Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Mol Cell ; 62(1): 5-6, 2016 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-27058784

RESUMEN

A paper from Jain et al. (2016) using whole-genome CRISPR knockout libraries in human cells and models of mitochondrial disease suggests chronic hypoxia could be an unexpected treatment for disorders of mitochondrial respiration.


Asunto(s)
Enfermedad de Leigh/genética , Enfermedad de Leigh/terapia , Mitocondrias/metabolismo , Oxígeno/metabolismo , Proteína Supresora de Tumores del Síndrome de Von Hippel-Lindau/genética , Animales , Humanos
2.
Brain ; 145(10): 3405-3414, 2022 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-36270002

RESUMEN

Leigh disease, or subacute necrotizing encephalomyelopathy, a genetically heterogeneous condition consistently characterized by defective mitochondrial bioenergetics, is the most common oxidative-phosphorylation related disease in infancy. Both neurological signs and pathological lesions of Leigh disease are mimicked by the ablation of the mouse mitochondrial respiratory chain subunit Ndufs4-/-, which is part of, and crucial for, normal Complex I activity and assembly, particularly in the brains of both children and mice. We previously conveyed the human NDUFS4 gene to the mouse brain using either single-stranded adeno-associated viral 9 recombinant vectors or the PHP.B adeno-associated viral vector. Both these approaches significantly prolonged the lifespan of the Ndufs4-/- mouse model but the extension of the survival was limited to a few weeks by the former approach, whereas the latter was applicable to a limited number of mouse strains, but not to primates. Here, we exploited the recent development of new, self-complementary adeno-associated viral 9 vectors, in which the transcription rate of the recombinant gene is markedly increased compared with the single-stranded adeno-associated viral 9 and can be applied to all mammals, including humans. Either single intra-vascular or double intra-vascular and intra-cerebro-ventricular injections were performed at post-natal Day 1. The first strategy ubiquitously conveyed the human NDUFS4 gene product in Ndufs4-/- mice, doubling the lifespan from 45 to ≈100 days after birth, when the mice developed rapidly progressive neurological failure. However, the double, contemporary intra-vascular and intra-cerebroventricular administration of self-complementary-adeno-associated viral NDUFS4 prolonged healthy lifespan up to 9 months of age. These mice were well and active at euthanization, at 6, 7, 8 and 9 months of age, to investigate the brain and other organs post-mortem. Robust expression of hNDUFS4 was detected in different cerebral areas preserving normal morphology and restoring Complex I activity and assembly. Our results warrant further investigation on the translatability of self-complementary-adeno-associated viral 9 NDUFS4-based therapy in the prodromal phase of the disease in mice and eventually humans.


Asunto(s)
Enfermedad de Leigh , Niño , Ratones , Animales , Humanos , Enfermedad de Leigh/genética , Enfermedad de Leigh/terapia , Complejo I de Transporte de Electrón/genética , Complejo I de Transporte de Electrón/metabolismo , Dependovirus/genética , Fosforilación Oxidativa , Modelos Animales de Enfermedad , Ratones Noqueados , Mamíferos/metabolismo
3.
Hu Li Za Zhi ; 70(4): 103-111, 2023 Aug.
Artículo en Zh | MEDLINE | ID: mdl-37469325

RESUMEN

This article applied a family strengths-oriented therapeutic conversations approach to explore the advanced practice nursing experience of a female adolescent with Leigh Syndrome and her family. During the nursing care period from September 20 to November 19, 2022, the author collected data through direct care, observation, interview, telecare, home visits, and medical record reviews and confirmed the nursing problems to be the inadequate coping capability of the family. The author leveraged her advanced nurse practitioner role and used family strength-oriented therapeutic conversations to enable the parents of the patient to reflect on their experiences with this disease and to improve their quality of life and satisfaction with healthcare services. Three modes of care, including accessibility, coordination, and comprehensiveness, were offered to the female adolescent patient and her family to achieve the goal of family-centered, community-based, and medical-system-centered care. It is suggested that before making healthcare decisions, patients and their families should be given the opportunity to participate in the healthcare process and reach consensus on healthcare decisions based on existing evidence and their values and preferences. The medical decisions made by patients and their families after carefully considering their current situation and needs should be supported and assisted.


Asunto(s)
Enfermería de Práctica Avanzada , Enfermedad de Leigh , Humanos , Femenino , Adolescente , Enfermedad de Leigh/terapia , Calidad de Vida , Padres , Comunicación , Familia
4.
Neurobiol Dis ; 163: 105594, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34933094

RESUMEN

Genetic mitochondrial diseases are the most frequent cause of inherited metabolic disorders and one of the most prevalent causes of heritable neurological disease. Leigh syndrome is the most common clinical presentation of pediatric mitochondrial disease, typically appearing in the first few years of life, and involving severe multisystem pathologies. Clinical care for Leigh syndrome patients is difficult, complicated by the wide range of symptoms including characteristic progressive CNS lesion, metabolic sequelae, and epileptic seizures, which can be intractable to standard management. While no proven therapies yet exist for the underlying mitochondrial disease, a ketogenic diet has led to some reports of success in managing mitochondrial epilepsies, with ketosis reducing seizure risk and severity. The impact of ketosis on other aspects of disease progression in Leigh syndrome has not been studied, however, and a rigorous study of the impact of ketosis on seizures in mitochondrial disease is lacking. Conversely, preclinical efforts have identified the intracellular nutrient signaling regulator mTOR as a promising therapeutic target, with data suggesting the benefits are mediated by metabolic changes. mTOR inhibition alleviates epilepsies arising from defects in TSC, an mTOR regulator, but the therapeutic potential of mTOR inhibition in seizures related to primary mitochondrial dysfunction is unknown. Given that ketogenic diet is used clinically in the setting of mitochondrial disease, and mTOR inhibition is in clinical trials for intractable pediatric epilepsies of diverse causal origins, a direct experimental assessment of their effects is imperative. Here, we define the impact of dietary ketosis on survival and CNS disease in the Ndufs4(KO) mouse model of Leigh syndrome and the therapeutic potential of both dietary ketosis and mTOR inhibition on seizures in this model. These data provide timely insight into two important clinical interventions.


Asunto(s)
Dieta Cetogénica , Enfermedad de Leigh/terapia , Sirolimus/uso terapéutico , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Animales , Modelos Animales de Enfermedad , Complejo I de Transporte de Electrón/genética , Enfermedad de Leigh/dietoterapia , Enfermedad de Leigh/tratamiento farmacológico , Enfermedad de Leigh/genética , Ratones , Ratones Noqueados , Sirolimus/farmacología , Resultado del Tratamiento
5.
Mol Genet Metab ; 133(1): 83-93, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33752971

RESUMEN

Leigh syndrome is a severe mitochondrial neurodegenerative disease with no effective treatment. In the Ndufs4-/- mouse model of Leigh syndrome, continuously breathing 11% O2 (hypoxia) prevents neurodegeneration and leads to a dramatic extension (~5-fold) in lifespan. We investigated the effect of hypoxia on the brain metabolism of Ndufs4-/- mice by studying blood gas tensions and metabolite levels in simultaneously sampled arterial and cerebral internal jugular venous (IJV) blood. Relatively healthy Ndufs4-/- and wildtype (WT) mice breathing air until postnatal age ~38 d were compared to Ndufs4-/- and WT mice breathing air until ~38 days old followed by 4-weeks of breathing 11% O2. Compared to WT control mice, Ndufs4-/- mice breathing air have reduced brain O2 consumption as evidenced by an elevated partial pressure of O2 in IJV blood (PijvO2) despite a normal PO2 in arterial blood, and higher lactate/pyruvate (L/P) ratios in IJV plasma revealed by metabolic profiling. In Ndufs4-/- mice, hypoxia treatment normalized the cerebral venous PijvO2 and L/P ratios, and decreased levels of nicotinate in IJV plasma. Brain concentrations of nicotinamide adenine dinucleotide (NAD+) were lower in Ndufs4-/- mice breathing air than in WT mice, but preserved at WT levels with hypoxia treatment. Although mild hypoxia (17% O2) has been shown to be an ineffective therapy for Ndufs4-/- mice, we find that when combined with nicotinic acid supplementation it provides a modest improvement in neurodegeneration and lifespan. Therapies targeting both brain hyperoxia and NAD+ deficiency may hold promise for treating Leigh syndrome.


Asunto(s)
Encéfalo/metabolismo , Complejo I de Transporte de Electrón/genética , Enfermedad de Leigh/metabolismo , NAD/genética , Oxígeno/metabolismo , Animales , Encéfalo/patología , Hipoxia de la Célula/fisiología , Modelos Animales de Enfermedad , Complejo I de Transporte de Electrón/metabolismo , Humanos , Enfermedad de Leigh/genética , Enfermedad de Leigh/terapia , Metabolómica , Ratones , Mitocondrias , NAD/deficiencia , Enfermedades Neurodegenerativas , Respiración/genética
6.
Mol Genet Metab ; 132(2): 146-153, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33485800

RESUMEN

TRMU is a nuclear gene crucial for mitochondrial DNA translation by encoding tRNA 5-methylaminomethyl-2-thiouridylate methyltransferase, which thiolates mitochondrial tRNA. Biallelic pathogenic variants in TRMU are associated with transient infantile liver failure. Other less common presentations such as Leigh syndrome, myopathy, and cardiomyopathy have been reported. Recent studies suggested that provision of exogenous L-cysteine or N-acetylcysteine may ameliorate the effects of disease-causing variants and improve the natural history of the disease. Here, we report six infants with biallelic TRMU variants, including four previously unpublished patients, all treated with exogenous cysteine. We highlight the first report of an affected patient undergoing orthotopic liver transplantation, the long-term effects of cysteine supplementation, and the ability of the initial presentation to mimic multiple inborn errors of metabolism. We propose that TRMU deficiency should be suspected in all children presenting with persistent lactic acidosis and hypoglycemia, and that combined N-acetylcysteine and L-cysteine supplementation should be considered prior to molecular diagnosis, as this is a low-risk approach that may increase survival and mitigate the severity of the disease course.


Asunto(s)
Enfermedad de Leigh/terapia , Fallo Hepático/terapia , Proteínas Mitocondriales/genética , Biosíntesis de Proteínas , ARNt Metiltransferasas/genética , Acetilcisteína/administración & dosificación , Acetilcisteína/metabolismo , Acidosis/genética , Acidosis/metabolismo , Cisteína/administración & dosificación , Cisteína/metabolismo , ADN Mitocondrial/genética , Femenino , Humanos , Lactante , Enfermedad de Leigh/genética , Enfermedad de Leigh/metabolismo , Enfermedad de Leigh/patología , Fallo Hepático/genética , Fallo Hepático/metabolismo , Fallo Hepático/patología , Trasplante de Hígado/métodos , Masculino , Mitocondrias/enzimología , Proteínas Mitocondriales/deficiencia , ARN de Transferencia/genética , ARNt Metiltransferasas/deficiencia
7.
Proc Natl Acad Sci U S A ; 114(21): E4241-E4250, 2017 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-28483998

RESUMEN

The most common pediatric mitochondrial disease is Leigh syndrome, an episodic, subacute neurodegeneration that can lead to death within the first few years of life, for which there are no proven general therapies. Mice lacking the complex I subunit, Ndufs4, develop a fatal progressive encephalopathy resembling Leigh syndrome and die at ≈60 d of age. We previously reported that continuously breathing normobaric 11% O2 from an early age prevents neurological disease and dramatically improves survival in these mice. Here, we report three advances. First, we report updated survival curves and organ pathology in Ndufs4 KO mice exposed to hypoxia or hyperoxia. Whereas normoxia-treated KO mice die from neurodegeneration at about 60 d, hypoxia-treated mice eventually die at about 270 d, likely from cardiac disease, and hyperoxia-treated mice die within days from acute pulmonary edema. Second, we report that more conservative hypoxia regimens, such as continuous normobaric 17% O2 or intermittent hypoxia, are ineffective in preventing neuropathology. Finally, we show that breathing normobaric 11% O2 in mice with late-stage encephalopathy reverses their established neurological disease, evidenced by improved behavior, circulating disease biomarkers, and survival rates. Importantly, the pathognomonic MRI brain lesions and neurohistopathologic findings are reversed after 4 wk of hypoxia. Upon return to normoxia, Ndufs4 KO mice die within days. Future work is required to determine if hypoxia can be used to prevent and reverse neurodegeneration in other animal models, and to determine if it can be provided in a safe and practical manner to allow in-hospital human therapeutic trials.


Asunto(s)
Complejo I de Transporte de Electrón/genética , Hipoxia/metabolismo , Enfermedad de Leigh/patología , Enfermedad de Leigh/terapia , Mitocondrias/patología , Enfermedades Neurodegenerativas/terapia , Animales , Modelos Animales de Enfermedad , Enfermedad de Leigh/mortalidad , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Enfermedades Neurodegenerativas/patología , Oxígeno/uso terapéutico , Respiración
8.
Am J Med Genet A ; 179(5): 803-807, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30848071

RESUMEN

Short chain enoyl-CoA hydratase (SCEH) deficiency leads to a severe form of autosomal recessive Leigh syndrome with inevitable neurological decline and early mortality. SCEH is most notably involved in valine catabolism, a deficiency of which results in various metabolic alterations, including increased levels of the highly reactive metabolite 2-methacrylyl-CoA. With no proven treatments available to date, it has been speculated that patients may respond to a valine restricted diet and/or N-acetylcysteine supplementation, as suggested by early studies of a very similar inborn error of metabolism, 3-hydroxyisobutyryl-CoA hydrolase deficiency. We describe a patient with typical Leigh syndrome clinical findings and identified compound heterozygous variants in ECSH1. Valine-restricted diet was initiated at 6 months of age and N-acetylcysteine supplementation at 9 months with subsequent improvement in growth and slow progress in developmental milestones. However, at 15 months, the patient aspirated during a breakthrough seizure from which he did not recover and died soon after from related complications. This report highlights some of the challenges that remain in the management and treatment of SCEH deficiency, while demonstrating that a valine restricted diet and N-acetylcysteine can be safely administered with the potential for clinical improvement.


Asunto(s)
Enoil-CoA Hidratasa/deficiencia , Genes Recesivos , Predisposición Genética a la Enfermedad , Enfermedad de Leigh/genética , Enfermedad de Leigh/terapia , Manejo de la Enfermedad , Estudios de Asociación Genética , Pruebas Genéticas , Humanos , Lactante , Enfermedad de Leigh/diagnóstico , Masculino , Secuenciación del Exoma
9.
Clin Genet ; 93(6): 1131-1140, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-28905387

RESUMEN

Leigh syndrome (LS) is an inherited mitochondrial encephalopathy associated with gene mutations of oxidative phosphorylation pathway that result in early disability and death in affected young children. Currently, LS is incurable and unresponsive to many treatments, although some case reports indicate that supplements can improve the condition. Many novel therapies are being continuously tested in pre-clinical studies. In this review, we summarize the genetic basis of LS, current treatment, pre-clinical studies in animal models and the management of other mitochondrial diseases. Future therapeutical strategies and challenges are also discussed.


Asunto(s)
Enfermedad de Leigh/terapia , Investigación Biomédica , Predisposición Genética a la Enfermedad , Humanos , Enfermedad de Leigh/genética , Mitocondrias/metabolismo , Enfermedades Mitocondriales/genética
10.
Gene Ther ; 24(10): 661-667, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28753212

RESUMEN

Leigh syndrome (LS) is the most common infantile mitochondrial encephalopathy. No treatment is currently available for this condition. Mice lacking Ndufs4, encoding NADH: ubiquinone oxidoreductase iron-sulfur protein 4 (NDUFS4) recapitulates the main findings of complex I (cI)-related LS, including severe multisystemic cI deficiency and progressive neurodegeneration. In order to develop a gene therapy approach for LS, we used here an AAV2/9 vector carrying the human NDUFS4 coding sequence (hNDUFS4). We administered AAV2/9-hNDUFS4 by intravenous (IV) and/or intracerebroventricular (ICV) routes to either newborn or young Ndufs4-/- mice. We found that IV administration alone was only able to correct the cI deficiency in peripheral organs, whereas ICV administration partially corrected the deficiency in the brain. However, both treatments failed to improve the clinical phenotype or to prolong the lifespan of Ndufs4-/- mice. In contrast, combined IV and ICV treatments resulted, along with increased cI activity, in the amelioration of the rotarod performance and in a significant prolongation of the lifespan. Our results indicate that extraneurological organs have an important role in LS pathogenesis and provide an insight into current limitations of adeno-associated virus (AAV)-mediated gene therapy in multisystem disorders. These findings warrant future investigations to develop new vectors able to efficiently target multiple organs.


Asunto(s)
Dependovirus/genética , Complejo I de Transporte de Electrón/genética , Terapia Genética/métodos , Enfermedad de Leigh/terapia , Animales , Encéfalo/metabolismo , Complejo I de Transporte de Electrón/metabolismo , Vectores Genéticos/genética , Humanos , Inyecciones Intravenosas , Enfermedad de Leigh/genética , Ratones , Ratones Endogámicos C57BL , Fenotipo
11.
Mol Genet Metab ; 117(3): 300-12, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26725255

RESUMEN

Leigh syndrome is a progressive neurodegenerative disorder, affecting 1 in 40,000 live births. Most patients present with symptoms between the ages of three and twelve months, but adult onset Leigh syndrome has also been described. The disease course is characterized by a rapid deterioration of cognitive and motor functions, in most cases resulting in death due to respiratory failure. Despite the high genetic heterogeneity of Leigh syndrome, patients present with identical, symmetrical lesions in the basal ganglia or brainstem on MRI, while additional clinical manifestations and age of onset varies from case to case. To date, mutations in over 60 genes, both nuclear and mitochondrial DNA encoded, have been shown to cause Leigh syndrome, still explaining only half of all cases. In most patients, these mutations directly or indirectly affect the activity of the mitochondrial respiratory chain or pyruvate dehydrogenase complex. Exome sequencing has accelerated the discovery of new genes and pathways involved in Leigh syndrome, providing novel insights into the pathophysiological mechanisms. This is particularly important as no general curative treatment is available for this devastating disorder, although several recent studies imply that early treatment might be beneficial for some patients depending on the gene or process affected. Timely, gene-based personalized treatment may become an important strategy in rare, genetically heterogeneous disorders like Leigh syndrome, stressing the importance of early genetic diagnosis and identification of new genes/pathways. In this review, we provide a comprehensive overview of the most important clinical manifestations and genes/pathways involved in Leigh syndrome, and discuss the current state of therapeutic interventions in patients.


Asunto(s)
ADN Mitocondrial/genética , Enfermedad de Leigh/genética , Enfermedad de Leigh/terapia , Proteínas Mitocondriales/genética , Mutación , Adulto , Encéfalo/fisiopatología , Exoma , Femenino , Heterogeneidad Genética , Humanos , Enfermedad de Leigh/diagnóstico , Enfermedad de Leigh/fisiopatología , Imagen por Resonancia Magnética , Masculino , Atrofias Ópticas Hereditarias/diagnóstico , Atrofias Ópticas Hereditarias/genética , Atrofias Ópticas Hereditarias/fisiopatología , Atrofias Ópticas Hereditarias/terapia
12.
J Neurol Neurosurg Psychiatry ; 85(3): 257-65, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23772060

RESUMEN

Leigh syndrome is a devastating neurodegenerative disease, typically manifesting in infancy or early childhood. However, also late-onset cases have been reported. Since its first description by Denis Archibald Leigh in 1951, it has evolved from a postmortem diagnosis, strictly defined by histopathological observations, to a clinical entity with indicative laboratory and radiological findings. Hallmarks of the disease are symmetrical lesions in the basal ganglia or brain stem on MRI, and a clinical course with rapid deterioration of cognitive and motor functions. Examinations of fresh muscle tissue or cultured fibroblasts are important tools to establish a biochemical and genetic diagnosis. Numerous causative mutations in mitochondrial and nuclear genes, encoding components of the oxidative phosphorylation system have been described in the past years. Moreover, dysfunctions in pyruvate dehydrogenase complex or coenzyme Q10 metabolism may be associated with Leigh syndrome. To date, there is no cure for affected patients, and treatment options are mostly unsatisfactory. Here, we review the most important clinical aspects of Leigh syndrome, and discuss diagnostic steps as well as treatment options.


Asunto(s)
Enfermedad de Leigh/diagnóstico , Adolescente , Adulto , Edad de Inicio , Biopsia , Encéfalo/patología , Niño , Preescolar , ADN Mitocondrial/genética , Diagnóstico Diferencial , Asesoramiento Genético , Humanos , Enfermedad de Leigh/genética , Enfermedad de Leigh/patología , Enfermedad de Leigh/terapia , Imagen por Resonancia Magnética , Músculo Esquelético/patología , Neuroimagen , Adulto Joven
13.
Ideggyogy Sz ; 65(7-8): 229-37, 2012 Jul 30.
Artículo en Húngaro | MEDLINE | ID: mdl-23074842

RESUMEN

Mitochondrial diseases are a significant part of neuromuscular diseases. Majority of them is multisystemic disorder. The diagnosis can be established in more and more cases. Beyond the routine neurological examination imaging methods (MRI and MR-spectroscopy) and electrophysiology (EMG, ENG, EEG, evoked potential tests) might be helpful in setting the diagnosis. Raised blood lactate level supports the diagnosis. Muscle biopsy demonstrates mitochondrial abnormalities in the majority of cases. The positivity of genetic tests is low, because the amount of mitochondrial DNA alterations is different in tissues. Therefore other tissue than blood (mainly muscle) is necessary for genetic tests. The other reason is that the respiratory chain is under double -mitochondrial and nuclear - genetic control, and testing the nuclear genes are available only in selected laboratories. The treatment is limited, mainly symptomatic.


Asunto(s)
Trastornos de los Cromosomas/diagnóstico , Trastornos de los Cromosomas/terapia , Enfermedades Mitocondriales/diagnóstico , Enfermedades Mitocondriales/terapia , Encefalomiopatías Mitocondriales/diagnóstico , Encefalomiopatías Mitocondriales/terapia , ADN Mitocondrial/metabolismo , Genes Dominantes , Genes Recesivos , Pruebas Genéticas , Humanos , Seudoobstrucción Intestinal/diagnóstico , Seudoobstrucción Intestinal/terapia , Síndrome de Kearns-Sayre/diagnóstico , Síndrome de Kearns-Sayre/terapia , Enfermedad de Leigh/diagnóstico , Enfermedad de Leigh/terapia , Síndrome MELAS/diagnóstico , Síndrome MELAS/terapia , Síndrome MERRF/diagnóstico , Síndrome MERRF/terapia , Enfermedades Mitocondriales/clasificación , Enfermedades Mitocondriales/tratamiento farmacológico , Enfermedades Mitocondriales/genética , Miopatías Mitocondriales/diagnóstico , Miopatías Mitocondriales/terapia , Distrofia Muscular Oculofaríngea , Oftalmoplejía/congénito , Oftalmoplejía Externa Progresiva Crónica/diagnóstico , Oftalmoplejía Externa Progresiva Crónica/terapia , Atrofia Óptica Hereditaria de Leber/diagnóstico , Atrofia Óptica Hereditaria de Leber/terapia , Reacción en Cadena de la Polimerasa , Polimorfismo de Longitud del Fragmento de Restricción , Retinitis Pigmentosa/diagnóstico , Retinitis Pigmentosa/terapia
14.
Biosci Rep ; 42(9)2022 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-36093993

RESUMEN

Mitochondrial cytopathies, among which the Leigh syndrome (LS), are caused by variants either in the mitochondrial or the nuclear genome, affecting the oxidative phosphorylation process. The aim of the present study consisted in defining the molecular diagnosis of a group of Tunisian patients with LS. Six children, belonging to five Tunisian families, with clinical and imaging presentations suggestive of LS were recruited. Whole mitochondrial DNA and targeted next-generation sequencing of a panel of 281 nuclear genes involved in mitochondrial physiology were performed. Bioinformatic analyses were achieved in order to identify deleterious variations. A single m.10197G>A (p.Ala47Thr) variant was found in the mitochondrial MT-ND3 gene in one patient, while the others were related to autosomal homozygous variants: two c.1412delA (p.Gln471ArgfsTer42) and c.1264A>G (p.Thr422Ala) in SLC19A3, one c.454C>G (p.Pro152Ala) in SLC25A19 and one c.122G>A (p.Gly41Asp) in ETHE1. Our findings demonstrate the usefulness of genomic investigations to improve LS diagnosis in consanguineous populations and further allow for treating the patients harboring variants in SLC19A3 and SLC25A19 that contribute to thiamine transport, by thiamine and biotin supplementation. Considering the Tunisian genetic background, the newly identified variants could be screened in patients with similar clinical presentation in related populations.


Asunto(s)
Enfermedad de Leigh , Biotina/genética , Niño , ADN Mitocondrial/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Enfermedad de Leigh/diagnóstico , Enfermedad de Leigh/genética , Enfermedad de Leigh/terapia , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana Mitocondrial , Proteínas Mitocondriales/genética , Mutación , Proteínas de Transporte Nucleocitoplasmático/genética , Tiamina
15.
Zhongguo Dang Dai Er Ke Za Zhi ; 13(7): 569-72, 2011 Jul.
Artículo en Zh | MEDLINE | ID: mdl-21752325

RESUMEN

Mitochondrial respiratory chain complex II deficiency is a rare documented cause of mitochondrial diseases. This study reported a case of Leigh syndrome due to isolated complex II deficiency. A boy presented with progressive weakness, motor regression and dysphagia after fever from the age of 8 months and hospitalized at the age of 10 months. Elevated blood levels of lactate and pyruvate were observed. Brain magnetic resonance image showed symmetrical lesions in the basal ganglia. Mitochondrial respiratory chain complex I-V activities in peripheral leukocytes were measured using spectrophotometric assay. Mitochondrial gene screening of common point mutations was performed. The complex II activity in the peripheral leukocytes decreased to 21.9 nmol/min per mg mitochondrial protein (control: 47.3±5.3 nmol/min per mg mitochondrial protein). The ratio of complex II activity to citrate synthase activity (22.1%) also decreased (control: 50.9%±10.7 %). No point mutation was found in mitochondrial DNA. The boy was diagnosed as Leigh syndrome due to isolated complex II deficiency. Psychomotor improvements were observed after the treatment. The patient is 22 months old and in a stable condition.


Asunto(s)
Complejo II de Transporte de Electrones/deficiencia , Enfermedad de Leigh/etiología , Enfermedades Mitocondriales/complicaciones , Diagnóstico Diferencial , Humanos , Lactante , Enfermedad de Leigh/diagnóstico , Enfermedad de Leigh/terapia , Masculino
16.
Ital J Pediatr ; 46(1): 140, 2020 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-32972427

RESUMEN

BACKGROUND: Mitochondrial diseases, also known as oxidative phosphorylation (OXPHOS) disorders, with a prevalence rate of 1:5000, are the most frequent inherited metabolic diseases. Leigh Syndrome French Canadian type (LSFC), is caused by mutations in the nuclear gene (2p16) leucine-rich pentatricopeptide repeat-containing (LRPPRC). It is an autosomal recessive neurogenetic OXPHOS disorder, phenotypically distinct from other types of Leigh syndrome, with a carrier frequency up to 1:23 and an incidence of 1:2063 in the Saguenay-Lac-St Jean region of Quebec. Recently, LSFC has also been reported outside the French-Canadian population. PATIENT PRESENTATION: We report a male Italian (Sicilian) child, born preterm at 28 + 6/7 weeks gestation, carrying a novel LRPPRC compound heterozygous mutation, with facial dysmorphisms, neonatal hypotonia, non-epileptic paroxysmal motor phenomena, and absent sucking-swallowing-breathing coordination requiring, at 4.5 months, a percutaneous endoscopic gastrostomy tube placement. At 5 months brain Magnetic Resonance Imaging showed diffuse cortical atrophy, hypoplasia of corpus callosum, cerebellar vermis hypoplasia, and unfolded hippocampi. Both auditory and visual evoked potentials were pathological. In the following months Video EEG confirmed the persistence of sporadic non epileptic motor phenomena. No episode of metabolic decompensation, acidosis or ketosis, frequently observed in LSFC has been reported. Actually, aged 14 months corrected age for prematurity, the child shows a severe global developmental delay. Metabolic investigations and array Comparative Genomic Hybridization (aCGH) results were normal. Whole-exome sequencing (WES) found a compound heterozygous mutation in the LRPPRC gene, c.1921-7A > G and c.2056A > G (p.Ile686Val), splicing-site and missense variants, inherited from the mother and the father, respectively. CONCLUSIONS: We first characterized the clinical and molecular features of a novel LRPPRC variant in a male Sicilian child with early onset encephalopathy and psychomotor impairment. Our patient showed a phenotype characterized by a severe neurodevelopmental delay and absence of metabolic decompensation attributable to a probable residual enzymatic activity. LRPPRC is a rare cause of metabolic encephalopathy outside of Québec. Our patient adds to and broaden the spectrum of LSFC phenotypes. WES analysis is a pivotal genetic test and should be performed in infants and children with hypotonia and developmental delay in whom metabolic investigations and aCGH are normal.


Asunto(s)
Deficiencia de Citocromo-c Oxidasa/genética , Enfermedad de Leigh/genética , Proteínas de Neoplasias/genética , Hibridación Genómica Comparativa , Deficiencia de Citocromo-c Oxidasa/diagnóstico , Deficiencia de Citocromo-c Oxidasa/terapia , Diagnóstico Diferencial , Humanos , Recién Nacido , Recien Nacido Prematuro , Italia , Enfermedad de Leigh/diagnóstico , Enfermedad de Leigh/terapia , Masculino , Mutación , Fenotipo
17.
Sci Rep ; 10(1): 7511, 2020 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-32371897

RESUMEN

We report on the validation of a mitochondrial gene therapeutic strategy using fibroblasts from a Leigh syndrome patient by the mitochondrial delivery of therapeutic mRNA. The treatment involves delivering normal ND3 protein-encoding mRNA as a therapeutic RNA to mitochondria of the fibroblasts from a patient with a T10158C mutation in the mtDNA coding the ND3 protein, a component of the mitochondrial respiratory chain complex I. The treatment involved the use of a liposome-based carrier (a MITO-Porter) for delivering therapeutic RNA to mitochondria via membrane fusion. The results confirmed that the mitochondrial transfection of therapeutic RNA by the MITO-Porter system resulted in a decrease in the levels of mutant RNA in mitochondria of diseased cells based on reverse transcription quantitative PCR. An evaluation of mitochondrial respiratory activity by respirometry also showed that transfection using the MITO-Porter resulted in an increase in maximal mitochondrial respiratory activity in the diseased cells.


Asunto(s)
Complejo I de Transporte de Electrón/metabolismo , Fibroblastos/metabolismo , Terapia Genética/métodos , Enfermedad de Leigh/genética , Enfermedad de Leigh/terapia , ARN Mitocondrial/uso terapéutico , Genes Mitocondriales , Humanos , Liposomas/metabolismo , Ciencia de los Materiales , Fusión de Membrana , Microscopía Fluorescente , Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , Mutación , ARN Mensajero/metabolismo , Transfección
18.
Pediatr Neurol ; 110: 25-29, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32684373

RESUMEN

MEGDEL syndrome is an autosomal recessive disorder, clinically characterized by 3-methylglutaconic aciduria, psychomotor delay, muscle hypotonia, sensorineural deafness, and Leigh-like lesions on brain magnetic resonance imaging. MEGDEL syndrome is due to mutations in the serine active site-containing protein 1 (SERAC1) gene. The SERAC1 protein is localized at the interface between the mitochondria and the endoplasmic reticulum in the mitochondrion-associated membrane fraction, which is essential for phospholipid exchange. SERAC1 was identified as a key player in phosphatidylglycerol remodeling, which is essential for both mitochondrial function and intracellular cholesterol trafficking. Since the first description of MEGDEL syndrome in 2006, at least 102 patients have been reported. The phenotypic spectrum of MEGDEL syndrome is much broader than so far anticipated. In addition to the brain, ears, and gastrointestinal tract, the eyes, endocrine organs, heart, peripheral nerves, and the skeletal muscle may be affected. Diagnosing MEGDEL syndrome requires a multidisciplinary approach, including genetic confirmation of a SERAC1 mutation. Treatment is supportive, and the outcome is usually poor with early death, except for the juvenile-onset type.


Asunto(s)
Discapacidades del Desarrollo , Pérdida Auditiva Sensorineural , Enfermedad de Leigh , Errores Innatos del Metabolismo , Hipotonía Muscular , Niño , Discapacidades del Desarrollo/diagnóstico , Discapacidades del Desarrollo/genética , Discapacidades del Desarrollo/terapia , Femenino , Pérdida Auditiva Sensorineural/diagnóstico , Pérdida Auditiva Sensorineural/genética , Pérdida Auditiva Sensorineural/terapia , Humanos , Enfermedad de Leigh/diagnóstico , Enfermedad de Leigh/genética , Enfermedad de Leigh/terapia , Masculino , Errores Innatos del Metabolismo/diagnóstico , Errores Innatos del Metabolismo/genética , Errores Innatos del Metabolismo/terapia , Hipotonía Muscular/diagnóstico , Hipotonía Muscular/genética , Hipotonía Muscular/terapia , Síndrome
19.
Genes (Basel) ; 11(2)2020 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-32059522

RESUMEN

Mitochondria are best known for their role in energy production, and they are the only mammalian organelles that contain their own genomes. The mitochondrial genome mutation rate is reported to be 10-17 times higher compared to nuclear genomes as a result of oxidative damage caused by reactive oxygen species during oxidative phosphorylation. Pathogenic mitochondrial DNA mutations result in mitochondrial DNA disorders, which are among the most common inherited human diseases. Interventions of mitochondrial DNA disorders involve either the transfer of viable isolated mitochondria to recipient cells or genetically modifying the mitochondrial genome to improve therapeutic outcome. This review outlines the common mitochondrial DNA disorders and the key advances in the past decade necessary to improve the current knowledge on mitochondrial disease intervention. Although it is now 31 years since the first description of patients with pathogenic mitochondrial DNA was reported, the treatment for mitochondrial disease is often inadequate and mostly palliative. Advancements in diagnostic technology improved the molecular diagnosis of previously unresolved cases, and they provide new insight into the pathogenesis and genetic changes in mitochondrial DNA diseases.


Asunto(s)
ADN Mitocondrial/genética , Edición Génica/métodos , Terapia Genética/métodos , Mitocondrias/genética , Enfermedades Mitocondriales/genética , Acidosis Láctica/congénito , Acidosis Láctica/genética , Acidosis Láctica/metabolismo , Análisis Mutacional de ADN , ADN Mitocondrial/metabolismo , Epilepsias Mioclónicas/congénito , Epilepsias Mioclónicas/genética , Epilepsias Mioclónicas/terapia , Humanos , Enfermedad de Leigh/genética , Enfermedad de Leigh/metabolismo , Enfermedad de Leigh/terapia , Mitocondrias/metabolismo , Mitocondrias/patología , Enfermedades Mitocondriales/metabolismo , Enfermedades Mitocondriales/terapia , Encefalomiopatías Mitocondriales/congénito , Encefalomiopatías Mitocondriales/genética , Encefalomiopatías Mitocondriales/metabolismo , Mutación , Atrofia Óptica Hereditaria de Leber/genética , Atrofia Óptica Hereditaria de Leber/metabolismo
20.
World Neurosurg ; 141: e437-e446, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32474092

RESUMEN

BACKGROUND: The coronavirus 2019 (COVID-19) pandemic has had a dramatic impact on health care systems and a variable disease course. Emerging evidence demonstrates that severe acute respiratory syndrome coronavirus 2 is associated with central nervous system disease. We describe central nervous system manifestations in critical patients with COVID-19 at our tertiary center. METHODS: We conducted a single-center retrospective analysis of all actively critical patients with COVID-19 admitted to our tertiary care academic center in New Orleans, Louisiana, on April 22, 2020, with new onset of neurologic disease. Patients were grouped into 1 of 3 categories according to imaging and clinical features; encephalopathy, acute necrotizing encephalopathy, and vasculopathy. RESULTS: A total of 27 of 76 (35.5%) critical patients with COVID-19 met inclusion criteria. Twenty patients (74%) were designated with COVID-19-associated encephalopathy, 2 (7%) with COVID-19-associated acute necrotizing encephalopathy, and 5 (19%) with COVID-19-associated vasculopathy. Sixty-three percent of neurologic findings were demonstrated on computed tomography, 30% on magnetic resonance imaging, and 44% on electroencephalography. Findings most often included ischemic strokes, diffuse hypoattenuation, subcortical parenchymal hemorrhages, and focal hypodensities within deep structures. Magnetic resonance imaging findings included diffuse involvement of deep white matter, the corpus callosum, and the basal ganglia. For patients with large-territory ischemic stroke, all but one displayed irregular proximal focal stenosis of the supraclinoid internal carotid artery. CONCLUSIONS: Analysis of active critical COVID-19 admissions at our revealed a high percentage of patients with new neurologic disease. Although variable, presentations followed 1 of 3 broad categories. A better understanding of the neurologic sequalae and radiographic findings will help clinicians mitigate the impact of this disease.


Asunto(s)
Encefalopatías/etiología , Trastornos Cerebrovasculares/etiología , Infecciones por Coronavirus/complicaciones , Neumonía Viral/complicaciones , Adulto , Anciano , Anciano de 80 o más Años , Encefalopatías/diagnóstico por imagen , Encefalopatías/terapia , Isquemia Encefálica/diagnóstico por imagen , Isquemia Encefálica/etiología , Isquemia Encefálica/terapia , COVID-19 , Trastornos Cerebrovasculares/diagnóstico por imagen , Trastornos Cerebrovasculares/terapia , Comorbilidad , Infecciones por Coronavirus/diagnóstico por imagen , Cuidados Críticos , Estudios Transversales , Electroencefalografía , Femenino , Humanos , Enfermedad de Leigh/diagnóstico por imagen , Enfermedad de Leigh/etiología , Enfermedad de Leigh/terapia , Louisiana , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Neuroimagen , Pandemias , Neumonía Viral/diagnóstico por imagen , Tomografía Computarizada por Rayos X , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA