Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 264
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Neurobiol Dis ; 194: 106462, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38442845

RESUMEN

DYT-TOR1A (DYT1) dystonia, characterized by reduced penetrance and suspected environmental triggers, is explored using a "second hit" DYT-TOR1A rat model. We aim to investigate the biological mechanisms driving the conversion into a dystonic phenotype, focusing on the striatum's role in dystonia pathophysiology. Sciatic nerve crush injury was induced in ∆ETorA rats, lacking spontaneous motor abnormalities, and wild-type (wt) rats. Twelve weeks post-injury, unbiased RNA-sequencing was performed on the striatum to identify differentially expressed genes (DEGs) and pathways. Fenofibrate, a PPARα agonist, was introduced to assess its effects on gene expression. 18F-FDG autoradiography explored metabolic alterations in brain networks. Low transcriptomic variability existed between naïve wt and ∆ETorA rats (17 DEGs). Sciatic nerve injury significantly impacted ∆ETorA rats (1009 DEGs) compared to wt rats (216 DEGs). Pathway analyses revealed disruptions in energy metabolism, specifically in fatty acid ß-oxidation and glucose metabolism. Fenofibrate induced gene expression changes in wt rats but failed in ∆ETorA rats. Fenofibrate increased dystonia-like movements in wt rats but reduced them in ∆ETorA rats. 18F-FDG autoradiography indicated modified glucose metabolism in motor and somatosensory cortices and striatum in both ∆ETorA and wt rats post-injury. Our findings highlight perturbed energy metabolism pathways in DYT-TOR1A dystonia, emphasizing compromised PPARα agonist efficacy in the striatum. Furthermore, we identify impaired glucose metabolism in the brain network, suggesting a potential shift in energy substrate utilization in dystonic DYT-TOR1A rats. These results contribute to understanding the pathophysiology and potential therapeutic targets for DYT-TOR1A dystonia.


Asunto(s)
Distonía , Trastornos Distónicos , Fenofibrato , Ratas , Animales , Distonía/genética , Distonía/metabolismo , Roedores/metabolismo , Fluorodesoxiglucosa F18 , PPAR alfa/metabolismo , Trastornos Distónicos/genética , Encéfalo/metabolismo , Metabolismo Energético , Glucosa
2.
Neurobiol Dis ; 190: 106367, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38042508

RESUMEN

X-linked dystonia-parkinsonism (XDP) is a rare neurodegenerative disease endemic to the Philippines. The genetic cause for XDP is an insertion of a SINE-VNTR-Alu (SVA)-type retrotransposon within intron 32 of TATA-binding protein associated factor 1 (TAF1) that causes an alteration of TAF1 splicing, partial intron retention, and decreased transcription. Although TAF1 is expressed in all organs, medium spiny neurons (MSNs) within the striatum are one of the cell types most affected in XDP. To define how mutations in the TAF1 gene lead to MSN vulnerability, we carried out a proteomic analysis of human XDP patient-derived neural stem cells (NSCs) and MSNs derived from induced pluripotent stem cells. NSCs and MSNs were grown in parallel and subjected to quantitative proteomic analysis in data-independent acquisition mode on the Orbitrap Eclipse Tribrid mass spectrometer. Subsequent functional enrichment analysis demonstrated that neurodegenerative disease-related pathways, such as Huntington's disease, spinocerebellar ataxia, cellular senescence, mitochondrial function and RNA binding metabolism, were highly represented. We used weighted coexpression network analysis (WGCNA) of the NSC and MSN proteomic data set to uncover disease-driving network modules. Three of the modules significantly correlated with XDP genotype when compared to the non-affected control and were enriched for DNA helicase and nuclear chromatin assembly, mitochondrial disassembly, RNA location and mRNA processing. Consistent with aberrant mRNA processing, we found splicing and intron retention of TAF1 intron 32 in XDP MSN. We also identified TAF1 as one of the top enriched transcription factors, along with YY1, ATF2, USF1 and MYC. Notably, YY1 has been implicated in genetic forms of dystonia. Overall, our proteomic data set constitutes a valuable resource to understand mechanisms relevant to TAF1 dysregulation and to identify new therapeutic targets for XDP.


Asunto(s)
Distonía , Trastornos Distónicos , Enfermedades Neurodegenerativas , Trastornos Parkinsonianos , Humanos , Distonía/genética , Distonía/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Proteómica , Factor de Transcripción TFIID/genética , Trastornos Distónicos/genética , Trastornos Distónicos/metabolismo , Neuronas/metabolismo , ARN Mensajero/metabolismo , Trastornos Parkinsonianos/genética , Trastornos Parkinsonianos/metabolismo
3.
Brain ; 146(6): 2512-2523, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-36445406

RESUMEN

There is a lack of imaging markers revealing the functional characteristics of different brain regions in paediatric dystonia. In this observational study, we assessed the utility of [18F]2-fluoro-2-deoxy-D-glucose (FDG)-PET in understanding dystonia pathophysiology by revealing specific resting awake brain glucose metabolism patterns in different childhood dystonia subgroups. PET scans from 267 children with dystonia being evaluated for possible deep brain stimulation surgery between September 2007 and February 2018 at Evelina London Children's Hospital (ELCH), UK, were examined. Scans without gross anatomical abnormality (e.g. large cysts, significant ventriculomegaly; n = 240) were analysed with Statistical Parametric Mapping (SPM12). Glucose metabolism patterns were examined in the 144/240 (60%) cases with the 10 commonest childhood-onset dystonias, focusing on nine anatomical regions. A group of 39 adult controls was used for comparisons. The genetic dystonias were associated with the following genes: TOR1A, THAP1, SGCE, KMT2B, HPRT1 (Lesch Nyhan disease), PANK2 and GCDH (Glutaric Aciduria type 1). The acquired cerebral palsy (CP) cases were divided into those related to prematurity (CP-Preterm), neonatal jaundice/kernicterus (CP-Kernicterus) and hypoxic-ischaemic encephalopathy (CP-Term). Each dystonia subgroup had distinct patterns of altered FDG-PET uptake. Focal glucose hypometabolism of the pallidi, putamina or both, was the commonest finding, except in PANK2, where basal ganglia metabolism appeared normal. HPRT1 uniquely showed glucose hypometabolism across all nine cerebral regions. Temporal lobe glucose hypometabolism was found in KMT2B, HPRT1 and CP-Kernicterus. Frontal lobe hypometabolism was found in SGCE, HPRT1 and PANK2. Thalamic and brainstem hypometabolism were seen only in HPRT1, CP-Preterm and CP-term dystonia cases. The combination of frontal and parietal lobe hypermetabolism was uniquely found in CP-term cases. PANK2 cases showed a distinct combination of parietal hypermetabolism with cerebellar hypometabolism but intact putaminal-pallidal glucose metabolism. HPRT1, PANK2, CP-kernicterus and CP-preterm cases had cerebellar and insula glucose hypometabolism as well as parietal glucose hypermetabolism. The study findings offer insights into the pathophysiology of dystonia and support the network theory for dystonia pathogenesis. 'Signature' patterns for each dystonia subgroup could be a useful biomarker to guide differential diagnosis and inform personalized management strategies.


Asunto(s)
Parálisis Cerebral , Distonía , Trastornos Distónicos , Kernicterus , Adulto , Recién Nacido , Humanos , Niño , Fluorodesoxiglucosa F18/metabolismo , Distonía/metabolismo , Kernicterus/complicaciones , Kernicterus/metabolismo , Encéfalo/metabolismo , Trastornos Distónicos/metabolismo , Tomografía de Emisión de Positrones/métodos , Glucosa/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas Reguladoras de la Apoptosis/metabolismo
4.
J Neurosci ; 42(8): 1557-1573, 2022 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-34965974

RESUMEN

Collagen VI is a key component of muscle basement membranes, and genetic variants can cause monogenic muscular dystrophies. Conversely, human genetic studies recently implicated collagen VI in central nervous system function, with variants causing the movement disorder dystonia. To elucidate the neurophysiological role of collagen VI, we generated mice with a truncation of the dystonia-related collagen α3 VI (COL6A3) C-terminal domain (CTD). These Col6a3CTT mice showed a recessive dystonia-like phenotype in both sexes. We found that COL6A3 interacts with the cannabinoid receptor 1 (CB1R) complex in a CTD-dependent manner. Col6a3CTT mice of both sexes have impaired homeostasis of excitatory input to the basal pontine nuclei (BPN), a motor control hub with dense COL6A3 expression, consistent with deficient endocannabinoid (eCB) signaling. Aberrant synaptic input in the BPN was normalized by a CB1R agonist, and motor performance in Col6a3CTT mice of both sexes was improved by CB1R agonist treatment. Our findings identify a readily therapeutically addressable synaptic mechanism for motor control.SIGNIFICANCE STATEMENT Dystonia is a movement disorder characterized by involuntary movements. We previously identified genetic variants affecting a specific domain of the COL6A3 protein as a cause of dystonia. Here, we created mice lacking the affected domain and observed an analogous movement disorder. Using a protein interaction screen, we found that the affected COL6A3 domain mediates an interaction with the cannabinoid receptor 1 (CB1R). Concordantly, our COL6A3-deficient mice showed a deficit in synaptic plasticity linked to a deficit in cannabinoid signaling. Pharmacological cannabinoid augmentation rescued the motor impairment of the mice. Thus, cannabinoid augmentation could be a promising avenue for treating dystonia, and we have identified a possible molecular mechanism mediating this.


Asunto(s)
Cannabinoides , Colágeno Tipo VI , Distonía , Trastornos Distónicos , Neuronas Motoras , Plasticidad Neuronal , Animales , Cannabinoides/metabolismo , Cannabinoides/farmacología , Colágeno Tipo VI/genética , Colágeno Tipo VI/metabolismo , Distonía/genética , Distonía/metabolismo , Trastornos Distónicos/genética , Trastornos Distónicos/metabolismo , Femenino , Masculino , Ratones , Neuronas Motoras/efectos de los fármacos , Mutación , Plasticidad Neuronal/efectos de los fármacos , Receptores de Cannabinoides/genética , Receptores de Cannabinoides/metabolismo
5.
Neurobiol Dis ; 179: 106056, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36863527

RESUMEN

The relationship between genotype and phenotype in DYT-TOR1A dystonia as well as the associated motor circuit alterations are still insufficiently understood. DYT-TOR1A dystonia has a remarkably reduced penetrance of 20-30%, which has led to the second-hit hypothesis emphasizing an important role of extragenetic factors in the symptomatogenesis of TOR1A mutation carriers. To analyze whether recovery from a peripheral nerve injury can trigger a dystonic phenotype in asymptomatic hΔGAG3 mice, which overexpress human mutated torsinA, a sciatic nerve crush was applied. An observer-based scoring system as well as an unbiased deep-learning based characterization of the phenotype showed that recovery from a sciatic nerve crush leads to significantly more dystonia-like movements in hΔGAG3 animals compared to wildtype control animals, which persisted over the entire monitored period of 12 weeks. In the basal ganglia, the analysis of medium spiny neurons revealed a significantly reduced number of dendrites, dendrite length and number of spines in the naïve and nerve-crushed hΔGAG3 mice compared to both wildtype control groups indicative of an endophenotypical trait. The volume of striatal calretinin+ interneurons showed alterations in hΔGAG3 mice compared to the wt groups. Nerve-injury related changes were found for striatal ChAT+, parvalbumin+ and nNOS+ interneurons in both genotypes. The dopaminergic neurons of the substantia nigra remained unchanged in number across all groups, however, the cell volume was significantly increased in nerve-crushed hΔGAG3 mice compared to naïve hΔGAG3 mice and wildtype littermates. Moreover, in vivo microdialysis showed an increase of dopamine and its metabolites in the striatum comparing nerve-crushed hΔGAG3 mice to all other groups. The induction of a dystonia-like phenotype in genetically predisposed DYT-TOR1A mice highlights the importance of extragenetic factors in the symptomatogenesis of DYT-TOR1A dystonia. Our experimental approach allowed us to dissect microstructural and neurochemical abnormalities in the basal ganglia, which either reflected a genetic predisposition or endophenotype in DYT-TOR1A mice or a correlate of the induced dystonic phenotype. In particular, neurochemical and morphological changes of the nigrostriatal dopaminergic system were correlated with symptomatogenesis.


Asunto(s)
Distonía , Trastornos Distónicos , Traumatismos de los Nervios Periféricos , Animales , Humanos , Ratones , Cuerpo Estriado/metabolismo , Dopamina/metabolismo , Distonía/genética , Distonía/metabolismo , Trastornos Distónicos/genética , Endofenotipos , Chaperonas Moleculares/genética , Traumatismos de los Nervios Periféricos/metabolismo , Sustancia Negra/metabolismo
6.
Neurobiol Dis ; 166: 105650, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35139431

RESUMEN

This review provides an overview of the synaptic dysfunctions of neuronal circuits and underlying neurochemical alterations observed in the hyperkinetic movement disorders, dystonia and dyskinesia. These disorders exhibit similar changes in expression of synaptic plasticity and neuromodulation. This includes alterations in physical attributes of synapses, synaptic protein expression, and neurotransmitter systems, such as glutamate and gamma-aminobutyric acid (GABA), and neuromodulators, such as dopamine, acetylcholine, serotonin, adenosine, and endocannabinoids. A full understanding of the mechanisms and consequences of disruptions in synaptic function and plasticity will lend insight into the development of these disorders and new ways to combat maladaptive changes.


Asunto(s)
Discinesias , Distonía , Trastornos Distónicos , Antiparkinsonianos , Cuerpo Estriado/metabolismo , Discinesias/metabolismo , Distonía/inducido químicamente , Distonía/metabolismo , Trastornos Distónicos/inducido químicamente , Trastornos Distónicos/metabolismo , Humanos , Levodopa/efectos adversos
7.
Brain ; 144(9): 2610-2615, 2021 10 22.
Artículo en Inglés | MEDLINE | ID: mdl-33871597

RESUMEN

The homotypic fusion and protein sorting (HOPS) complex is the structural bridge necessary for the fusion of late endosomes and autophagosomes with lysosomes. Recent publications linked mutations in genes encoding HOPS complex proteins with the aetiopathogenesis of inherited dystonias (i.e. VPS16, VPS41, and VPS11). Functional and microstructural studies conducted on patient-derived fibroblasts carrying mutations of HOPS complex subunits displayed clear abnormalities of the lysosomal and autophagic compartments. We propose to name this group of diseases HOPS-associated neurological disorders (HOPSANDs), which are mainly characterized by dystonic presentations. The delineation of HOPSANDs further confirms the connection of lysosomal and autophagic dysfunction with the pathogenesis of dystonia, prompting researchers to find innovative therapies targeting this pathway.


Asunto(s)
Distonía/metabolismo , Endosomas/metabolismo , Lisosomas/metabolismo , Enfermedades del Sistema Nervioso/metabolismo , Transporte de Proteínas/fisiología , Proteínas de Transporte Vesicular/metabolismo , Animales , Distonía/genética , Distonía/patología , Endosomas/genética , Endosomas/patología , Humanos , Lisosomas/genética , Lisosomas/patología , Enfermedades del Sistema Nervioso/genética , Enfermedades del Sistema Nervioso/patología , Proteínas de Transporte Vesicular/genética
8.
Int J Mol Sci ; 23(15)2022 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-35955710

RESUMEN

Murine models are fundamental in the study of clinical conditions and the development of new drugs and treatments. Transgenic technology has started to offer advantages in oncology, encompassing all research fields related to the study of painful syndromes. Knockout mice or mice overexpressing genes encoding for proteins linked to pain development and maintenance can be produced and pain models can be applied to transgenic mice to model the most disabling neurological conditions. Due to the association of movement disorders with sensitivity and pain processing, our group focused for the first time on the role of the torsinA gene GAG deletion-responsible for DYT1 dystonia-in baseline sensitivity and neuropathic responses. The aim of the present report are to review the complex network that exists between the chaperonine-like protein torsinA and the baseline sensitivity pattern-which are fundamental in neuropathic pain-and to point at its possible role in neurodegenerative diseases.


Asunto(s)
Distonía , Trastornos Distónicos , Neuralgia , Animales , Modelos Animales de Enfermedad , Distonía/genética , Distonía/metabolismo , Ratones , Ratones Noqueados , Ratones Transgénicos , Chaperonas Moleculares/genética , Neuralgia/genética
9.
Int J Mol Sci ; 23(9)2022 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-35563018

RESUMEN

DYT1 dystonia is a debilitating neurological movement disorder that arises upon Torsin ATPase deficiency. Nuclear envelope (NE) blebs that contain FG-nucleoporins (FG-Nups) and K48-linked ubiquitin are the hallmark phenotype of Torsin manipulation across disease models of DYT1 dystonia. While the aberrant deposition of FG-Nups is caused by defective nuclear pore complex assembly, the source of K48-ubiquitylated proteins inside NE blebs is not known. Here, we demonstrate that the characteristic K48-ubiquitin accumulation inside blebs requires p97 activity. This activity is highly dependent on the p97 adaptor UBXD1. We show that p97 does not significantly depend on the Ufd1/Npl4 heterodimer to generate the K48-ubiquitylated proteins inside blebs, nor does inhibiting translation affect the ubiquitin sequestration in blebs. However, stimulating global ubiquitylation by heat shock greatly increases the amount of K48-ubiquitin sequestered inside blebs. These results suggest that blebs have an extraordinarily high capacity for sequestering ubiquitylated protein generated in a p97-dependent manner. The p97/UBXD1 axis is thus a major factor contributing to cellular DYT1 dystonia pathology and its modulation represents an unexplored potential for therapeutic development.


Asunto(s)
Proteínas Adaptadoras del Transporte Vesicular , Adenosina Trifosfatasas , Proteínas Relacionadas con la Autofagia , Distonía , Membrana Nuclear , Proteínas Nucleares , Proteínas Adaptadoras del Transporte Vesicular/genética , Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Adenosina Trifosfatasas/metabolismo , Proteínas Relacionadas con la Autofagia/genética , Proteínas Relacionadas con la Autofagia/metabolismo , Estructuras de la Membrana Celular/metabolismo , Distonía/genética , Distonía/metabolismo , Distonía Muscular Deformante , Humanos , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Membrana Nuclear/metabolismo , Proteínas de Complejo Poro Nuclear/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Ubiquitina/metabolismo
10.
Neurobiol Dis ; 152: 105275, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33515674

RESUMEN

PRoline-Rich Transmembrane protein-2 (PRRT2) is a recently described neuron-specific type-2 integral membrane protein with a large cytosolic N-terminal domain that distributes in presynaptic and axonal domains where it interacts with several presynaptic proteins and voltage-gated Na+ channels. Several PRRT2 mutations are the main cause of a wide and heterogeneous spectrum of paroxysmal disorders with a loss-of-function pathomechanism. The highest expression levels of PRRT2 in brain occurs in cerebellar granule cells (GCs) and cerebellar dysfunctions participate in the dyskinetic phenotype of PRRT2 knockout (KO) mice. We have investigated the effects of PRRT2 deficiency on the intrinsic excitability of GCs and the input-output relationships at the mossy fiber-GC synapses. We show that PRRT2 KO primary GCs display increased expression of Na+ channels, increased amplitude of Na+ currents and increased length of the axon initial segment, leading to an overall enhancement of intrinsic excitability. In acute PRRT2 KO cerebellar slices, GCs were more prone to action potential discharge in response to mossy fiber activation and exhibited an enhancement of transient and persistent Na+ currents, in the absence of changes at the mossy fiber-GC synapses. The results support a key role of PRRT2 expressed in GCs in the physiological regulation of the excitatory input to the cerebellum and are consistent with a major role of a cerebellar dysfunction in the pathogenesis of the PRRT2-linked paroxysmal pathologies.


Asunto(s)
Cerebelo/fisiopatología , Distonía/fisiopatología , Proteínas de la Membrana/metabolismo , Neuronas/patología , Neuronas/fisiología , Animales , Cerebelo/metabolismo , Modelos Animales de Enfermedad , Distonía/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados
11.
Neurobiol Dis ; 155: 105369, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33894367

RESUMEN

TOR1A-associated dystonia, otherwise known as DYT1 dystonia, is an inherited dystonia caused by a three base-pair deletion in the TOR1A gene (TOR1AΔE). Although the mechanisms underlying the dystonic movements are largely unknown, abnormalities in striatal dopamine and acetylcholine neurotransmission are consistently implicated whereby dopamine release is reduced while cholinergic tone is increased. Because striatal cholinergic neurotransmission mediates dopamine release, it is not known if the dopamine release deficit is mediated indirectly by abnormal acetylcholine neurotransmission or if Tor1a(ΔE) acts directly within dopaminergic neurons to attenuate release. To dissect the microcircuit that governs the deficit in dopamine release, we conditionally expressed Tor1a(ΔE) in either dopamine neurons or cholinergic interneurons in mice and assessed striatal dopamine release using ex vivo fast scan cyclic voltammetry or dopamine efflux using in vivo microdialysis. Conditional expression of Tor1a(ΔE) in cholinergic neurons did not affect striatal dopamine release. In contrast, conditional expression of Tor1a(ΔE) in dopamine neurons reduced dopamine release to 50% of normal, which is comparable to the deficit in Tor1a+/ΔE knockin mice that express the mutation ubiquitously. Despite the deficit in dopamine release, we found that the Tor1a(ΔE) mutation does not cause obvious nerve terminal dysfunction as other presynaptic mechanisms, including electrical excitability, vesicle recycling/refilling, Ca2+ signaling, D2 dopamine autoreceptor function and GABAB receptor function, are intact. Although the mechanistic link between Tor1a(ΔE) and dopamine release is unclear, these results clearly demonstrate that the defect in dopamine release is caused by the action of the Tor1a(ΔE) mutation within dopamine neurons.


Asunto(s)
Modelos Animales de Enfermedad , Dopamina/genética , Dopamina/metabolismo , Distonía/genética , Distonía/metabolismo , Chaperonas Moleculares/genética , Animales , Cuerpo Estriado/metabolismo , Cuerpo Estriado/patología , Distonía/patología , Femenino , Captura por Microdisección con Láser/métodos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Chaperonas Moleculares/antagonistas & inhibidores , Mutación/fisiología
12.
Neurobiol Dis ; 157: 105429, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34153463

RESUMEN

L-DOPA-induced dyskinesia (LID) is a significant complication of dopamine replacement therapy in Parkinson's disease (PD), and the specific role of different dopamine receptors in this disorder is poorly understood. We set out to compare patterns of dyskinetic behaviours induced by the systemic administration of L-DOPA and D1 or D2 receptor (D1R, D2R) agonists in mice with unilateral 6-hydroxydopamine lesions. Mice were divided in four groups to receive increasing doses of L-DOPA, a D1R agonist (SKF38393), a D2/3 agonist (quinpirole), or a selective D2R agonist (sumanirole). Axial, limb and orofacial abnormal involuntary movements (AIMs) were rated using a well-established method, while dystonic features were quantified in different body segments using a new rating scale. Measures of abnormal limb and trunk posturing were extracted from high-speed videos using a software for markerless pose estimation (DeepLabCut). While L-DOPA induced the full spectrum of dyskinesias already described in this mouse model, SKF38393 induced mostly orofacial and limb AIMs. By contrast, both of the D2-class agonists (quinpirole, sumanirole) induced predominantly axial AIMs. Dystonia ratings revealed that these agonists elicited marked dystonic features in trunk/neck, forelimbs, and hindlimbs, which were overall more severe in sumanirole-treated mice. Accordingly, sumanirole induced pronounced axial bending and hindlimb divergence in the automated video analysis. In animals treated with SKF38393, the only appreciable dystonic-like reaction consisted in sustained tail dorsiflexion and stiffness. We next compared the effects of D1R or D2R selective antagonists in L-DOPA-treated mice, where only the D2R antagonist had a significant effect on dystonic features. Taken together these results indicate that the dystonic components of LID are predominantly mediated by the D2R.


Asunto(s)
Discinesia Inducida por Medicamentos/fisiopatología , Distonía/fisiopatología , Movimiento/efectos de los fármacos , Trastornos Parkinsonianos/fisiopatología , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D2/metabolismo , 2,3,4,5-Tetrahidro-7,8-dihidroxi-1-fenil-1H-3-benzazepina/farmacología , Animales , Antiparkinsonianos/efectos adversos , Bencimidazoles/farmacología , Discinesia Inducida por Medicamentos/etiología , Discinesia Inducida por Medicamentos/metabolismo , Distonía/inducido químicamente , Distonía/metabolismo , Ratones , Oxidopamina/toxicidad , Trastornos Parkinsonianos/inducido químicamente , Trastornos Parkinsonianos/metabolismo , Quinpirol/farmacología , Receptores de Dopamina D1/agonistas , Receptores de Dopamina D2/agonistas
13.
Mol Genet Metab ; 133(2): 123-136, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33903016

RESUMEN

Tetrahydrobiopterin (BH4) deficiency is caused by genetic variants in the three genes involved in de novo cofactor biosynthesis, GTP cyclohydrolase I (GTPCH/GCH1), 6-pyruvoyl-tetrahydropterin synthase (PTPS/PTS), sepiapterin reductase (SR/SPR), and the two genes involved in cofactor recycling, carbinolamine-4α-dehydratase (PCD/PCBD1) and dihydropteridine reductase (DHPR/QDPR). Dysfunction in BH4 metabolism leads to reduced cofactor levels and may result in systemic hyperphenylalaninemia and/or neurological sequelae due to secondary deficiency in monoamine neurotransmitters in the central nervous system. More than 1100 patients with BH4 deficiency and 800 different allelic variants distributed throughout the individual genes are tabulated in database of pediatric neurotransmitter disorders PNDdb. Here we provide an update on the molecular-genetic analysis and structural considerations of these variants, including the clinical courses of the genotypes. From a total of 324 alleles, 11 are associated with the autosomal recessive form of GTPCH deficiency presenting with hyperphenylalaninemia (HPA) and neurotransmitter deficiency, 295 GCH1 variant alleles are detected in the dominant form of L-dopa-responsive dystonia (DRD or Segawa disease) while phenotypes of 18 alleles remained undefined. Autosomal recessive variants observed in the PTS (199 variants), PCBD1 (32 variants), and QDPR (141 variants) genes lead to HPA concomitant with central monoamine neurotransmitter deficiency, while SPR deficiency (104 variants) presents without hyperphenylalaninemia. The clinical impact of reported variants is essential for genetic counseling and important for development of precision medicine.


Asunto(s)
Oxidorreductasas de Alcohol/genética , GTP Ciclohidrolasa/genética , Fenilcetonurias/genética , Liasas de Fósforo-Oxígeno/genética , Biopterinas/análogos & derivados , Biopterinas/genética , Biopterinas/metabolismo , Dihidropteridina Reductasa/genética , Distonía/genética , Distonía/metabolismo , Distonía/patología , Predisposición Genética a la Enfermedad , Humanos , Errores Innatos del Metabolismo/genética , Errores Innatos del Metabolismo/metabolismo , Errores Innatos del Metabolismo/patología , Proteínas Asociadas a Microtúbulos/genética , Fenilcetonurias/clasificación , Fenilcetonurias/metabolismo , Fenilcetonurias/patología , Trastornos Psicomotores/genética , Trastornos Psicomotores/metabolismo , Trastornos Psicomotores/patología
14.
Brain ; 143(6): 1746-1765, 2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32516804

RESUMEN

TOR1A/TorsinA mutations cause two incurable diseases: a recessive congenital syndrome that can be lethal, and a dominantly-inherited childhood-onset dystonia (DYT-TOR1A). TorsinA has been linked to phosphatidic acid lipid metabolism in Drosophila melanogaster. Here we evaluate the role of phosphatidic acid phosphatase (PAP) enzymes in TOR1A diseases using induced pluripotent stem cell-derived neurons from patients, and mouse models of recessive Tor1a disease. We find that Lipin PAP enzyme activity is abnormally elevated in human DYT-TOR1A dystonia patient cells and in the brains of four different Tor1a mouse models. Its severity also correlated with the dosage of Tor1a/TOR1A mutation. We assessed the role of excess Lipin activity in the neurological dysfunction of Tor1a disease mouse models by interbreeding these with Lpin1 knock-out mice. Genetic reduction of Lpin1 improved the survival of recessive Tor1a disease-model mice, alongside suppressing neurodegeneration, motor dysfunction, and nuclear membrane pathology. These data establish that TOR1A disease mutations cause abnormal phosphatidic acid metabolism, and suggest that approaches that suppress Lipin PAP enzyme activity could be therapeutically useful for TOR1A diseases.


Asunto(s)
Chaperonas Moleculares/metabolismo , Fosfatidato Fosfatasa/metabolismo , Animales , Encéfalo/patología , Modelos Animales de Enfermedad , Distonía/genética , Distonía/metabolismo , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Chaperonas Moleculares/genética , Mutación , Neuronas/metabolismo , Fosfatidato Fosfatasa/genética , Fosfatidato Fosfatasa/fisiología
15.
J Neurosci ; 39(36): 7195-7205, 2019 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-31320448

RESUMEN

Clinical and experimental data indicate striatal cholinergic dysfunction in dystonia, a movement disorder typically resulting in twisted postures via abnormal muscle contraction. Three forms of isolated human dystonia result from mutations in the TOR1A (DYT1), THAP1 (DYT6), and GNAL (DYT25) genes. Experimental models carrying these mutations facilitate identification of possible shared cellular mechanisms. Recently, we reported elevated extracellular striatal acetylcholine by in vivo microdialysis and paradoxical excitation of cholinergic interneurons (ChIs) by dopamine D2 receptor (D2R) agonism using ex vivo slice electrophysiology in Dyt1ΔGAG/+ mice. The paradoxical excitation was caused by overactive muscarinic receptors (mAChRs), leading to a switch in D2R coupling from canonical Gi/o to noncanonical ß-arrestin signaling. We sought to determine whether these mechanisms in Dyt1ΔGAG/+ mice are shared with Thap1C54Y/+ knock-in and Gnal+/- knock-out dystonia models and to determine the impact of sex. We found Thap1C54Y/+ mice of both sexes have elevated extracellular striatal acetylcholine and D2R-induced paradoxical ChI excitation, which was reversed by mAChR inhibition. Elevated extracellular acetylcholine was absent in male and female Gnal+/- mice, but the paradoxical D2R-mediated ChI excitation was retained and only reversed by inhibition of adenosine A2ARs. The Gi/o-preferring D2R agonist failed to increase ChI excitability, suggesting a possible switch in coupling of D2Rs to ß-arrestin, as seen previously in a DYT1 model. These data show that, whereas elevated extracellular acetylcholine levels are not always detected across these genetic models of human dystonia, the D2R-mediated paradoxical excitation of ChIs is shared and is caused by altered function of distinct G-protein-coupled receptors.SIGNIFICANCE STATEMENT Dystonia is a common and often disabling movement disorder. The usual medical treatment of dystonia is pharmacotherapy with nonselective antagonists of muscarinic acetylcholine receptors, which have many undesirable side effects. Development of new therapeutics is a top priority for dystonia research. The current findings, considered in context with our previous investigations, establish a role for cholinergic dysfunction across three mouse models of human genetic dystonia: DYT1, DYT6, and DYT25. The commonality of cholinergic dysfunction in these models arising from diverse molecular etiologies points the way to new approaches for cholinergic modulation that may be broadly applicable in dystonia.


Asunto(s)
Neuronas Colinérgicas/metabolismo , Cuerpo Estriado/metabolismo , Proteínas de Unión al ADN/genética , Distonía/genética , Glucosamina 6-Fosfato N-Acetiltransferasa/genética , Chaperonas Moleculares/genética , Acetilcolina/metabolismo , Animales , Neuronas Colinérgicas/fisiología , Cuerpo Estriado/fisiopatología , Distonía/metabolismo , Distonía/fisiopatología , Espacio Extracelular/metabolismo , Femenino , Interneuronas/metabolismo , Interneuronas/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Receptores de Dopamina D2/metabolismo , Receptores Muscarínicos/metabolismo , Potenciales Sinápticos , beta-Arrestinas/metabolismo
16.
Neurobiol Dis ; 134: 104634, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31678405

RESUMEN

Dystonia is a neurological movement disorder characterized by sustained or intermittent involuntary muscle contractions. Loss-of-function mutations in the GNAL gene have been identified to be the cause of "isolated" dystonia DYT25. The GNAL gene encodes for the guanine nucleotide-binding protein G(olf) subunit alpha (Gαolf), which is mainly expressed in the olfactory bulb and the striatum and functions as a modulator during neurotransmission coupling with D1R and A2AR. Previously, heterozygous Gαolf -deficient mice (Gnal+/-) have been generated and showed a mild phenotype at basal condition. In contrast, homozygous deletion of Gnal in mice (Gnal-/-) resulted in a significantly reduced survival rate. In this study, using the CRISPR-Cas9 system we generated and characterized heterozygous Gnal knockout rats (Gnal+/-) with a 13 base pair deletion in the first exon of the rat Gnal splicing variant 2, a major isoform in both human and rat striatum. Gnal+/- rats showed early-onset phenotypes associated with impaired dopamine transmission, including reduction in locomotor activity, deficits in rotarod performance and an abnormal motor skill learning ability. At cellular and molecular level, we found down-regulated Arc expression, increased cell surface distribution of AMPA receptors, and the loss of D2R-dependent corticostriatal long-term depression (LTD) in Gnal+/- rats. Based on the evidence that D2R activity is normally inhibited by adenosine A2ARs, co-localized on the same population of striatal neurons, we show that blockade of A2ARs restores physiological LTD. This animal model may be a valuable tool for investigating Gαolf function and finding a suitable treatment for dystonia associated with deficient dopamine transmission.


Asunto(s)
Adenosina/metabolismo , Modelos Animales de Enfermedad , Dopamina/metabolismo , Distonía , Depresión Sináptica a Largo Plazo/fisiología , Animales , Distonía/metabolismo , Distonía/fisiopatología , Subunidades alfa de la Proteína de Unión al GTP/genética , Técnicas de Inactivación de Genes , Masculino , Ratas , Ratas Sprague-Dawley , Receptor de Adenosina A2A/metabolismo , Transducción de Señal/fisiología
17.
Mol Biol Rep ; 47(5): 3993-4001, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32239467

RESUMEN

DYT-TOR1A is the most common inherited dystonia caused by a three nucleotide (GAG) deletion (dE) in the TOR1A gene. Death early after birth and cortical anomalies of the full knockout in rodents underscore its developmental importance. We therefore explored the timed effects of TOR1A-wt and TOR1A-dE during differentiation in a human neural in vitro model. We used lentiviral tet-ON expression of TOR1A-wt and -dE in induced neural stem cells derived from healthy donors. Overexpression was induced during proliferation of neural precursors, during differentiation and after differentiation into mature neurons. Overexpression of both wildtype and mutated protein had no effect on the viability and cell number of neural precursors as well as mature neurons when initiated before or after differentiation. However, if induced during differentiation, overexpression of TOR1A-wt and -dE led to a pronounced reduction of mature neurons in a dose dependent manner. Our data underscores the importance of physiological expression levels of TOR1A as crucial for proper neuronal differentiation. We did not find evidence for a specific impact of the mutated TOR1A on neuronal maturation.


Asunto(s)
Chaperonas Moleculares/biosíntesis , Células-Madre Neurales/metabolismo , Neuronas/metabolismo , Diferenciación Celular/fisiología , Distonía/genética , Distonía/metabolismo , Distonía/patología , Células HEK293 , Humanos , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Mutación , Células-Madre Neurales/patología , Neuronas/patología
18.
Int J Mol Sci ; 21(3)2020 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-32041188

RESUMEN

Dystonia pathophysiology has been partly linked to downregulation and dysfunction ofdopamine D2 receptors in striatum. We aimed to investigate the possible morpho-structuralcorrelates of D2 receptor downregulation in the striatum of a DYT1 Tor1a mouse model. Adultcontrol Tor1a+/+ and mutant Tor1a+/- mice were used. The brains were perfused and free-floatingsections of basal ganglia were incubated with polyclonal anti-D2 antibody, followed by secondaryimmune-fluorescent antibody. Confocal microscopy was used to detect immune-fluorescent signals.The same primary antibody was used to evaluate D2 receptor expression by western blot. The D2receptor immune-fluorescence appeared circumscribed in small disks (0.3-0.5 µm diameter), likelyrepresenting D2 synapse aggregates, densely distributed in the striatum of Tor1a+/+ mice. In theTor1a+/- mice the D2 aggregates were significantly smaller (µm2 2.4 ± SE 0.16, compared to µm2 6.73± SE 3.41 in Tor1a+/+) and sparse, with ~30% less number per microscopic field, value correspondentto the amount of reduced D2 expression in western blotting analysis. In DYT1 mutant mice thesparse and small D2 synapses in the striatum may be insufficient to "gate" the amount ofpresynaptic dopamine release diffusing in peri-synaptic space, and this consequently may result ina timing and spatially larger nonselective sphere of influence of dopamine action.


Asunto(s)
Distonía/genética , Chaperonas Moleculares/genética , Receptores de Dopamina D2/metabolismo , Sinapsis/metabolismo , Animales , Cuerpo Estriado/metabolismo , Modelos Animales de Enfermedad , Regulación hacia Abajo , Distonía/metabolismo , Ratones , Ratones Noqueados , Microscopía Confocal
19.
Neurobiol Dis ; 127: 233-241, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30877032

RESUMEN

During the last two decades, our knowledge on the genetic bases of Mendelian forms of dystonia has expanded significantly. This has translated into the generation of multiple cell and animal models to explore the neurobiological bases of this hyperkinetic movement disorder. A majority of these studies have focused on DYT1 dystonia, caused by dominant mutations in the gene encoding for the protein torsinA. Since its discovery, work in multiple laboratories helped identify the subcellular localization of torsinA, key structural features, functionally important physical interactions and biological pathways and physiological events influenced by torsinA. Moreover, recent experimental work indicates potential shared pathogenic pathways between different genetic forms of dystonia. This review will summarize our current knowledge on the molecular and basic biological features of torsinA and its dysfunction when carrying disease-causing mutation, identifying future research priorities and proposing a model of dystonia pathogenesis that might extend beyond DYT1.


Asunto(s)
Distonía/metabolismo , Trastornos Distónicos/metabolismo , Chaperonas Moleculares/metabolismo , Animales , Núcleo Celular/metabolismo , Distonía/genética , Trastornos Distónicos/genética , Retículo Endoplásmico/metabolismo , Humanos , Chaperonas Moleculares/genética
20.
Neurobiol Dis ; 129: 159-168, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31112762

RESUMEN

The dystonias are a group of disorders characterized by excessive contraction of muscles leading to abnormal involuntary movements. The clinical manifestations are very heterogeneous, with numerous distinct syndromes. The etiologies for dystonia are also heterogeneous with idiopathic, acquired, and inherited forms. Technological advances in genetics over the past two decades have led to a rapid growth in the number of genes associated with dystonia. These genes encode proteins with very diverse biological functions. This review focusses on genes that have contributed to understanding shared biological pathways relevant to specific subgroups of dystonia syndromes. Although many potential shared biological pathways have been proposed, the ones addressed here include defects in dopamine signaling, mitochondrial dysfunction and energy maintenance, toxic accumulation of heavy metals in the brain, and calcium channels and abnormal calcium homeostasis. Elucidation of these and other shared pathways is important for understanding the biological basis for dystonia and for designing novel experimental therapeutics that have the broadest potential for multiple types of dystonia.


Asunto(s)
Distonía/genética , Distonía/fisiopatología , Trastornos Distónicos/genética , Trastornos Distónicos/fisiopatología , Animales , Distonía/metabolismo , Trastornos Distónicos/metabolismo , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA