Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.024
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Hum Brain Mapp ; 45(14): e70034, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39370644

RESUMEN

Automated EEG pre-processing pipelines provide several key advantages over traditional manual data cleaning approaches; primarily, they are less time-intensive and remove potential experimenter error/bias. Automated pipelines also require fewer technical expertise as they remove the need for manual artefact identification. We recently developed the fully automated Reduction of Electroencephalographic Artefacts (RELAX) pipeline and demonstrated its performance in cleaning EEG data recorded from adult populations. Here, we introduce the RELAX-Jr pipeline, which was adapted from RELAX and designed specifically for pre-processing of data collected from children. RELAX-Jr implements multi-channel Wiener filtering (MWF) and/or wavelet-enhanced independent component analysis (wICA) combined with the adjusted-ADJUST automated independent component classification algorithm to identify and reduce all artefacts using algorithms adapted to optimally identify artefacts in EEG recordings taken from children. Using a dataset of resting-state EEG recordings (N = 136) from children spanning early-to-middle childhood (4-12 years), we assessed the cleaning performance of RELAX-Jr using a range of metrics including signal-to-error ratio, artefact-to-residue ratio, ability to reduce blink and muscle contamination, and differences in estimates of alpha power between eyes-open and eyes-closed recordings. We also compared the performance of RELAX-Jr against four publicly available automated cleaning pipelines. We demonstrate that RELAX-Jr provides strong cleaning performance across a range of metrics, supporting its use as an effective and fully automated cleaning pipeline for neurodevelopmental EEG data.


Asunto(s)
Artefactos , Electroencefalografía , Procesamiento de Señales Asistido por Computador , Humanos , Electroencefalografía/métodos , Electroencefalografía/normas , Niño , Preescolar , Masculino , Femenino , Encéfalo/fisiología , Algoritmos
2.
Hum Brain Mapp ; 45(8): e26747, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38825981

RESUMEN

Electroencephalography (EEG) functional connectivity (FC) estimates are confounded by the volume conduction problem. This effect can be greatly reduced by applying FC measures insensitive to instantaneous, zero-lag dependencies (corrected measures). However, numerous studies showed that FC measures sensitive to volume conduction (uncorrected measures) exhibit higher reliability and higher subject-level identifiability. We tested how source reconstruction contributed to the reliability difference of EEG FC measures on a large (n = 201) resting-state data set testing eight FC measures (including corrected and uncorrected measures). We showed that the high reliability of uncorrected FC measures in resting state partly stems from source reconstruction: idiosyncratic noise patterns define a baseline resting-state functional network that explains a significant portion of the reliability of uncorrected FC measures. This effect remained valid for template head model-based, as well as individual head model-based source reconstruction. Based on our findings we made suggestions how to best use spatial leakage corrected and uncorrected FC measures depending on the main goals of the study.


Asunto(s)
Conectoma , Electroencefalografía , Red Nerviosa , Humanos , Electroencefalografía/métodos , Electroencefalografía/normas , Adulto , Conectoma/normas , Conectoma/métodos , Femenino , Masculino , Reproducibilidad de los Resultados , Red Nerviosa/diagnóstico por imagen , Red Nerviosa/fisiología , Adulto Joven , Imagen por Resonancia Magnética/normas , Encéfalo/diagnóstico por imagen , Encéfalo/fisiología
3.
Psychophysiology ; 61(6): e14530, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38282093

RESUMEN

In research with event-related potentials (ERPs), aggressive filters can substantially improve the signal-to-noise ratio and maximize statistical power, but they can also produce significant waveform distortion. Although this tradeoff has been well documented, the field lacks recommendations for filter cutoffs that quantitatively address both of these competing considerations. To fill this gap, we quantified the effects of a broad range of low-pass filter and high-pass filter cutoffs for seven common ERP components (P3b, N400, N170, N2pc, mismatch negativity, error-related negativity, and lateralized readiness potential) recorded from a set of neurotypical young adults. We also examined four common scoring methods (mean amplitude, peak amplitude, peak latency, and 50% area latency). For each combination of component and scoring methods, we quantified the effects of filtering on data quality (noise level and signal-to-noise ratio) and waveform distortion. This led to recommendations for optimal low-pass and high-pass filter cutoffs. We repeated the analyses after adding artificial noise to provide recommendations for data sets with moderately greater noise levels. For researchers who are analyzing data with similar ERP components, noise levels, and participant populations, using the recommended filter settings should lead to improved data quality and statistical power without creating problematic waveform distortion.


Asunto(s)
Electroencefalografía , Potenciales Evocados , Humanos , Electroencefalografía/normas , Adulto Joven , Potenciales Evocados/fisiología , Masculino , Femenino , Adulto , Relación Señal-Ruido , Procesamiento de Señales Asistido por Computador , Adolescente , Interpretación Estadística de Datos
4.
BMC Neurol ; 24(1): 285, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39143558

RESUMEN

BACKGROUND: There is no standardized EEG duration guideline for detecting epileptiform abnormalities in patients, and research on this topic is scarce. This study aims to determine an optimal EEG duration for efficient detection of epileptiform abnormalities across different patient groups. METHODS: Retrospective analysis was performed on EEG recordings and clinical data of patients with the first seizure and epilepsy. Patients were categorized based on various factors, including the interval time since the last seizure, use of anti-seizure medication (ASM), and seizure frequency. The detection ratio (DR) of epileptiform abnormalities and latency time for their discovery were calculated. Statistical analyses, including chi-square tests, logistic regression, and survival analysis were utilized to illustrate DR and latency times. RESULTS: In whole-night EEG recordings, the DR was 37.6% for the first seizure group and 57.4% for the epilepsy group. Although the maximum latency times were 720 min in both two groups, DR in the first seizure group was distinctly decreased beyond 300 min. Significant factors influencing the DR included the use of ASM in the first seizure group (P < 0.05) and seizure frequency in the epilepsy group (P < 0.001). For epilepsy patients who experience a seizure at least once a month or undergo timely EEG recordings (within 24 h after a seizure), the DR significantly increases, and the maximum latency time is reduced to 600 min (P < 0.001). Additionally, the DR was significantly reduced after 240 min in epilepsy patients who had been seizure-free for more than one year. CONCLUSIONS: In this retrospective study, we observed a maximum latency of 720 min for detecting epileptiform abnormalities in whole-night EEG recordings. Notably, epilepsy patients with a higher seizure frequency or timely EEG recordings demonstrated both a higher detection ratio and a shorter maximum latency time. For patients exhibiting a low detection ratio, such as those experiencing their first seizure or those with epilepsy who have been seizure-free for more than a year, a shorter EEG duration is recommended. These findings underscore the importance of implementing customized EEG strategies to meet the specific needs of different patient groups.


Asunto(s)
Electroencefalografía , Epilepsia , Convulsiones , Humanos , Electroencefalografía/métodos , Electroencefalografía/normas , Estudios Retrospectivos , Masculino , Femenino , Epilepsia/diagnóstico , Epilepsia/fisiopatología , Adulto , Persona de Mediana Edad , Adulto Joven , Adolescente , Convulsiones/diagnóstico , Convulsiones/fisiopatología , Factores de Tiempo , Niño , Anciano , Anticonvulsivantes/uso terapéutico
5.
Cereb Cortex ; 33(13): 8150-8163, 2023 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-36997155

RESUMEN

Successful neuromodulation approaches to alter episodic memory require closed-loop stimulation predicated on the effective classification of brain states. The practical implementation of such strategies requires prior decisions regarding electrode implantation locations. Using a data-driven approach, we employ support vector machine (SVM) classifiers to identify high-yield brain targets on a large data set of 75 human intracranial electroencephalogram subjects performing the free recall (FR) task. Further, we address whether the conserved brain regions provide effective classification in an alternate (associative) memory paradigm along with FR, as well as testing unsupervised classification methods that may be a useful adjunct to clinical device implementation. Finally, we use random forest models to classify functional brain states, differentiating encoding versus retrieval versus non-memory behavior such as rest and mathematical processing. We then test how regions that exhibit good classification for the likelihood of recall success in the SVM models overlap with regions that differentiate functional brain states in the random forest models. Finally, we lay out how these data may be used in the design of neuromodulation devices.


Asunto(s)
Encéfalo , Electrodos , Electroencefalografía , Memoria Episódica , Bosques Aleatorios , Máquina de Vectores de Soporte , Humanos , Encéfalo/fisiología , Interfaces Cerebro-Computador , Análisis por Conglomerados , Electrodos/normas , Electroencefalografía/métodos , Electroencefalografía/normas , Recuerdo Mental , Aprendizaje Automático no Supervisado
6.
J Integr Neurosci ; 23(8): 150, 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39207081

RESUMEN

BACKGROUND: Neonatal seizures are diagnostically challenging and predominantly electrographic-only. Multichannel video continuous electroencephalography (cEEG) is the gold standard investigation, however, out-of-hours access to neurophysiology support can be limited. Automated seizure detection algorithms (SDAs) are designed to detect changes in EEG data, translated into user-friendly seizure probability trends. The aim of this study was to evaluate the diagnostic accuracy of the Persyst neonatal SDA in an intensive care setting. METHODS: Single-centre retrospective service evaluation study in neonates undergoing cEEG during intensive care admission to Great Ormond Street Hospital (GOSH) between May 2019 and December 2022. Neonates with <44 weeks corrected gestational age, who had a cEEG recording duration >60 minutes, whilst inpatient in intensive care, were included in the study. One-hour cEEG clips were created for all cases (seizures detected) and controls (seizure-free) and analysed by the Persyst neonatal SDA. Expert neurophysiology reports of the cEEG recordings were used as the gold standard for diagnostic comparison. A receiver operating characteristic (ROC) curve was created using the highest seizure probability in each recording. Optimal seizure probability thresholds for sensitivity and specificity were identified. RESULTS: Eligibility screening produced 49 cases, and 49 seizure-free controls. Seizure prevalence within those patients eligible for the study, was approximately 19% with 35% mortality. The most common case seizure aetiology was hypoxic ischaemic injury (35%) followed by inborn errors of metabolism (18%). The ROC area under the curve was 0.94 with optimal probability thresholds 0.4 and 0.6. Applying a threshold of 0.6, produced 80% sensitivity and 98% specificity. CONCLUSIONS: The Persyst neonatal SDA demonstrates high diagnostic accuracy in identifying neonatal seizures; comparable to the accuracy of the standard Persyst SDA in adult populations, other neonatal SDAs, and amplitude integrated EEG (aEEG). Overdiagnosis of seizures is a risk, particularly from cEEG recording artefact. To fully examine its clinical utility, further investigation of the Persyst neonatal SDA's accuracy is required, as well as confirming the optimal seizure probability thresholds in a larger patient cohort.


Asunto(s)
Electroencefalografía , Convulsiones , Humanos , Recién Nacido , Electroencefalografía/métodos , Electroencefalografía/normas , Convulsiones/diagnóstico , Convulsiones/fisiopatología , Estudios Retrospectivos , Femenino , Masculino , Sensibilidad y Especificidad , Algoritmos , Grabación en Video
7.
J Neurophysiol ; 127(2): 559-570, 2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-35044809

RESUMEN

The Rolandic beta rhythm, at ∼20 Hz, is generated in the somatosensory and motor cortices and is modulated by motor activity and sensory stimuli, causing a short lasting suppression that is followed by a rebound of the beta rhythm. The rebound reflects inhibitory changes in the primary sensorimotor (SMI) cortex, and thus it has been used as a biomarker to follow the recovery of patients with acute stroke. The longitudinal stability of beta rhythm modulation is a prerequisite for its use in long-term follow-ups. We quantified the reproducibility of beta rhythm modulation in healthy subjects in a 1-year-longitudinal study both for MEG and EEG at T0, 1 month (T1-month, n = 8) and 1 year (T1-year, n = 19). The beta rhythm (13-25 Hz) was modulated by fixed tactile and proprioceptive stimulations of the index fingers. The relative peak strengths of beta suppression and rebound did not differ significantly between the sessions, and intersession reproducibility was good or excellent according to intraclass correlation-coefficient values (0.70-0.96) both in MEG and EEG. Our results indicate that the beta rhythm modulation to tactile and proprioceptive stimulation is well reproducible within 1 year. These results support the use of beta modulation as a biomarker in long-term follow-up studies, e.g., to quantify the functional state of the SMI cortex during rehabilitation and drug interventions in various neurological impairments.NEW & NOTEWORTHY The present study demonstrates that beta rhythm modulation is highly reproducible in a group of healthy subjects within a year. Hence, it can be reliably used as a biomarker in longitudinal follow-up studies in different neurological patient groups to reflect changes in the functional state of the sensorimotor cortex.


Asunto(s)
Ritmo beta/fisiología , Sincronización de Fase en Electroencefalografía/fisiología , Electroencefalografía , Potenciales Evocados/fisiología , Magnetoencefalografía , Corteza Motora/fisiología , Propiocepción/fisiología , Corteza Somatosensorial/fisiología , Percepción del Tacto/fisiología , Adulto , Electroencefalografía/normas , Femenino , Humanos , Estudios Longitudinales , Magnetoencefalografía/normas , Masculino , Reproducibilidad de los Resultados , Adulto Joven
8.
Crit Care Med ; 50(2): 329-334, 2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-34582427

RESUMEN

OBJECTIVES: To investigate electroencephalogram (EEG) features' relation with mortality or functional outcome after disorder of consciousness, stratifying patients between continuous EEG and routine EEG. DESIGN: Retrospective analysis of data from a randomized controlled trial. SETTING: Multiple adult ICUs. PATIENTS: Data from 364 adults with acute disorder of consciousness, randomized to continuous EEG (30-48 hr; n = 182) or repeated 20-minute routine electroencephalogram (n = 182). INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: Correlations between electrographic features and mortality and modified Rankin scale at 6 months (good 0-2) were assessed. Background continuity, higher frequency, and reactivity correlated with survival and good modified Rankin scale. Rhythmic and periodic patterns carried dual prognostic information: lateralized periodic discharges were associated with mortality and bad modified Rankin scale. Generalized rhythmic delta activity correlated with survival, good modified Rankin scale, and lower occurrence of status epilepticus. Presence of sleep-spindles and continuous EEG background was associated with good outcome in the continuous EEG subgroup. In the routine EEG group, a model combining background frequency, continuity, reactivity, sleep-spindles, and lateralized periodic discharges was associated with mortality at 70.91% (95% CI, 59.62-80.10%) positive predictive value and 63.93% (95% CI, 58.67-68.89%) negative predictive value. In the continuous EEG group, a model combining background continuity, reactivity, generalized rhythmic delta activity, and lateralized periodic discharges was associated with mortality at 84.62% (95%CI, 75.02-90.97) positive predictive value and 74.77% (95% CI, 68.50-80.16) negative predictive value. CONCLUSIONS: Standardized EEG interpretation provides reliable prognostic information. Continuous EEG provides more information than routine EEG.


Asunto(s)
Electroencefalografía/métodos , Evaluación de Resultado en la Atención de Salud/estadística & datos numéricos , Convulsiones/diagnóstico , Factores de Tiempo , Adulto , Área Bajo la Curva , Enfermedad Crítica/terapia , Electroencefalografía/normas , Electroencefalografía/estadística & datos numéricos , Femenino , Humanos , Unidades de Cuidados Intensivos/organización & administración , Unidades de Cuidados Intensivos/estadística & datos numéricos , Masculino , Persona de Mediana Edad , Evaluación de Resultado en la Atención de Salud/métodos , Pronóstico , Curva ROC , Estudios Retrospectivos , Convulsiones/epidemiología , Convulsiones/fisiopatología
9.
Anaesthesia ; 77 Suppl 1: 113-122, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35001382

RESUMEN

Surgery and anaesthesia subject the brain to considerable stress in the peri-operative period. This may be caused by potentially neurotoxic anaesthetic drugs, impaired cerebral perfusion and reperfusion injury related to surgery or thromboembolic events. Patient monitoring using electroencephalogram and cerebral oximetry can assist in optimising depth of anaesthesia and assessment of cerebral metabolic activity. However, research findings have been contradictory as to whether these monitors can help ameliorate peri-operative neurocognitive complications. In this narrative review, we will discuss recent evidence in the use of electroencephalography and cerebral oximetry and the underlying scientific principles. It is important to appreciate the raw electroencephalographic changes under anaesthesia and those associated with ageing, in order to interpret depth of anaesthesia indices correctly. Cerebral oximetry is useful not only for the detection of cerebral desaturation but also to identify those patients who are particularly vulnerable to injury, for better risk stratification. An algorithm-based approach may be most effective in managing the episodes of cerebral desaturation.


Asunto(s)
Anestesia/métodos , Circulación Cerebrovascular/fisiología , Electroencefalografía/métodos , Monitoreo Intraoperatorio/métodos , Oximetría/métodos , Atención Perioperativa/métodos , Anestesia/normas , Encéfalo/efectos de los fármacos , Encéfalo/fisiología , Circulación Cerebrovascular/efectos de los fármacos , Electroencefalografía/normas , Humanos , Monitoreo Intraoperatorio/normas , Oximetría/normas , Atención Perioperativa/normas , Complicaciones Posoperatorias/diagnóstico , Complicaciones Posoperatorias/prevención & control
10.
J Integr Neurosci ; 21(1): 20, 2022 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-35164456

RESUMEN

Stress has become a dangerous health problem in our life, especially in student education journey. Accordingly, previous methods have been conducted to detect mental stress based on biological and biochemical effects. Moreover, hormones, physiological effects, and skin temperature have been extensively used for stress detection. However, based on the recent literature, biological, biochemical, and physiological-based methods have shown inconsistent findings, which are initiated due to hormones' instability. Therefore, it is crucial to study stress using different mechanisms such as Electroencephalogram (EEG) signals. In this research study, the frontal lobes EEG spectrum analysis is applied to detect mental stress. Initially, we apply a Fast Fourier Transform (FFT) as a feature extraction stage to measure all bands' power density for the frontal lobe. After that, we used two type of classifications such as subject wise and mix (mental stress vs. control) using Support Vector Machine (SVM) and Naive Bayes (NB) machine learning classifiers. Our obtained results of the average subject wise classification showed that the proposed technique has better accuracy (98.21%). Moreover, this technique has low complexity, high accuracy, simple and easy to use, no over fitting, and it could be used as a real-time and continuous monitoring technique for medical applications.


Asunto(s)
Electroencefalografía/métodos , Lóbulo Frontal/fisiopatología , Aprendizaje Automático , Procesamiento de Señales Asistido por Computador , Estrés Psicológico/diagnóstico , Estrés Psicológico/fisiopatología , Adulto , Electroencefalografía/normas , Femenino , Análisis de Fourier , Humanos , Masculino , Sensibilidad y Especificidad , Máquina de Vectores de Soporte , Adulto Joven
11.
Neuroimage ; 245: 118747, 2021 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-34852277

RESUMEN

In this paper, we analyze spatial sampling of electro- (EEG) and magnetoencephalography (MEG), where the electric or magnetic field is typically sampled on a curved surface such as the scalp. By simulating fields originating from a representative adult-male head, we study the spatial-frequency content in EEG as well as in on- and off-scalp MEG. This analysis suggests that on-scalp MEG, off-scalp MEG and EEG can benefit from up to 280, 90 and 110 spatial samples, respectively. In addition, we suggest a new approach to obtain sensor locations that are optimal with respect to prior assumptions. The approach also allows to control, e.g., the uniformity of the sensor locations. Based on our simulations, we argue that for a low number of spatial samples, model-informed non-uniform sampling can be beneficial. For a large number of samples, uniform sampling grids yield nearly the same total information as the model-informed grids.


Asunto(s)
Electroencefalografía/normas , Magnetoencefalografía/normas , Adulto , Humanos , Masculino , Modelos Neurológicos , Cuero Cabelludo , Procesamiento de Señales Asistido por Computador
12.
Neuroimage ; 225: 117465, 2021 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-33099010

RESUMEN

Event-related potentials (ERPs) are noninvasive measures of human brain activity that index a range of sensory, cognitive, affective, and motor processes. Despite their broad application across basic and clinical research, there is little standardization of ERP paradigms and analysis protocols across studies. To address this, we created ERP CORE (Compendium of Open Resources and Experiments), a set of optimized paradigms, experiment control scripts, data processing pipelines, and sample data (N = 40 neurotypical young adults) for seven widely used ERP components: N170, mismatch negativity (MMN), N2pc, N400, P3, lateralized readiness potential (LRP), and error-related negativity (ERN). This resource makes it possible for researchers to 1) employ standardized ERP paradigms in their research, 2) apply carefully designed analysis pipelines and use a priori selected parameters for data processing, 3) rigorously assess the quality of their data, and 4) test new analytic techniques with standardized data from a wide range of paradigms.


Asunto(s)
Electroencefalografía/métodos , Electroencefalografía/normas , Potenciales Evocados , Adulto , Encéfalo/fisiología , Femenino , Humanos , Masculino
13.
Neuroimage ; 230: 117746, 2021 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-33454414

RESUMEN

Intracranial stereoelectroencephalography (sEEG) provides unsurpassed sensitivity and specificity for human neurophysiology. However, functional mapping of brain functions has been limited because the implantations have sparse coverage and differ greatly across individuals. Here, we developed a distributed, anatomically realistic sEEG source-modeling approach for within- and between-subject analyses. In addition to intracranial event-related potentials (iERP), we estimated the sources of high broadband gamma activity (HBBG), a putative correlate of local neural firing. Our novel approach accounted for a significant portion of the variance of the sEEG measurements in leave-one-out cross-validation. After logarithmic transformations, the sensitivity and signal-to-noise ratio were linearly inversely related to the minimal distance between the brain location and electrode contacts (slope≈-3.6). The signa-to-noise ratio and sensitivity in the thalamus and brain stem were comparable to those locations at the vicinity of electrode contact implantation. The HGGB source estimates were remarkably consistent with analyses of intracranial-contact data. In conclusion, distributed sEEG source modeling provides a powerful neuroimaging tool, which facilitates anatomically-normalized functional mapping of human brain using both iERP and HBBG data.


Asunto(s)
Epilepsia Refractaria/diagnóstico por imagen , Epilepsia Refractaria/fisiopatología , Electrodos Implantados/normas , Electroencefalografía/métodos , Electroencefalografía/normas , Técnicas Estereotáxicas/normas , Estimulación Acústica/métodos , Estimulación Acústica/normas , Adulto , Femenino , Humanos , Masculino , Persona de Mediana Edad , Distribución Aleatoria
14.
Neuroimage ; 237: 118192, 2021 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-34048899

RESUMEN

Typically, time-frequency analysis (TFA) of electrophysiological data is aimed at isolating narrowband signals (oscillatory activity) from broadband non-oscillatory (1/f) activity, so that changes in oscillatory activity resulting from experimental manipulations can be assessed. A widely used method to do this is to convert the data to the decibel (dB) scale through baseline division and log transformation. This procedure assumes that, for each frequency, sources of power (i.e., oscillations and 1/f activity) scale by the same factor relative to the baseline (multiplicative model). This assumption may be incorrect when signal and noise are independent contributors to the power spectrum (additive model). Using resting-state EEG data from 80 participants, we found that the level of 1/f activity and alpha power are not positively correlated within participants, in line with the additive but not the multiplicative model. Then, to assess the effects of dB conversion on data that violate the multiplicativity assumption, we simulated a mixed design study with one between-subject (noise level, i.e., level of 1/f activity) and one within-subject (signal amplitude, i.e., amplitude of oscillatory activity added onto the background 1/f activity) factor. The effect size of the noise level × signal amplitude interaction was examined as a function of noise difference between groups, following dB conversion. Findings revealed that dB conversion led to the over- or under-estimation of the true interaction effect when groups differing in 1/f levels were compared, and it also led to the emergence of illusory interactions when none were present. This is because signal amplitude was systematically underestimated in the noisier compared to the less noisy group. Hence, we recommend testing whether the level of 1/f activity differs across groups or conditions and using multiple baseline correction strategies to validate results if it does. Such a situation may be particularly common in aging, developmental, or clinical studies.


Asunto(s)
Corteza Cerebral/fisiología , Electroencefalografía/métodos , Neuroimagen Funcional/métodos , Magnetoencefalografía/métodos , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Ondas Encefálicas/fisiología , Electroencefalografía/normas , Femenino , Neuroimagen Funcional/normas , Humanos , Magnetoencefalografía/normas , Masculino , Adulto Joven
15.
Neuroimage ; 230: 117793, 2021 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-33497769

RESUMEN

The linearly constrained minimum variance beamformer is frequently used to reconstruct sources underpinning neuromagnetic recordings. When reconstructions must be compared across conditions, it is considered good practice to use a single, "common" beamformer estimated from all the data at once. This is to ensure that differences between conditions are not ascribable to differences in beamformer weights. Here, we investigate the localization accuracy of such a common beamformer. Based on theoretical derivations, we first show that the common beamformer leads to localization errors in source reconstruction. We then turn to simulations in which we attempt to reconstruct a (genuine) source in a first condition, while considering a second condition in which there is an (interfering) source elsewhere in the brain. We estimate maps of mislocalization and assess statistically the difference between "standard" and "common" beamformers. We complement our findings with an application to experimental MEG data. The results show that the common beamformer may yield significant mislocalization. Specifically, the common beamformer may force the genuine source to be reconstructed closer to the interfering source than it really is. As the same applies to the reconstruction of the interfering source, both sources are pulled closer together than they are. This observation was further illustrated in experimental data. Thus, although the common beamformer allows for the comparison of conditions, in some circumstances it introduces localization inaccuracies. We recommend alternative approaches to the general problem of comparing conditions.


Asunto(s)
Mapeo Encefálico/normas , Encéfalo/diagnóstico por imagen , Encéfalo/fisiología , Electroencefalografía/normas , Procesamiento de Imagen Asistido por Computador/normas , Magnetoencefalografía/normas , Adulto , Mapeo Encefálico/métodos , Electroencefalografía/métodos , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Magnetoencefalografía/métodos , Masculino , Adulto Joven
16.
Neuroimage ; 231: 117864, 2021 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-33592241

RESUMEN

Both electroencephalography (EEG) and functional Magnetic Resonance Imaging (fMRI) are non-invasive methods that show complementary aspects of human brain activity. Despite measuring different proxies of brain activity, both the measured blood-oxygenation (fMRI) and neurophysiological recordings (EEG) are indirectly coupled. The electrophysiological and BOLD signal can map the underlying functional connectivity structure at the whole brain scale at different timescales. Previous work demonstrated a moderate but significant correlation between resting-state functional connectivity of both modalities, however there is a wide range of technical setups to measure simultaneous EEG-fMRI and the reliability of those measures between different setups remains unknown. This is true notably with respect to different magnetic field strengths (low and high field) and different spatial sampling of EEG (medium to high-density electrode coverage). Here, we investigated the reproducibility of the bimodal EEG-fMRI functional connectome in the most comprehensive resting-state simultaneous EEG-fMRI dataset compiled to date including a total of 72 subjects from four different imaging centers. Data was acquired from 1.5T, 3T and 7T scanners with simultaneously recorded EEG using 64 or 256 electrodes. We demonstrate that the whole-brain monomodal connectivity reproducibly correlates across different datasets and that a moderate crossmodal correlation between EEG and fMRI connectivity of r ≈ 0.3 can be reproducibly extracted in low- and high-field scanners. The crossmodal correlation was strongest in the EEG-ß frequency band but exists across all frequency bands. Both homotopic and within intrinsic connectivity network (ICN) connections contributed the most to the crossmodal relationship. This study confirms, using a considerably diverse range of recording setups, that simultaneous EEG-fMRI offers a consistent estimate of multimodal functional connectomes in healthy subjects that are dominantly linked through a functional core of ICNs across spanning across the different timescales measured by EEG and fMRI. This opens new avenues for estimating the dynamics of brain function and provides a better understanding of interactions between EEG and fMRI measures. This observed level of reproducibility also defines a baseline for the study of alterations of this coupling in pathological conditions and their role as potential clinical markers.


Asunto(s)
Encéfalo/diagnóstico por imagen , Conectoma/normas , Bases de Datos Factuales/normas , Electroencefalografía/normas , Imagen por Resonancia Magnética/normas , Red Nerviosa/diagnóstico por imagen , Adolescente , Adulto , Encéfalo/fisiología , Conectoma/métodos , Electroencefalografía/métodos , Femenino , Humanos , Imagen por Resonancia Magnética/métodos , Masculino , Persona de Mediana Edad , Red Nerviosa/fisiología , Reproducibilidad de los Resultados , Adulto Joven
17.
Neuroimage ; 231: 117861, 2021 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-33592245

RESUMEN

Electroencephalogram (EEG) microstate analysis is a promising and effective spatio-temporal method that can segment signals into several quasi-stable classes, providing a great opportunity to investigate short-range and long-range neural dynamics. However, there are still many controversies in terms of reproducibility and reliability when selecting different parameters or datatypes. In this study, five electrode configurations (91, 64, 32, 19, and 8 channels) were used to measure the reliability of microstate analysis at different electrode densities during propofol-induced sedation. First, the microstate topography and parameters at five different electrode densities were compared in the baseline (BS) condition and the moderate sedation (MD) condition, respectively. The intraclass correlation coefficient (ICC) and coefficient of variation (CV) were introduced to quantify the consistency of the microstate parameters. Second, statistical analysis and classification between BS and MD were performed to determine whether the microstate differences between different conditions remained stable at different electrode densities, and ICC was also calculated between the different conditions to measure the consistency of the results in a single condition. The results showed that in both the BS or MD condition, respectively, there were few significant differences in the microstate parameters among the 91-, 64-, and 32-channel configurations, with most of the differences observed between the 19- or 8-channel configurations and the other configurations. The ICC and CV data also showed that the consistency among the 91-, 64-, and 32-channel configurations was better than that among all five electrode configurations after including the 19- and 8-channel configurations. Furthermore, the significant differences between the conditions in the 91-channel configuration remained stable at the 64- and 32-channel resolutions, but disappeared at the 19- and 8-channel resolutions. In addition, the classification and ICC results showed that the microstate analysis became unreliable with fewer than 20 electrodes. The findings of this study support the hypothesis that microstate analysis of different brain states is more reliable with higher electrode densities; the use of a small number of channels is not recommended.


Asunto(s)
Encéfalo/fisiología , Estado de Conciencia/fisiología , Electroencefalografía/normas , Hipnóticos y Sedantes/farmacología , Propofol/farmacología , Adulto , Encéfalo/efectos de los fármacos , Estado de Conciencia/efectos de los fármacos , Electrodos/normas , Electroencefalografía/métodos , Femenino , Humanos , Masculino , Reproducibilidad de los Resultados , Adulto Joven
18.
J Neurophysiol ; 126(4): 1148-1158, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34495792

RESUMEN

During the noninvasive evaluation phase for refractory epilepsy, the localization of the epileptogenic zone (EZ) is essential for the surgical protocols. Confirmation of laterality is required when the preoperative evaluation limits the EZ to bilateral anterior temporal lobes or bilateral frontal lobes. High-frequency oscillations (HFOs) are considered to be promising biological markers for the EZ. However, a large number of studies on HFOs stem from intracranial research. There were few quantitative measures for scalp HFOs, so we proposed a new method to quantify and analyze scalp HFOs. This method was called the "scalp-HFO index" (HI) and calculated in both the EZ and non-EZ. The calculation was based on the numbers and spectral power of scalp HFOs automatically detected. We labeled the brain lobes involved in the EZ as regions of interest (ROIs). The HIs based on the ripple numbers (n-HI) and spectral power (s-HI) were significantly higher in the ROI than in the contra-ROI (P = 0.012, P = 0.003), indicating that HIs contributed to the lateralization of EZ. The sensitivity and specificity of n-HI for the localization of the EZ were 90% and 79.58%, respectively, suggesting that n-HI was valuable in localizing the EZ. HI may contribute to the implantation strategy of invasive electrodes. However, few scalp HFOs were recorded when the EZ was located in the medial cortex region.NEW & NOTEWORTHY We proposed the scalp-high-frequency oscillation (HFO) index (HI) as a quantitative assessment method for scalp HFOs to locate the epileptogenic zone (EZ). Our results showed that the HI in regions of interest (ROIs) was significantly higher than in contra-ROIs. Sensitivity and specificity of HI based on ripple rates (n-HI) for EZ localization were 90% and 79.58%, respectively. If the n-HI of the brain region was >1.35, it was more likely to be an epileptogenic region. Clinical application of HIs as an indicator may facilitate localization of the EZ.


Asunto(s)
Epilepsia Refractaria/diagnóstico , Epilepsia Refractaria/fisiopatología , Electroencefalografía/métodos , Cuidados Preoperatorios , Adolescente , Adulto , Biomarcadores , Ondas Encefálicas/fisiología , Niño , Preescolar , Epilepsia Refractaria/cirugía , Electroencefalografía/normas , Femenino , Humanos , Masculino , Evaluación de Resultado en la Atención de Salud , Cuero Cabelludo , Adulto Joven
19.
Hum Brain Mapp ; 42(8): 2461-2476, 2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-33605512

RESUMEN

Pain arises from the integration of sensory and cognitive processes in the brain, resulting in specific patterns of neural oscillations that can be characterized by measuring electrical brain activity. Current source density (CSD) estimation from low-resolution brain electromagnetic tomography (LORETA) and its standardized (sLORETA) and exact (eLORETA) variants, is a common approach to identify the spatiotemporal dynamics of the brain sources in physiological and pathological pain-related conditions. However, there is no consensus on the magnitude and variability of clinically or experimentally relevant effects for CSD estimations. Here, we systematically examined reports of sample size calculations and effect size estimations in all studies that included the keywords pain, and LORETA, sLORETA, or eLORETA in Scopus and PubMed. We also assessed the reliability of LORETA CSD estimations during non-painful and painful conditions to estimate hypothetical sample sizes for future experiments using CSD estimations. We found that none of the studies included in the systematic review reported sample size calculations, and less than 20% reported measures of central tendency and dispersion, which are necessary to estimate effect sizes. Based on these data and our experimental results, we determined that sample sizes commonly used in pain studies using CSD estimations are suitable to detect medium and large effect sizes in crossover designs and only large effects in parallel designs. These results provide a comprehensive summary of the effect sizes observed using LORETA in pain research, and this information can be used by clinicians and researchers to improve settings and designs of future pain studies.


Asunto(s)
Mapeo Encefálico/normas , Encéfalo/fisiopatología , Electroencefalografía/normas , Dolor/fisiopatología , Tomografía/normas , Humanos
20.
Hum Brain Mapp ; 42(12): 3993-4021, 2021 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-34101939

RESUMEN

Simultaneous recording of electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) is a very promising non-invasive neuroimaging technique. However, EEG data obtained from the simultaneous EEG-fMRI are strongly influenced by MRI-related artefacts, namely gradient artefacts (GA) and ballistocardiogram (BCG) artefacts. When compared to the GA correction, the BCG correction is more challenging to remove due to its inherent variabilities and dynamic changes over time. The standard BCG correction (i.e., average artefact subtraction [AAS]), require detecting cardiac pulses from simultaneous electrocardiography (ECG) recording. However, ECG signals are also distorted and will become problematic for detecting reliable cardiac peaks. In this study, we focused on a beamforming spatial filtering technique to attenuate all unwanted source activities outside of the brain. Specifically, we applied the beamforming technique to attenuate the BCG artefact in EEG-fMRI, and also to recover meaningful task-based neural signals during an attentional network task (ANT) which required participants to identify visual cues and respond accurately. We analysed EEG-fMRI data in 20 healthy participants during the ANT, and compared four different BCG corrections (non-BCG corrected, AAS BCG corrected, beamforming + AAS BCG corrected, beamforming BCG corrected). We demonstrated that the beamforming approach did not only significantly reduce the BCG artefacts, but also significantly recovered the expected task-based brain activity when compared to the standard AAS correction. This data-driven beamforming technique appears promising especially for longer data acquisition of sleep and resting EEG-fMRI. Our findings extend previous work regarding the recovery of meaningful EEG signals by an optimized suppression of MRI-related artefacts.


Asunto(s)
Balistocardiografía/normas , Electroencefalografía/normas , Neuroimagen Funcional/normas , Imagen por Resonancia Magnética/normas , Adulto , Artefactos , Balistocardiografía/métodos , Electroencefalografía/métodos , Femenino , Neuroimagen Funcional/métodos , Humanos , Imagen por Resonancia Magnética/métodos , Masculino , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA