by analyzing the co-expression relationships among six potential shell formation (pSF) genes using two-color hybridization. The three cell populations, which we designated as SGCPs (shell gland cell populations), formed a concentric-circle pattern from outside to inside of the shell gland. SGCP I was located in the outer edge of the shell gland and the cells expressed pax2/5/8, gata2/3, and bmp2/4. SGCP II was located more internally and the cells expressed two engrailed genes. The last population, SGCP III, was located in the central region of the shell gland and the cells expressed lox4. Determination of the gene expression profiles of SGCPs would help trace their origins and fates and elucidate how these cell populations are specified. Moreover, potential roles of the SGCPs, e.g., development of sensory cells and shell biogenesis, are suggested. Our results reveal the internal organization of the embryonic shell gland at the molecular level and add to the knowledge of larval shell formation.


Asunto(s)
Crassostrea/citología , Exoesqueleto/citología , Exoesqueleto/metabolismo , Animales , Crassostrea/genética , Crassostrea/crecimiento & desarrollo , Crassostrea/metabolismo , Glándulas Exocrinas/citología , Glándulas Exocrinas/metabolismo , Femenino , Masculino , Factores de Transcripción/metabolismo
9.
Curr Microbiol ; 77(10): 2758-2765, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32524275

RESUMEN

This study assessed in vitro interaction between Bacillus bacteria and microalgae and their posterior in vivo effect on rearing Kumamoto oyster Crassostrea sikamea. The probiotic strains Bacillus licheniformis (MAt32), B. subtilis (MAt43) and B. subtilis (GAtB1) were individually inoculated in triplicate into 250 mL flasks containing 1 × 104 colony forming units (CFU) mL-1 of bacteria and 4.5 × 104 cell mL-1 of microalgae (Isochrysis galbana or Chaetoceros calcitrans) to evaluate their growth during a 7-day culture. Single cultures of microalgae or bacilli served as control. Additionally, C. sikamea spat was treated for 28 days with four single/combined bacillus treatments in triplicate at a concentration of 1 × 106 CFU mL-1 as follows: (a) control, without treatments; (b) combination of two antibiotics (10 mg L-1); (c) B. licheniformis; (d) B. subtilis; (e) B. subtilis subtilis and (f) mixed bacilli. The results showed a significantly (P < 0.05) increased growth of Bacillus strains co-cultured with microalgae, while the growth of I. galbana co-cultured with bacteria was not reduced significantly (P > 0.05) compared with the control group. C. sikamea spat treated with Bacillus showed significantly (P < 0.05) higher growth and survival than the control group. In this study, C. calcitrans microalgae were susceptible to the presence of probiotic bacteria. Nonetheless, this reduction in microalgal growth observed in vitro increased growth and survival of C. sikamea spat exposed to probiotic bacteria when compared to spat without probiotics.


Asunto(s)
Bacillus , Crassostrea , Microalgas , Interacciones Microbianas , Probióticos , Animales , Bacillus/metabolismo , Bacillus subtilis/metabolismo , Crassostrea/crecimiento & desarrollo , Crassostrea/microbiología , Haptophyta/metabolismo , Microalgas/metabolismo , Interacciones Microbianas/fisiología , Probióticos/metabolismo
10.
BMC Genet ; 20(1): 96, 2019 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-31830898

RESUMEN

BACKGROUND: Variants of the Ostreid herpesvirus 1 (OsHV-1) cause high losses of Pacific oysters globally, including in Tomales Bay, California, USA. A suite of new variants, the OsHV-1 microvariants (µvars), cause very high mortalities of Pacific oysters in major oyster-growing regions outside of the United States. There are currently no known Pacific oysters in the United States that are resistant to OsHV-1 as resistance has yet to be evaluated in these oysters. As part of an effort to begin genetic selection for resistance to OsHV-1, 71 families from the Molluscan Broodstock Program, a US West Coast Pacific oyster breeding program, were screened for survival after exposure to OsHV-1 in Tomales Bay. They were also tested in a quarantine laboratory in France where they were exposed to a French OsHV-1 microvariant using a plate assay, with survival recorded from three to seven days post-infection. RESULTS: Significant heritability for survival were found for all time points in the plate assay and in the survival phenotype from a single mortality count in Tomales Bay. Genetic correlations between survival against the French OsHV-1 µvar in the plate assay and the Tomales Bay variant in the field trait were weak or non-significant. CONCLUSIONS: Future breeding efforts will seek to validate the potential of genetic improvement for survival to OsHV-1 through selection using the Molluscan Broodstock Program oysters. The lack of a strong correlation in survival between OsHV-1 variants under this study's exposure conditions may require independent selection pressure for survival to each variant in order to make simultaneous genetic gains in resistance.


Asunto(s)
Crassostrea/crecimiento & desarrollo , Virus ADN/genética , Resistencia a la Enfermedad , Animales , Cruzamiento , California , Crassostrea/genética , Crassostrea/virología , Virus ADN/clasificación , Francia , Variación Genética , Mortalidad , Selección Genética
11.
J Exp Biol ; 222(Pt 17)2019 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-31439650

RESUMEN

Food provisioning influences disease risk and outcome in animal populations in two ways. On the one hand, unrestricted food supply improves the physiological condition of the host and lowers its susceptibility to infectious disease, reflecting a trade-off between immunity and other fitness-related functions. On the other hand, food scarcity limits the resources available to the pathogen and slows the growth and metabolism of the host on which the pathogen depends to proliferate. Here, we investigated how food availability, growth rate and energetic reserves drive the outcome of a viral disease affecting an ecologically relevant model host, the Pacific oyster, Crassostrea gigas We selected fast- and slow-growing animals, and we exposed them to high and low food rations. We evaluated their energetic reserves, challenged them with a pathogenic virus, monitored daily survival and developed a mortality risk model. Although high food levels and oyster growth were associated with a higher risk of mortality, energy reserves were associated with a lower risk. Food availability acts both as an enabling factor for mortality by increasing oyster growth and as a limiting factor by increasing their energy reserves. This study clarifies how food resources have an impact on susceptibility to disease and indicates how the host's physiological condition could mitigate epidemics. Practically, we suggest that growth should be optimized rather than maximized, considering that trade-offs occur with disease resistance or tolerance.


Asunto(s)
Crassostrea/fisiología , Virus ADN/fisiología , Interacciones Huésped-Patógeno , Animales , Crassostrea/crecimiento & desarrollo , Crassostrea/virología , Dieta
12.
Microb Ecol ; 77(3): 736-747, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30097682

RESUMEN

Marine heat waves are predicted to become more frequent and intense due to anthropogenically induced climate change, which will impact global production of seafood. Links between rising seawater temperature and disease have been documented for many aquaculture species, including the Pacific oyster Crassostrea gigas. The oyster harbours a diverse microbial community that may act as a source of opportunistic pathogens during temperature stress. We rapidly raised the seawater temperature from 20 °C to 25 °C resulting in an oyster mortality rate of 77.4%. Under the same temperature conditions and with the addition of antibiotics, the mortality rate was only 4.3%, strongly indicating a role for bacteria in temperature-induced mortality. 16S rRNA amplicon sequencing revealed a change in the oyster microbiome when the temperature was increased to 25 °C, with a notable increase in the proportion of Vibrio sequences. This pattern was confirmed by qPCR, which revealed heat stress increased the abundance of Vibrio harveyi and Vibrio fortis by 324-fold and 10-fold, respectively. Our findings indicate that heat stress-induced mortality of C. gigas coincides with an increase in the abundance of putative bacterial pathogens in the oyster microbiome and highlights the negative consequences of marine heat waves on food production from aquaculture.


Asunto(s)
Crassostrea/microbiología , Agua de Mar/microbiología , Vibrio/crecimiento & desarrollo , Animales , Acuicultura , Cambio Climático , Crassostrea/crecimiento & desarrollo , Crassostrea/fisiología , Calor , Microbiota , Agua de Mar/química , Vibrio/genética , Vibrio/metabolismo
13.
Arch Virol ; 164(12): 3035-3043, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31602543

RESUMEN

Seasonally recurrent outbreaks of mass mortality in Pacific oysters (Crassostrea gigas) caused by microvariant genotypes of ostreid herpesvirus 1 (OsHV-1) occur in Europe, New Zealand and Australia. The incubation period for OsHV-1 under experimental conditions is 48-72 hours and depends on water temperature, as does the mortality. An in vivo growth curve for OsHV-1 was determined by quantifying OsHV-1 DNA at 10 time points between 2 and 72 hours after exposure to OsHV-1. The peak replication rate was the same at 18 °C and 22 °C; however, there was a longer period of amplification leading to a higher peak concentration at 22 °C (2.34 × 107 copies/mg at 18 hours) compared to 18 °C (1.38 × 105 copies/mg at 12 hours). The peak viral concentration preceded mortality by 72 hours and 20 hours at 18 °C and 22 °C, respectively. Cumulative mortality to day 14 was 45.9% at 22 °C compared to 0.3% at 18 °C. The prevalence of OsHV-1 infection after 14 days at 18 °C was 33.3%. No mortality from OsHV-1 occurred when the water temperature in tanks of oysters challenged at 18 °C was increased to 22 °C for 14 days. The influence of water temperature prior to exposure to OsHV-1 and during the initial virus replication is an important determinant of the outcome of infection in C. gigas.


Asunto(s)
Crassostrea/fisiología , Crassostrea/virología , Virus ADN/crecimiento & desarrollo , Mariscos/virología , Animales , Crassostrea/crecimiento & desarrollo , Virus ADN/genética , ADN Viral/genética , Temperatura
14.
Mol Biol Rep ; 46(1): 1023-1031, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30547390

RESUMEN

Insulin-like growth factor (IGF) expression plays a critical role in the endocrine regulation of proliferation, differentiation, and growth in shellfish as well as in fish. The Pacific oyster, Crassostrea gigas, is a significant aquaculture species that comprises a large percentage of the Korean shellfish industry; moreover, its growth is economically important in aquaculture. However, when measuring the growth rate in shellfish, the soft tissue weight is difficult to determine because of the shell weight. In the present study, we describe an indirect method of measuring the growth rate using multiplex polymerase chain reaction (PCR) and analyzing levels of molluscan insulin-related peptide (MIP), the acid labile subunit of the IGF-binding protein complex (IGFBP ALS), and insulin-related peptide receptor (CIR) in Pacific oysters. The predicted sizes of amplicons were 776, 537, 380, and 198 bp, and the detection limit of the annealing temperatures was confirmed to be 65 °C. The annual expression of MIP and IGFBP ALS in tissues reached high levels in the winter following the condition index (CI). MIP and IGFBP ALS in male gonads and CIR in female gonads were related to the CI. This newly improved multiplex PCR provides an indirect measure of the growth rate; thus, it can be used to rapidly assess the growth rate. In addition, this method can supplement traditional growth data from oyster farms.


Asunto(s)
Crassostrea/crecimiento & desarrollo , Crassostrea/genética , Reacción en Cadena de la Polimerasa Multiplex/métodos , Somatomedinas/genética , Animales , Femenino , Masculino , Hibridación de Ácido Nucleico , ARN Mensajero/genética , ARN Mensajero/metabolismo , Somatomedinas/metabolismo
15.
Int J Mol Sci ; 20(1)2019 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-30625986

RESUMEN

Following their planktonic phase, the larvae of benthic marine organisms must locate a suitable habitat to settle and metamorphose. For oysters, larval adhesion occurs at the pediveliger stage with the secretion of a proteinaceous bioadhesive produced by the foot, a specialized and ephemeral organ. Oyster bioadhesive is highly resistant to proteomic extraction and is only produced in very low quantities, which explains why it has been very little examined in larvae to date. In silico analysis of nucleic acid databases could help to identify genes of interest implicated in settlement. In this work, the publicly available transcriptome of Pacific oyster Crassostrea gigas over its developmental stages was mined to select genes highly expressed at the pediveliger stage. Our analysis revealed 59 sequences potentially implicated in adhesion of C. gigas larvae. Some related proteins contain conserved domains already described in other bioadhesives. We propose a hypothetic composition of C. gigas bioadhesive in which the protein constituent is probably composed of collagen and the von Willebrand Factor domain could play a role in adhesive cohesion. Genes coding for enzymes implicated in DOPA chemistry were also detected, indicating that this modification is also potentially present in the adhesive of pediveliger larvae.


Asunto(s)
Simulación por Computador , Crassostrea/crecimiento & desarrollo , Crassostrea/genética , Regulación del Desarrollo de la Expresión Génica , Estudios de Asociación Genética , Transcriptoma/genética , Animales , Secuencia de Bases , Secuencia Conservada , Larva/genética , Larva/crecimiento & desarrollo
16.
BMC Genomics ; 19(1): 626, 2018 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-30134839

RESUMEN

BACKGROUND: Both growth and nutritional traits are important economic traits of Crassostrea gigas (C. gigas) in industry. But few work has been done to study the genetic architecture of nutritional traits of the oyster. In this study, we constructed a high-density genetic map of C. gigas to help assemble the genome sequence onto chromosomes, meanwhile explore the genetic basis for nutritional traits via quantitative trait loci (QTL) mapping. RESULTS: The constructed genetic map contained 5024 evenly distributed markers, with an average marker interval of 0.68 cM, thus representing the densest genetic map produced for the oyster. According to the high collinearity between the consensus map and the oyster genome, 1574 scaffold (about 70%) of the genome sequence of C. gigas were successfully anchored to 10 linkage groups (LGs) of the consensus map. Using this high-qualified genetic map, we then conducted QTL analysis for growth and nutritional traits, the latter of which includes glycogen, amino acid (AA), and fatty acid (FA). Overall, 41 QTLs were detected for 17 traits. In addition, six candidate genes identified in the QTL interval showed significant correlation with the traits on transcriptional levels. These genes include growth-related genes AMY and BMP1, AA metabolism related genes PLSCR and GR, and FA metabolism regulation genes DYRK and ADAMTS. CONCLUSION: Using the constructed high-qualified linkage map, this study not only assembled nearly 70% of the oyster genome sequence onto chromosomes, but also identified valuable markers and candidate genes for growth and nutritional traits, especially for AA and FA that undergone few studies before. These findings will facilitate genome assembly and molecular breeding of important economic traits in C. gigas.


Asunto(s)
Fenómenos Fisiológicos Nutricionales de los Animales/genética , Mapeo Cromosómico/métodos , Crassostrea/genética , Crassostrea/fisiología , Sitios de Carácter Cuantitativo , Animales , Crassostrea/crecimiento & desarrollo , Estudios de Asociación Genética , Ligamiento Genético , Marcadores Genéticos , Fenotipo , Análisis de Secuencia de ADN
17.
BMC Genomics ; 19(1): 160, 2018 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-29471790

RESUMEN

BACKGROUND: Despite recent work to characterize gene expression changes associated with larval development in oysters, the mechanism by which the larval shell is first formed is still largely unknown. In Crassostrea gigas, this shell forms within the first 24 h post fertilization, and it has been demonstrated that changes in water chemistry can cause delays in shell formation, shell deformations and higher mortality rates. In this study, we use the delay in shell formation associated with exposure to CO2-acidified seawater to identify genes correlated with initial shell deposition. RESULTS: By fitting linear models to gene expression data in ambient and low aragonite saturation treatments, we are able to isolate 37 annotated genes correlated with initial larval shell formation, which can be categorized into 1) ion transporters, 2) shell matrix proteins and 3) protease inhibitors. Clustering of the gene expression data into co-expression networks further supports the result of the linear models, and also implies an important role of dynein motor proteins as transporters of cellular components during the initial shell formation process. CONCLUSIONS: Using an RNA-Seq approach with high temporal resolution allows us to identify a conceptual model for how oyster larval calcification is initiated. This work provides a foundation for further studies on how genetic variation in these identified genes could affect fitness of oyster populations subjected to future environmental changes, such as ocean acidification.


Asunto(s)
Ácidos/farmacología , Exoesqueleto/crecimiento & desarrollo , Crassostrea/crecimiento & desarrollo , Regulación de la Expresión Génica/efectos de los fármacos , Agua de Mar/química , Exoesqueleto/efectos de los fármacos , Exoesqueleto/metabolismo , Animales , Biomarcadores/metabolismo , Calcificación Fisiológica , Crassostrea/efectos de los fármacos , Crassostrea/genética , Larva/efectos de los fármacos , Larva/genética , Larva/crecimiento & desarrollo
18.
J Exp Biol ; 221(Pt 10)2018 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-29615524

RESUMEN

Animal size is a highly variable trait regulated by complex interactions between biological and environmental processes. Despite the importance of understanding the mechanistic bases of growth, predicting size variation in early stages of development remains challenging. Pedigreed lines of the Pacific oyster (Crassostrea gigas) were crossed to produce contrasting growth phenotypes to analyze the metabolic bases of growth variation in larval stages. Under controlled environmental conditions, substantial growth variation of up to 430% in shell length occurred among 12 larval families. Protein was the major biochemical constituent in larvae, with an average protein-to-lipid content ratio of 2.8. On average, 86% of protein synthesized was turned over (i.e. only 14% retained as protein accreted), with a regulatory shift in depositional efficiency resulting in increased protein accretion during later larval growth. Variation in protein depositional efficiency among families did not explain the range in larval growth rates. Instead, changes in protein synthesis rates predicted 72% of growth variation. High rates of protein synthesis to support faster growth, in turn, necessitated greater allocation of the total ATP pool to protein synthesis. An ATP allocation model is presented for larvae of C. gigas that includes the major components (82%) of energy demand: protein synthesis (45%), ion pump activity (20%), shell formation (14%) and protein degradation (3%). The metabolic trade-offs between faster growth and the need for higher ATP allocation to protein synthesis could be a major determinant of fitness for larvae of different genotypes responding to the stress of environmental change.


Asunto(s)
Crassostrea/crecimiento & desarrollo , Crassostrea/metabolismo , Biosíntesis de Proteínas , Adenosina Trifosfato/metabolismo , Exoesqueleto/crecimiento & desarrollo , Animales , Crassostrea/química , Crassostrea/genética , Genotipo , Larva/química , Larva/genética , Larva/crecimiento & desarrollo , Larva/metabolismo , Fenotipo
19.
Genome ; 61(2): 79-89, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29190125

RESUMEN

For commercial oyster aquaculture, triploidy has significant advantages. To produce triploids, the principal technology uses diploid × tetraploid crosses. The development of tetraploid brood stock for this purpose has been successful, but as more is understood about tetraploids, it seems clear that chromosome instability is a principal feature in oysters. This paper is a continuation of work to investigate chromosome instability in polyploid Crassostrea virginica. We established families between tetraploids-apparently stable (non-mosaic) and unstable (mosaic)-and normal reference diploids, creating triploid groups, as well as tetraploids between mosaic and non-mosaic tetraploids. Chromosome loss was about the same for triploid juveniles produced from either mosaic or non-mosaic tetraploids or from either male or female tetraploids. However, there was a statistically significant difference in chromosome loss in tetraploid juveniles produced from mosaic versus non-mosaic parents, with mosaics producing more unstable progeny. These results confirm that chromosome instability, as manifested in mosaic tetraploids, is of little concern for producing triploids, but it is clearly problematic for tetraploid breeding. Concordance between the results from cytogenetics and flow cytometry was also tested for the first time in oysters, by assessing the ploidy of individuals using both techniques. Results between the two were non-concordant.


Asunto(s)
Inestabilidad Cromosómica , Crassostrea/genética , Mitosis/genética , Tetraploidía , Triploidía , Aneuploidia , Animales , Peso Corporal , Crassostrea/crecimiento & desarrollo , Análisis Citogenético , ADN/análisis , Femenino , Citometría de Flujo , Larva/genética , Masculino , Mosaicismo
20.
Microb Ecol ; 75(2): 495-504, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28803409

RESUMEN

The pacific oyster Crassostrea gigas and the Mediterranean mussel Mytilus galloprovincialis are two widely farmed bivalve species which show contrasting behaviour in relation to microbial diseases, with C. gigas being more susceptible and M. galloprovincialis being generally resistant. In a recent study, we showed that different susceptibility to infection exhibited by these two bivalve species may depend on their different capability to kill invading pathogens (e.g., Vibrio spp.) through the action of haemolymph components. Specific microbial-host interactions may also impact bivalve microbiome structure and further influence susceptibility/resistance to microbial diseases. To further investigate this concept, a comparative study of haemolymph and digestive gland 16SrDNA gene-based bacterial microbiota profiles in C. gigas and M. galloprovincialis co-cultivated at the same aquaculture site was carried out using pyrosequencing. Bacterial communities associated with bivalve tissues (hemolymph and digestive gland) were significantly different from those of seawater, and were dominated by relatively few genera such as Vibrio and Pseudoalteromonas. In general, Vibrio accounted for a larger fraction of the microbiota in C. gigas (on average 1.7-fold in the haemolymph) compared to M. galloprovincialis, suggesting that C. gigas may provide better conditions for survival for these bacteria, including potential pathogenic species such as V. aestuarianus. Vibrios appeared to be important members of C. gigas and M. galloprovincialis microbiota and might play a contrasting role in health and disease of bivalve species. Accordingly, microbiome analyses performed on bivalve specimens subjected to commercial depuration highlighted the ineffectiveness of such practice in removing Vibrio species from bivalve tissues.


Asunto(s)
Bacterias/aislamiento & purificación , Crassostrea/microbiología , ADN Ribosómico/genética , Microbiota , Mytilus/microbiología , Mariscos/microbiología , Animales , Acuicultura , Bacterias/clasificación , Bacterias/genética , Crassostrea/crecimiento & desarrollo , ADN Bacteriano/genética , Tracto Gastrointestinal/microbiología , Hemolinfa/microbiología , Italia , Mytilus/crecimiento & desarrollo , Filogenia , ARN Ribosómico 16S/genética , Agua de Mar/microbiología , Mariscos/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA