Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 149
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Genes Dev ; 28(10): 1124-36, 2014 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-24831703

RESUMEN

The resolution of recombination intermediates containing Holliday junctions (HJs) is critical for genome maintenance and proper chromosome segregation. Three pathways for HJ processing exist in human cells and involve the following enzymes/complexes: BLM-TopoIIIα-RMI1-RMI2 (BTR complex), SLX1-SLX4-MUS81-EME1 (SLX-MUS complex), and GEN1. Cycling cells preferentially use the BTR complex for the removal of double HJs in S phase, with SLX-MUS and GEN1 acting at temporally distinct phases of the cell cycle. Cells lacking SLX-MUS and GEN1 exhibit chromosome missegregation, micronucleus formation, and elevated levels of 53BP1-positive G1 nuclear bodies, suggesting that defects in chromosome segregation lead to the transmission of extensive DNA damage to daughter cells. In addition, however, we found that the effects of SLX4, MUS81, and GEN1 depletion extend beyond mitosis, since genome instability is observed throughout all phases of the cell cycle. This is exemplified in the form of impaired replication fork movement and S-phase progression, endogenous checkpoint activation, chromosome segmentation, and multinucleation. In contrast to SLX4, SLX1, the nuclease subunit of the SLX1-SLX4 structure-selective nuclease, plays no role in the replication-related phenotypes associated with SLX4/MUS81 and GEN1 depletion. These observations demonstrate that the SLX1-SLX4 nuclease and the SLX4 scaffold play divergent roles in the maintenance of genome integrity in human cells.


Asunto(s)
Inestabilidad Genómica/fisiología , Mitosis/fisiología , Anafase , Puntos de Control del Ciclo Celular/genética , Línea Celular Tumoral , Núcleo Celular/genética , Centrómero/metabolismo , Aberraciones Cromosómicas , Cromosomas/enzimología , Roturas del ADN , Inestabilidad Genómica/genética , Células HeLa , Humanos , Indoles/metabolismo , Micronúcleos con Defecto Cromosómico , Mitosis/genética , Recombinasas/metabolismo , Origen de Réplica/genética
2.
Mutat Res ; 730(1-2): 20-7, 2012 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-22032831

RESUMEN

The intimate connection between telomerase regulation and human disease is now well established. The molecular basis for telomerase regulation is highly complex and entails multiple layers of control. While the major target of enzyme regulation is the catalytic subunit TERT, the RNA subunit of telomerase is also implicated in telomerase control. In addition, alterations in gene dosage and alternative isoforms of core telomerase components have been described. Finally, telomerase localization, recruitment to the telomere and enzymology at the chromosome terminus are all subject to modulation. In this review we summarize recent advances in understanding fundamental mechanisms of telomerase regulation.


Asunto(s)
Regulación Enzimológica de la Expresión Génica , Telomerasa/metabolismo , Animales , Cromosomas/enzimología , Dosificación de Gen , Humanos , Modelos Moleculares , Procesamiento Postranscripcional del ARN , Telomerasa/genética , Proteínas de Unión a Telómeros/metabolismo , Transcripción Genética
3.
Biochemistry ; 50(18): 3673-85, 2011 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-21462996

RESUMEN

Chromosomal dihydrofolate reductase from Escherichia coli catalyzes the reduction of dihydrofolate to tetrahydrofolate using NADPH as a cofactor. The thermodynamics of ligand binding were examined using an isothermal titration calorimetry approach. Using buffers with different heats of ionization, zero to a small, fractional proton release was observed for dihydrofolate binding, while a proton was released upon NADP(+) binding. The role of water in binding was additionally monitored using a number of different osmolytes. Binding of NADP(+) is accompanied by the net release of ∼5-24 water molecules, with a dependence on the identity of the osmolyte. In contrast, binding of dihydrofolate is weakened in the presence of osmolytes, consistent with "water uptake". Different effects are observed depending on the identity of the osmolyte. The net uptake of water upon dihydrofolate binding was previously observed in the nonhomologous R67-encoded dihydrofolate reductase (dfrB or type II enzyme) [Chopra, S., et al. (2008) J. Biol. Chem. 283, 4690-4698]. As R67 dihydrofolate reductase possesses a nonhomologous sequence and forms a tetrameric structure with a single active site pore, the observation of weaker DHF binding in the presence of osmolytes in both enzymes implicates cosolvent effects on free dihydrofolate. Consistent with this analysis, stopped flow experiments find betaine mostly affects DHF binding via changes in k(on), while betaine mostly affects NADPH binding via changes in k(off). Finally, nonadditive enthalpy terms when binary and ternary cofactor binding events are compared suggest the presence of long-lived conformational transitions that are not included in a simple thermodynamic cycle.


Asunto(s)
Cromosomas/enzimología , Escherichia coli/enzimología , Tetrahidrofolato Deshidrogenasa/química , Sitios de Unión , Calorimetría/métodos , Cinética , Ligandos , NADP/química , Unión Proteica , Conformación Proteica , Solventes/química , Termodinámica , Agua/química
4.
Curr Opin Cell Biol ; 4(3): 396-400, 1992 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-1323315

RESUMEN

DNA topoisomerases play an important role in regulating DNA structure, thus affecting many aspects of chromosome function inside cells. Recent progress in this field raises exciting questions regarding the distinct and critical functions of multiple topoisomerases, and the roles of DNA topoisomerases in the processes of chromosome condensation, decondensation, and segregation.


Asunto(s)
ADN-Topoisomerasas de Tipo I/genética , Antineoplásicos/farmacología , Bacterias/enzimología , Bacterias/genética , Cromosomas/enzimología , Humanos , Isoenzimas/genética , Familia de Multigenes , Inhibidores de Topoisomerasa I , Levaduras/enzimología , Levaduras/genética
5.
Nucleic Acids Res ; 37(19): 6414-28, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19720733

RESUMEN

Topoisomerase I is essential for DNA metabolism in nuclei and mitochondria. In yeast, a single topoisomerase I gene provides for both organelles. In vertebrates, topoisomerase I is divided into nuclear and mitochondrial paralogs (Top1 and Top1mt). To assess the meaning of this gene duplication, we targeted Top1 to mitochondria or Top1mt to nuclei. Overexpression in the fitting organelle served as control. Targeting of Top1 to mitochondria blocked transcription and depleted mitochondrial DNA. This was also seen with catalytically inactive Top1 mutants, but not with Top1mt overexpressed in mitochondria. Targeting of Top1mt to the nucleus revealed that it was much less able to interact with mitotic chromosomes than Top1 overexpressed in the nucleus. Similar experiments with Top1/Top1mt hybrids assigned these functional differences to structural divergences in the DNA-binding core domains. We propose that adaptation of this domain to different chromatin environments in nuclei and mitochondria has driven evolutional development and conservation of organelle-restricted topoisomerase I paralogs in vertebrates.


Asunto(s)
ADN-Topoisomerasas de Tipo I/metabolismo , ADN Mitocondrial/metabolismo , Adaptación Fisiológica , Línea Celular , Núcleo Celular/enzimología , Cromosomas/enzimología , ADN/química , ADN/metabolismo , ADN-Topoisomerasas de Tipo I/química , ADN-Topoisomerasas de Tipo I/genética , Duplicación de Gen , Humanos , Mitocondrias/enzimología , Fenotipo , Estructura Terciaria de Proteína , Transcripción Genética
7.
J Gen Virol ; 91(Pt 4): 907-14, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19955559

RESUMEN

Cyclobutane pyrimidine dimer (CPD) photolyases convert UV-induced CPDs in DNA into monomers using visible light as the energy source. Two phr genes encoding class II CPD photolyases PHR1 and PHR2 have been identified in Chrysodeixis chalcites nucleopolyhedrovirus (ChchNPV). Transient expression assays in insect cells showed that PHR1-EGFP fusion protein was localized in the nucleus. Early after transfection, PHR2-EGFP was distributed over the cytoplasm and nucleus but, over time, it became localized predominantly in the nucleus. Immunofluorescence analysis with anti-PHR2 antiserum showed that, early after transfection, non-fused PHR2 was already present mainly in the nucleus, suggesting that the fusion of PHR2 to EGFP hindered its nuclear import. Both PHR-EGFP fusion proteins strongly colocalized with chromosomes and spindle, aster and midbody structures during host-cell mitosis. When PHR2-EGFP-transfected cells were superinfected with Autographa californica multiple-nucleocapsid NPV (AcMNPV), the protein colocalized with virogenic stroma, the replication factories of baculovirus DNA. The collective data support the supposition that the PHR2 protein plays a role in baculovirus DNA repair.


Asunto(s)
Núcleo Celular/enzimología , Cromosomas/enzimología , Desoxirribodipirimidina Fotoliasa/análisis , Mariposas Nocturnas/virología , Nucleopoliedrovirus/enzimología , Huso Acromático/enzimología , Animales , Reparación del ADN , Desoxirribodipirimidina Fotoliasa/fisiología , Técnica del Anticuerpo Fluorescente , Mitosis , Transfección
8.
Dev Biol ; 323(2): 197-206, 2008 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-18801358

RESUMEN

During mitosis different types of cells can have differential requirements for chromosome segregation. We isolated two new alleles of the separation anxiety gene (san). san was previously described in both Drosophila and in humans to be required for centromeric sister chromatid cohesion (Hou et al., 2007; Williams et al., 2003). Our work confirms and expands the observation that san is required in vivo for normal mitosis of different types of somatic cells. In addition, we suggest that san is also important for the correct resolution of chromosomes, implying a more general function of this acetyltransferase. Surprisingly, during oogenesis we cannot detect mitotic defects in germ line cells mutant for san. We hypothesize the female germ line stem cells have differential requirements for mitotic sister chromatid cohesion.


Asunto(s)
Acetiltransferasas/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citología , Drosophila melanogaster/enzimología , Células Germinativas/citología , Células Germinativas/enzimología , Mitosis , Alelos , Animales , Blastodermo/citología , Blastodermo/enzimología , Segregación Cromosómica , Cromosomas/enzimología , Drosophila melanogaster/embriología , Drosophila melanogaster/genética , Genes de Insecto , Larva/citología , Larva/enzimología , Neuronas/citología , Neuronas/enzimología , Oogénesis , Intercambio de Cromátides Hermanas , Cigoto/citología , Cigoto/enzimología
9.
Dev Cell ; 4(4): 467-80, 2003 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-12689587

RESUMEN

Topoisomerase IIalpha (topoIIalpha) and 13S condensin are both required for mitotic chromosome assembly. Here we show that they constitute the two main components of the chromosomal scaffold on histone-depleted chromosomes. The structural stability and chromosomal shape of the scaffolding toward harsh extraction procedures are shown to be mediated by ATP or its nonhydrolyzable analogs, but not ADP. TopoIIalpha and 13S condensin components immunolocalize to a radially restricted, longitudinal scaffolding in native-like chromosomes. Double staining for topoIIalpha and condensin generates a barber pole appearance of the scaffolding, where topoIIalpha- and condensin-enriched "beads" alternate; this structure appears to be generated by two juxtaposed, or coiled, chains. Cell cycle studies establish that 13S condensin appears not to be involved in the assembly of prophase chromatids; they lack this complex but contain a topoIIalpha-defined (-mediated?) scaffolding. Condensin associates only during the pro- to metaphase transition. This two-step assembly process is proposed to generate the barber pole appearance of the native-like scaffolding.


Asunto(s)
Adenosina Trifosfatasas/genética , Núcleo Celular/enzimología , Cromosomas/enzimología , ADN-Topoisomerasas de Tipo II/genética , Proteínas de Unión al ADN/genética , Células Eucariotas/enzimología , Mitosis/genética , Adenosina Difosfato/genética , Adenosina Difosfato/metabolismo , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfato/genética , Adenosina Trifosfato/metabolismo , Antígenos de Neoplasias , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Núcleo Celular/ultraestructura , Cromátides/genética , Cromátides/ultraestructura , Cromosomas/ultraestructura , ADN-Topoisomerasas de Tipo II/metabolismo , Proteínas de Unión al ADN/metabolismo , Células Eucariotas/ultraestructura , Técnica del Anticuerpo Fluorescente , Células HeLa , Humanos , Microtomía , Modelos Biológicos , Estructura Molecular , Complejos Multiproteicos , Profase/genética
10.
Genes Cells ; 13(7): 703-22, 2008 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-18498352

RESUMEN

In mammals, G9a is a histone H3 lysine 9 (H3-K9)-specific histone methyltransferase (HMTase), known to be essential for murine embryogenesis. It has been reported that Drosophila G9a (dG9a) is a dominant suppressor of position effects of variegation, has HMTase activity in vitro, and is important for Drosophila development. Here we show that dG9a has H3-K9 dimethylation activity in vivo and is important for the recruitment of HP1 in the euchromatic region. Over-expression in eye imaginal discs inhibited the differentiation of pupal ommatidial cells and resulted in abnormal eye morphology (rough eye phenotype) in the adults, although a methylase defective mutant did not demonstrate such effects. These results suggest that HMTase activity of dG9a affects transcription of genes involved in pupal eye formation. The dG9a-induced rough eye phenotype was enhanced by a half-dose reduction of the Polycomb group (PcG) gene. In contrast, mutants for little imaginal discs (lid), encoding histone H3-K4 demethylase, demonstrated suppression of the rough eye phenotype induced by dG9a. Furthermore co-expression of Lid in eye imaginal discs enhanced the rough phenotype induced by dG9a. The results suggest that the function of dG9a is negatively regulated by the PcG complex and positively regulated by Lid in vivo.


Asunto(s)
Proteínas de Drosophila/química , Drosophila/enzimología , N-Metiltransferasa de Histona-Lisina/química , Animales , Animales Modificados Genéticamente , Cromosomas/enzimología , Drosophila/genética , Drosophila/crecimiento & desarrollo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Ojo/enzimología , Ojo/crecimiento & desarrollo , Proteínas del Ojo/química , Proteínas del Ojo/genética , Proteínas del Ojo/metabolismo , Regulación del Desarrollo de la Expresión Génica/fisiología , Histona Metiltransferasas , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Humanos , Proteína Metiltransferasas
11.
J Cell Biol ; 100(5): 1716-25, 1985 May.
Artículo en Inglés | MEDLINE | ID: mdl-2985626

RESUMEN

In the preceding article we described a polyclonal antibody that recognizes cSc-1, a major polypeptide component of the chicken mitotic chromosome scaffold. This polypeptide was shown to be chicken topoisomerase II. In the experiments described in the present article we use indirect immunofluorescence and immunoelectron microscopy to examine the distribution of topoisomerase II within intact chromosomes. We also describe a simple experimental protocol that differentiates antigens that are interspersed along the chromatin fiber from those that occupy restricted domains within the chromosome. These experiments indicate that the distribution of the enzyme appears to be independent of the bulk chromatin. Our data suggest that topoisomerase II is bound to the bases of the radial loop domains of mitotic chromosomes.


Asunto(s)
Cromosomas/ultraestructura , ADN-Topoisomerasas de Tipo I/metabolismo , Mitosis , Animales , Pollos , Cromatina/enzimología , Cromatina/ultraestructura , Cromosomas/enzimología , Microscopía Electrónica
12.
J Cell Biol ; 100(5): 1706-15, 1985 May.
Artículo en Inglés | MEDLINE | ID: mdl-2985625

RESUMEN

We have obtained a polyclonal antibody that recognizes a major polypeptide component of chicken mitotic chromosome scaffolds. This polypeptide migrates in SDS PAGE with Mr 170,000. Indirect immunofluorescence and subcellular fractionation experiments confirm that it is present in both mitotic chromosomes and interphase nuclei. Two lines of evidence suggest that this protein is DNA topoisomerase II, an abundant nuclear enzyme that controls DNA topological states: anti-scaffold antibody inhibits the strand-passing activity of DNA topoisomerase II; and both anti-scaffold antibody and an independent antibody raised against purified bovine topoisomerase II recognize identical partial proteolysis fragments of the 170,000-mol-wt scaffold protein in immunoblots. Our results suggest that topoisomerase II may be an enzyme that is also a structural protein of interphase nuclei and mitotic chromosomes.


Asunto(s)
Cromosomas/enzimología , ADN-Topoisomerasas de Tipo I/metabolismo , Mitosis , Animales , Fraccionamiento Celular , Núcleo Celular/ultraestructura , Pollos , Cromosomas/ultraestructura , ADN-Topoisomerasas de Tipo I/inmunología , Interfase , Peso Molecular
13.
J Cell Biol ; 131(1): 7-17, 1995 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-7559788

RESUMEN

Metaphase chromatids are believed to consist of loops of chromatin anchored to a central scaffold, of which a major component is the decatenatory enzyme DNA topoisomerase II. Silver impregnation selectively stains an axial element of metaphase and anaphase chromatids; but we find that in earlier stages of mitosis, silver staining reveals an initially single, folded midline structure, which separates at prometaphase to form two chromatid axes. Inhibition of topoisomerase II prevents this separation, and also prevents the contraction of chromatids that occurs when metaphase is arrested. Immunolocalization of topoisomerase II alpha reveals chromatid cores analogous to those seen with silver staining. We conclude that the chromatid cores in early mitosis form a single structure, constrained by DNA catenations, which must separate before metaphase chromatids can be resolved.


Asunto(s)
Cromátides/enzimología , Cromosomas/enzimología , ADN-Topoisomerasas de Tipo II/metabolismo , Metafase/fisiología , Profase/fisiología , Animales , Línea Celular Transformada/citología , Línea Celular Transformada/enzimología , Aberraciones Cromosómicas/inducido químicamente , Trastornos de los Cromosomas , ADN-Topoisomerasas de Tipo II/análisis , Dicetopiperazinas , Inhibidores Enzimáticos/farmacología , Fibroblastos/citología , Fibroblastos/enzimología , Mitosis/fisiología , Ciervo Muntjac , Piperazinas/farmacología , Tinción con Nitrato de Plata , Factores de Tiempo , Inhibidores de Topoisomerasa II
14.
J Cell Biol ; 116(6): 1421-30, 1992 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-1311712

RESUMEN

We have examined the role of protein phosphatase type 1 (PP-1) in mammalian cell mitosis. Immunofluorescence using anti-PP-1 antibodies revealed that PP-1, which is mainly localized in the cytoplasm of G1 and S phase cells, accumulates in the nucleus during G2 phase and intensely colocalizes with individual chromosomes at mitosis. This increase in nuclear PP-1 in G2/M cells was confirmed by immunoblotting on subcellular fractions. Microinjection of neutralizing anti-PP-1 antibodies before division blocked cells at metaphase, whereas injection of PP-1 in one pole of an anaphase B cell accelerated cytokinesis and the reflattening of the injected cell. These results reveal a specific cell cycle-dependent redistribution of PP-1 and its involvement in reversing p34cdc2-induced effects after mid-mitosis in mammalian cells.


Asunto(s)
Cromosomas/enzimología , Mitosis , Fosfoproteínas Fosfatasas/metabolismo , Animales , Anticuerpos , Línea Celular , Núcleo Celular/enzimología , Immunoblotting , Interfase , Metafase , Microinyecciones , Fosfoproteínas Fosfatasas/análisis , Fosfoproteínas Fosfatasas/antagonistas & inhibidores , Fosfoproteínas Fosfatasas/inmunología , Ratas
15.
J Cell Biol ; 87(2 Pt 1): 415-9, 1980 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-6776129

RESUMEN

Incubation of Drosophila salivary glands with radioactive diisopropyl fluorophosphate results in the uniform labeling of polytene chromosomes. Extensive labeling is seen only when chromosome squashes are prepared by a formaldehyde fixation procedure and not by standard acetic acid techniques. The labeling is inhibited in the presence of tosylphenylalanine chloromethyl ketone and phenylmethane sulfonylfluoride but not by tosyllysine chloromethyl ketone, suggesting that a chymotrypsin-like serine protease is associated with the chromosomes. Protease inhibitors show no apparent effect on heat-shock specific puffing.


Asunto(s)
Cromosomas/enzimología , Drosophila melanogaster/ultraestructura , Péptido Hidrolasas/metabolismo , Animales , Drosophila melanogaster/enzimología , Regulación de la Expresión Génica/efectos de los fármacos , Histonas/metabolismo , Calor , Isoflurofato/farmacología , Inhibidores de Proteasas/farmacología
16.
J Cell Biol ; 144(4): 603-15, 1999 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-10037784

RESUMEN

Double-stranded RNA adenosine deaminase (ADAR1, dsRAD, DRADA) converts adenosines to inosines in double-stranded RNAs. Few candidate substrates for ADAR1 editing are known at this point and it is not known how substrate recognition is achieved. In some cases editing sites are defined by basepaired regions formed between intronic and exonic sequences, suggesting that the enzyme might function cotranscriptionally. We have isolated two variants of Xenopus laevis ADAR1 for which no editing substrates are currently known. We demonstrate that both variants of the enzyme are associated with transcriptionally active chromosome loops suggesting that the enzyme acts cotranscriptionally. The widespread distribution of the protein along the entire chromosome indicates that ADAR1 associates with the RNP matrix in a substrate-independent manner. Inhibition of splicing, another cotranscriptional process, does not affect the chromosomal localization of ADAR1. Furthermore, we can show that the enzyme is dramatically enriched on a special RNA-containing loop that seems transcriptionally silent. Detailed analysis of this loop suggests that it might represent a site of ADAR1 storage or a site where active RNA editing is taking place. Finally, mutational analysis of ADAR1 demonstrates that a putative Z-DNA binding domain present in ADAR1 is not required for chromosomal targeting of the protein.


Asunto(s)
Adenosina Desaminasa/metabolismo , Cromosomas/enzimología , Edición de ARN , Ribonucleoproteínas/metabolismo , Adenosina Desaminasa/genética , Adenosina Desaminasa/inmunología , Animales , Anticuerpos , Secuencia de Bases , Sitios de Unión , Cromosomas/ultraestructura , Variación Genética , Oligodesoxirribonucleótidos/genética , Procesamiento Proteico-Postraduccional , Empalme del ARN , Proteínas de Unión al ARN , Conejos , Xenopus laevis
17.
J Cell Biol ; 157(1): 31-44, 2002 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-11927602

RESUMEN

DNA topoisomerase (topo) II catalyses topological genomic changes essential for many DNA metabolic processes. It is also regarded as a structural component of the nuclear matrix in interphase and the mitotic chromosome scaffold. Mammals have two isoforms (alpha and beta) with similar properties in vitro. Here, we investigated their properties in living and proliferating cells, stably expressing biofluorescent chimera of the human isozymes. Topo IIalpha and IIbeta behaved similarly in interphase but differently in mitosis, where only topo IIalpha was chromosome associated to a major part. During interphase, both isozymes joined in nucleolar reassembly and accumulated in nucleoli, which seemed not to involve catalytic DNA turnover because treatment with teniposide (stabilizing covalent catalytic DNA intermediates of topo II) relocated the bulk of the enzymes from the nucleoli to nucleoplasmic granules. Photobleaching revealed that the entire complement of both isozymes was completely mobile and free to exchange between nuclear subcompartments in interphase. In chromosomes, topo IIalpha was also completely mobile and had a uniform distribution. However, hypotonic cell lysis triggered an axial pattern. These observations suggest that topo II is not an immobile, structural component of the chromosomal scaffold or the interphase karyoskeleton, but rather a dynamic interaction partner of such structures.


Asunto(s)
ADN-Topoisomerasas de Tipo II/metabolismo , Anafase/fisiología , Antígenos de Neoplasias , Línea Celular , Núcleo Celular/enzimología , Quimera , Cromosomas/enzimología , ADN-Topoisomerasas de Tipo II/genética , ADN de Cinetoplasto/análisis , Proteínas de Unión al ADN , Regulación Enzimológica de la Expresión Génica , Proteínas Fluorescentes Verdes , Humanos , Indicadores y Reactivos/metabolismo , Riñón/citología , Proteínas Luminiscentes/genética , Metafase/fisiología , Microscopía Fluorescente , Fotoquímica
18.
Biochimie ; 90(1): 41-59, 2008 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17764802

RESUMEN

Telomeres, the ends of linear chromosomes, contain repeated TG-rich sequences which, in dividing cells, must be constantly replenished in order to avoid chromosome erosion and, hence, genomic instability. Moreover, unprotected telomeres are prone to end-to-end fusions. Telomerase, a specialized reverse transcriptase with a built-in RNA template, or, in the absence of telomerase, alternative pathways of telomere maintenance are required for continuous cell proliferation in actively dividing cells as well as in cancerous cells emerging in deregulated somatic tissues. The challenge is to keep these free DNA ends masked from the nucleolytic attacks that will readily operate on any DNA double-strand break in the cell, while also allowing the recruitment of telomerase at intervals. Specialized telomeric proteins, as well as DNA repair and checkpoint proteins with a dual role in telomere maintenance and DNA damage signaling/repair, protect the telomere ends from degradation and some of them also function in telomerase recruitment or other aspects of telomere length homeostasis. Phosphorylation of some telomeric proteins by checkpoint protein kinases appears to represent a mode of regulation of telomeric mechanisms. Finally, recent studies have allowed starting to understand the coupling between progression of the replication forks through telomeric regions and the subsequent telomere replication by telomerase, as well as retroaction of telomerase in cis on the firing of nearby replication origins.


Asunto(s)
Cromosomas/fisiología , Telomerasa/metabolismo , Proteínas de Unión a Telómeros/metabolismo , Telómero/fisiología , Animales , Ciclo Celular , Cromosomas/enzimología , Daño del ADN , Humanos , Recombinación Genética , Retroelementos/fisiología
19.
Sci China C Life Sci ; 51(2): 133-9, 2008 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-18239891

RESUMEN

The chromosomal locations of two single-copy genes, Ser-1 and CI-13, in silkworm (Bombyx mori) were detected at the molecular cytogenetics level by fluorescence in situ hybridization in the study. The results showed that Ser-1 is located near the distal end of the 11th linkage group, relatively at the 12.5+/-1.4 position in pachytene; and that CI-13 has been mapped near the distal end of the 2nd linkage group, relatively at the 8.2+/-1.2 position in pachytene. Furthermore, their location model map-FISH map on silkworm chromosome was drawn. The FISH technique and its application to silkworm are also discussed in this paper.


Asunto(s)
Bombyx/genética , Mapeo Cromosómico , Quimotripsina/antagonistas & inhibidores , Hibridación Fluorescente in Situ , Proteínas de Insectos/genética , Sericinas/genética , Sericinas/metabolismo , Inhibidores de Serina Proteinasa/genética , Animales , Bombyx/enzimología , Bombyx/metabolismo , Cromosomas/enzimología , Cromosomas/genética , Ligamiento Genético , Proteínas de Insectos/metabolismo , Modelos Genéticos , Sericinas/fisiología , Inhibidores de Serina Proteinasa/metabolismo , Inhibidores de Serina Proteinasa/fisiología
20.
Mol Biol Cell ; 13(10): 3466-76, 2002 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-12388750

RESUMEN

We used immunofluorescence to study the distribution and targeting of RNA polymerase (pol) III subunits and pol III transcription factors in the Xenopus laevis oocyte nucleus. Antibodies against several of these proteins stained Cajal bodies and approximately 90 specific sites on the lampbrush chromosomes. Some of the chromosomal sites had been identified previously by in situ hybridization as the genes for 5S rRNA. The remaining sites presumably encode tRNAs and other pol III transcripts. Pol III sites were often resolvable as loops similar to the much more abundant pol II loops, but without a matrix detectable by phase contrast or differential interference contrast. This morphology is consistent with the transcription of short repeated sequences. Hemagglutinin-tagged transcripts encoding core subunits and transcription factors were injected into the oocyte cytoplasm, and the distribution of newly translated proteins inside the nucleus was monitored by immunostaining. Cajal bodies were preferentially targeted by these proteins, and in some cases the chromosomal sites were also weakly stained. The existence of pol III subunits and pol III transcription factors in Cajal bodies and their targeting to these organelles are consistent with a model of Cajal bodies as sites for preassembly of the nuclear transcription machinery.


Asunto(s)
Núcleo Celular/enzimología , Cromosomas/enzimología , Cuerpos Enrollados/enzimología , Oocitos/fisiología , ARN Polimerasa III/metabolismo , Xenopus laevis/metabolismo , Amanitinas/metabolismo , Animales , Células HeLa , Humanos , Inmunohistoquímica , Conformación de Ácido Nucleico , Inhibidores de la Síntesis del Ácido Nucleico/metabolismo , Oocitos/citología , Subunidades de Proteína/metabolismo , Factores de Transcripción/metabolismo , Transcripción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA