Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 354
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
J Inherit Metab Dis ; 44(1): 148-163, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32681750

RESUMEN

Phosphoglucomutase 1 (PGM1) deficiency is a rare genetic disorder that affects glycogen metabolism, glycolysis, and protein glycosylation. Previously known as GSD XIV, it was recently reclassified as a congenital disorder of glycosylation, PGM1-CDG. PGM1-CDG usually manifests as a multisystem disease. Most patients present as infants with cleft palate, liver function abnormalities and hypoglycemia, but some patients present in adulthood with isolated muscle involvement. Some patients develop life-threatening cardiomyopathy. Unlike most other CDG, PGM1-CDG has an effective treatment option, d-galactose, which has been shown to improve many of the patients' symptoms. Therefore, early diagnosis and initiation of treatment for PGM1-CDG patients are crucial decisions. In this article, our group of international experts suggests diagnostic, follow-up, and management guidelines for PGM1-CDG. These guidelines are based on the best available evidence-based data and experts' opinions aiming to provide a practical resource for health care providers to facilitate successful diagnosis and optimal management of PGM1-CDG patients.


Asunto(s)
Manejo de la Enfermedad , Galactosa/uso terapéutico , Enfermedad del Almacenamiento de Glucógeno/diagnóstico , Enfermedad del Almacenamiento de Glucógeno/tratamiento farmacológico , Adulto , Cardiomiopatías/complicaciones , Cardiomiopatías/patología , Fisura del Paladar/complicaciones , Fisura del Paladar/patología , Consenso , Enfermedad del Almacenamiento de Glucógeno/complicaciones , Enfermedad del Almacenamiento de Glucógeno/enzimología , Humanos , Hipoglucemia/complicaciones , Lactante , Cooperación Internacional , Enfermedades Musculares/complicaciones , Enfermedades Musculares/patología
2.
Mol Genet Metab ; 131(1-2): 135-146, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33342467

RESUMEN

Phosphoglucomutase 1 deficiency is a congenital disorder of glycosylation (CDG) with multiorgan involvement affecting carbohydrate metabolism, N-glycosylation and energy production. The metabolic management consists of dietary D-galactose supplementation that ameliorates hypoglycemia, hepatic dysfunction, endocrine anomalies and growth delay. Previous studies suggest that D-galactose administration in juvenile patients leads to more significant and long-lasting effects, stressing the urge of neonatal diagnosis (0-6 months of age). Here, we detail the early clinical presentation of PGM1-CDG in eleven infantile patients, and applied the modified Beutler test for screening of PGM1-CDG in neonatal dried blood spots (DBSs). All eleven infants presented episodic hypoglycemia and elevated transaminases, along with cleft palate and growth delay (10/11), muscle involvement (8/11), neurologic involvement (5/11), cardiac defects (2/11). Standard dietary measures for suspected lactose intolerance in four patients prior to diagnosis led to worsening of hypoglycemia, hepatic failure and recurrent diarrhea, which resolved upon D-galactose supplementation. To investigate possible differences in early vs. late clinical presentation, we performed the first systematic literature review for PGM1-CDG, which highlighted respiratory and gastrointestinal symptoms as significantly more diagnosed in neonatal age. The modified Butler-test successfully identified PGM1-CDG in DBSs from seven patients, including for the first time Guthrie cards from newborn screening, confirming the possibility of future inclusion of PGM1-CDG in neonatal screening programs. In conclusion, severe infantile morbidity of PGM1-CDG due to delayed diagnosis could be prevented by raising awareness on its early presentation and by inclusion in newborn screening programs, enabling early treatments and galactose-based metabolic management.


Asunto(s)
Trastornos Congénitos de Glicosilación/genética , Enfermedad del Almacenamiento de Glucógeno/sangre , Hipoglucemia/genética , Fosfoglucomutasa/sangre , Fisura del Paladar/sangre , Fisura del Paladar/complicaciones , Fisura del Paladar/genética , Trastornos Congénitos de Glicosilación/sangre , Trastornos Congénitos de Glicosilación/complicaciones , Trastornos Congénitos de Glicosilación/enzimología , Pruebas con Sangre Seca , Femenino , Enfermedad del Almacenamiento de Glucógeno/enzimología , Enfermedad del Almacenamiento de Glucógeno/genética , Humanos , Hipoglucemia/sangre , Hipoglucemia/complicaciones , Lactante , Recién Nacido , Masculino , Tamizaje Neonatal , Fenotipo , Fosfoglucomutasa/genética
3.
Biochem J ; 476(21): 3109-3124, 2019 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-31689353

RESUMEN

Although the discovery of glycogen in the liver, attributed to Claude Bernard, happened more than 160 years ago, the mechanism involved in the initiation of glucose polymerization remained unknown. The discovery of glycogenin at the core of glycogen's structure and the initiation of its glucopolymerization is among one of the most exciting and relatively recent findings in Biochemistry. This review focuses on the initial steps leading to the seminal discoveries of proteoglycogen and glycogenin at the beginning of the 1980s, which paved the way for subsequent foundational breakthroughs that propelled forward this new research field. We also explore the current, as well as potential, impact this research field is having on human health and disease from the perspective of glycogen storage diseases. Important new questions arising from recent studies, their links to basic mechanisms involved in the de novo glycogen biogenesis, and the pervading presence of glycogenin across the evolutionary scale, fueled by high throughput -omics technologies, are also addressed.


Asunto(s)
Glucosiltransferasas/metabolismo , Glucógeno/metabolismo , Glicoproteínas/metabolismo , Animales , Glucosa/metabolismo , Glucosiltransferasas/química , Glucosiltransferasas/genética , Glucógeno/química , Enfermedad del Almacenamiento de Glucógeno/enzimología , Enfermedad del Almacenamiento de Glucógeno/genética , Enfermedad del Almacenamiento de Glucógeno/metabolismo , Glicoproteínas/química , Glicoproteínas/genética , Glicosilación , Humanos , Hígado/enzimología , Hígado/metabolismo , Polimerizacion
4.
Int J Mol Sci ; 21(24)2020 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-33348688

RESUMEN

GSD are a group of disorders characterized by a defect in gene expression of specific enzymes involved in glycogen breakdown or synthesis, commonly resulting in the accumulation of glycogen in various tissues (primarily the liver and skeletal muscle). Several different GSD animal models have been found to naturally present spontaneous mutations and others have been developed and characterized in order to further understand the physiopathology of these diseases and as a useful tool to evaluate potential therapeutic strategies. In the present work we have reviewed a total of 42 different animal models of GSD, including 26 genetically modified mouse models, 15 naturally occurring models (encompassing quails, cats, dogs, sheep, cattle and horses), and one genetically modified zebrafish model. To our knowledge, this is the most complete list of GSD animal models ever reviewed. Importantly, when all these animal models are analyzed together, we can observe some common traits, as well as model specific differences, that would be overlooked if each model was only studied in the context of a given GSD.


Asunto(s)
Modelos Animales de Enfermedad , Enfermedad del Almacenamiento de Glucógeno/enzimología , Enfermedad del Almacenamiento de Glucógeno/genética , Animales , Animales Modificados Genéticamente , Gatos , Bovinos , Perros , Glucógeno/metabolismo , Caballos , Humanos , Hígado/metabolismo , Ratones , Músculo Esquelético/metabolismo , Codorniz , Ovinos , Pez Cebra
5.
Biochem J ; 474(20): 3403-3420, 2017 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-28827282

RESUMEN

Glycogen storage disorders (GSDs) are caused by excessive accumulation of glycogen. Some GSDs [adult polyglucosan (PG) body disease (APBD), and Tarui and Lafora diseases] are caused by intracellular accumulation of insoluble inclusions, called PG bodies (PBs), which are chiefly composed of malconstructed glycogen. We developed an APBD patient skin fibroblast cell-based assay for PB identification, where the bodies are identified as amylase-resistant periodic acid-Schiff's-stained structures, and quantified. We screened the DIVERSet CL 10 084 compound library using this assay in high-throughput format and discovered 11 dose-dependent and 8 non-dose-dependent PB-reducing hits. Approximately 70% of the hits appear to act through reducing glycogen synthase (GS) activity, which can elongate glycogen chains and presumably promote PB generation. Some of these GS inhibiting hits were also computationally predicted to be similar to drugs interacting with the GS activator protein phosphatase 1. Our work paves the way to discovering medications for the treatment of PB-involving GSD, which are extremely severe or fatal disorders.


Asunto(s)
Fibroblastos/enzimología , Enfermedad del Almacenamiento de Glucógeno , Glucógeno Sintasa/metabolismo , Enfermedades del Sistema Nervioso , Adulto , Evaluación Preclínica de Medicamentos/métodos , Femenino , Enfermedad del Almacenamiento de Glucógeno/diagnóstico , Enfermedad del Almacenamiento de Glucógeno/tratamiento farmacológico , Enfermedad del Almacenamiento de Glucógeno/enzimología , Humanos , Masculino , Enfermedades del Sistema Nervioso/diagnóstico , Enfermedades del Sistema Nervioso/tratamiento farmacológico , Enfermedades del Sistema Nervioso/enzimología
6.
Hum Mol Genet ; 24(20): 5667-76, 2015 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-26199317

RESUMEN

Glycogen branching enzyme 1 (GBE1) plays an essential role in glycogen biosynthesis by generating α-1,6-glucosidic branches from α-1,4-linked glucose chains, to increase solubility of the glycogen polymer. Mutations in the GBE1 gene lead to the heterogeneous early-onset glycogen storage disorder type IV (GSDIV) or the late-onset adult polyglucosan body disease (APBD). To better understand this essential enzyme, we crystallized human GBE1 in the apo form, and in complex with a tetra- or hepta-saccharide. The GBE1 structure reveals a conserved amylase core that houses the active centre for the branching reaction and harbours almost all GSDIV and APBD mutations. A non-catalytic binding cleft, proximal to the site of the common APBD mutation p.Y329S, was found to bind the tetra- and hepta-saccharides and may represent a higher-affinity site employed to anchor the complex glycogen substrate for the branching reaction. Expression of recombinant GBE1-p.Y329S resulted in drastically reduced protein yield and solubility compared with wild type, suggesting this disease allele causes protein misfolding and may be amenable to small molecule stabilization. To explore this, we generated a structural model of GBE1-p.Y329S and designed peptides ab initio to stabilize the mutation. As proof-of-principle, we evaluated treatment of one tetra-peptide, Leu-Thr-Lys-Glu, in APBD patient cells. We demonstrate intracellular transport of this peptide, its binding and stabilization of GBE1-p.Y329S, and 2-fold increased mutant enzymatic activity compared with untreated patient cells. Together, our data provide the rationale and starting point for the screening of small molecule chaperones, which could become novel therapies for this disease.


Asunto(s)
Sistema de la Enzima Desramificadora del Glucógeno/química , Sistema de la Enzima Desramificadora del Glucógeno/genética , Enfermedad del Almacenamiento de Glucógeno Tipo IV/enzimología , Enfermedad del Almacenamiento de Glucógeno/enzimología , Mutación Missense , Enfermedades del Sistema Nervioso/enzimología , Péptidos/uso terapéutico , Secuencia de Aminoácidos , Biología Computacional , Sistema de la Enzima Desramificadora del Glucógeno/efectos de los fármacos , Sistema de la Enzima Desramificadora del Glucógeno/metabolismo , Enfermedad del Almacenamiento de Glucógeno/tratamiento farmacológico , Enfermedad del Almacenamiento de Glucógeno/genética , Enfermedad del Almacenamiento de Glucógeno Tipo IV/genética , Humanos , Datos de Secuencia Molecular , Enfermedades del Sistema Nervioso/tratamiento farmacológico , Enfermedades del Sistema Nervioso/genética , Estructura Terciaria de Proteína , Alineación de Secuencia
7.
Biochim Biophys Acta Gen Subj ; 1861(1 Pt A): 3388-3398, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27592162

RESUMEN

BACKGROUND: Equine type 1 polysaccharide storage myopathy (PSSM1) is associated with a missense mutation (R309H) in the glycogen synthase (GYS1) gene, enhanced glycogen synthase (GS) activity and excessive glycogen and amylopectate inclusions in muscle. METHODS: Equine muscle biochemical and recombinant enzyme kinetic assays in vitro and homology modelling in silico, were used to investigate the hypothesis that higher GS activity in affected horse muscle is caused by higher GS expression, dysregulation, or constitutive activation via a conformational change. RESULTS: PSSM1-affected horse muscle had significantly higher glycogen content than control horse muscle despite no difference in GS expression. GS activity was significantly higher in muscle from homozygous mutants than from heterozygote and control horses, in the absence and presence of the allosteric regulator, glucose 6 phosphate (G6P). Muscle from homozygous mutant horses also had significantly increased GS phosphorylation at sites 2+2a and significantly higher AMPKα1 (an upstream kinase) expression than controls, likely reflecting a physiological attempt to reduce GS enzyme activity. Recombinant mutant GS was highly active with a considerably lower Km for UDP-glucose, in the presence and absence of G6P, when compared to wild type GS, and despite its phosphorylation. CONCLUSIONS: Elevated activity of the mutant enzyme is associated with ineffective regulation via phosphorylation rendering it constitutively active. Modelling suggested that the mutation disrupts a salt bridge that normally stabilises the basal state, shifting the equilibrium to the enzyme's active state. GENERAL SIGNIFICANCE: This study explains the gain of function pathogenesis in this highly prevalent polyglucosan myopathy.


Asunto(s)
Enfermedad del Almacenamiento de Glucógeno/enzimología , Enfermedad del Almacenamiento de Glucógeno/epidemiología , Glucógeno Sintasa/genética , Caballos/metabolismo , Mutación/genética , Adenilato Quinasa/metabolismo , Secuencia de Aminoácidos , Animales , Western Blotting , Cruzamiento , Activación Enzimática , Transportador de Glucosa de Tipo 4/metabolismo , Glucosa-6-Fosfato/metabolismo , Glucógeno/metabolismo , Glucógeno Sintasa/química , Glucógeno Sintasa/metabolismo , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Cinética , Modelos Moleculares , Músculo Esquelético/enzimología , Proteínas Mutantes/metabolismo , Fosforilación , Prevalencia , Subunidades de Proteína/metabolismo , Homología Estructural de Proteína , Uridina Difosfato Glucosa/metabolismo
8.
Biochim Biophys Acta ; 1852(4): 615-21, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24997454

RESUMEN

Metabolic myopathies are disorders of utilization of carbohydrates or fat in muscles. The acute nature of energy failure is manifested either by a metabolic crisis with weakness, sometimes associated with respiratory failure, or by myoglobinuria. A typical disorder where permanent weakness occurs is glycogenosis type II (GSDII or Pompe disease) both in infantile and late-onset forms, where respiratory insufficiency is manifested by a large number of cases. In GSDII the pathogenetic mechanism is still poorly understood, and has to be attributed more to structural muscle alterations, possibly in correlation to macro-autophagy, rather than to energetic failure. This review is focused on recent advances about GSDII and its treatment, and the most recent notions about the management and treatment of other metabolic myopathies will be briefly reviewed, including glycogenosis type V (McArdle disease), glycogenosis type III (debrancher enzyme deficiency or Cori disease), CPT-II deficiency, and ETF-dehydrogenase deficiency (also known as riboflavin-responsive multiple acyl-CoA dehydrogenase deficiency or RR-MADD). The discovery of the genetic defect in ETF dehydrogenase confirms the etiology of this syndrome. Other metabolic myopathies with massive lipid storage and weakness are carnitine deficiency, neutral lipid storage-myopathy (NLSD-M), besides RR-MADD. Enzyme replacement therapy is presented with critical consideration and for each of the lipid storage disorders, representative cases and their response to therapy is included. This article is part of a Special Issue entitled: Neuromuscular Diseases: Pathology and Molecular Pathogenesis.


Asunto(s)
Flavoproteínas Transportadoras de Electrones/deficiencia , Terapia de Reemplazo Enzimático , Enfermedad del Almacenamiento de Glucógeno , Proteínas Hierro-Azufre/deficiencia , Errores Innatos del Metabolismo Lipídico , Enfermedades Musculares , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH/deficiencia , Animales , Enfermedad del Almacenamiento de Glucógeno/enzimología , Enfermedad del Almacenamiento de Glucógeno/genética , Enfermedad del Almacenamiento de Glucógeno/patología , Enfermedad del Almacenamiento de Glucógeno/terapia , Humanos , Errores Innatos del Metabolismo Lipídico/enzimología , Errores Innatos del Metabolismo Lipídico/genética , Errores Innatos del Metabolismo Lipídico/patología , Errores Innatos del Metabolismo Lipídico/terapia , Enfermedades Musculares/enzimología , Enfermedades Musculares/genética , Enfermedades Musculares/patología , Enfermedades Musculares/terapia
9.
J Pediatr ; 175: 130-136.e8, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27206562

RESUMEN

OBJECTIVE: To define phenotypic groups and identify predictors of disease severity in patients with phosphoglucomutase-1 deficiency (PGM1-CDG). STUDY DESIGN: We evaluated 27 patients with PGM1-CDG who were divided into 3 phenotypic groups, and group assignment was validated by a scoring system, the Tulane PGM1-CDG Rating Scale (TPCRS). This scale evaluates measurable clinical features of PGM1-CDG. We examined the relationship between genotype, enzyme activity, and TPCRS score by using regression analysis. Associations between the most common clinical features and disease severity were evaluated by principal component analysis. RESULTS: We found a statistically significant stratification of the TPCRS scores among the phenotypic groups (P < .001). Regression analysis showed that there is no significant correlation between genotype, enzyme activity, and TPCRS score. Principal component analysis identified 5 variables that contributed to 54% variance in the cohort and are predictive of disease severity: congenital malformation, cardiac involvement, endocrine deficiency, myopathy, and growth. CONCLUSIONS: We established a scoring algorithm to reliably evaluate disease severity in patients with PGM1-CDG on the basis of their clinical history and presentation. We also identified 5 clinical features that are predictors of disease severity; 2 of these features can be evaluated by physical examination, without the need for specific diagnostic testing and thus allow for rapid assessment and initiation of therapy.


Asunto(s)
Enfermedad del Almacenamiento de Glucógeno/diagnóstico , Fenotipo , Índice de Severidad de la Enfermedad , Adolescente , Adulto , Algoritmos , Niño , Preescolar , Femenino , Marcadores Genéticos , Genotipo , Enfermedad del Almacenamiento de Glucógeno/enzimología , Enfermedad del Almacenamiento de Glucógeno/genética , Humanos , Masculino , Mutación , Fosfoglucomutasa/deficiencia , Fosfoglucomutasa/genética , Examen Físico , Análisis de Componente Principal , Análisis de Regresión , Adulto Joven
10.
J Biol Chem ; 289(46): 32010-32019, 2014 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-25288802

RESUMEN

Recent studies have identified phosphoglucomutase 1 (PGM1) deficiency as an inherited metabolic disorder in humans. Affected patients show multiple disease phenotypes, including dilated cardiomyopathy, exercise intolerance, and hepatopathy, reflecting the central role of the enzyme in glucose metabolism. We present here the first in vitro biochemical characterization of 13 missense mutations involved in PGM1 deficiency. The biochemical phenotypes of the PGM1 mutants cluster into two groups: those with compromised catalysis and those with possible folding defects. Relative to the recombinant wild-type enzyme, certain missense mutants show greatly decreased expression of soluble protein and/or increased aggregation. In contrast, other missense variants are well behaved in solution, but show dramatic reductions in enzyme activity, with kcat/Km often <1.5% of wild-type. Modest changes in protein conformation and flexibility are also apparent in some of the catalytically impaired variants. In the case of the G291R mutant, severely compromised activity is linked to the inability of a key active site serine to be phosphorylated, a prerequisite for catalysis. Our results complement previous in vivo studies, which suggest that both protein misfolding and catalytic impairment may play a role in PGM1 deficiency.


Asunto(s)
Enfermedad del Almacenamiento de Glucógeno/genética , Mutación Missense , Fosfoglucomutasa/química , Fosfoglucomutasa/genética , Catálisis , Dominio Catalítico , Dicroismo Circular , Glucosa/química , Enfermedad del Almacenamiento de Glucógeno/enzimología , Humanos , Cinética , Luz , Fenotipo , Fosforilación , Conformación Proteica , Desnaturalización Proteica , Pliegue de Proteína , Proteínas Recombinantes/química , Dispersión de Radiación
11.
J Inherit Metab Dis ; 38(2): 243-56, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25168163

RESUMEN

Recent studies have identified phosphoglucomutase 1 (PGM1) deficiency as an inherited metabolic disorder in humans. PGM1 deficiency is classified as both a muscle glycogenosis (type XIV) and a congenital disorder of glycosylation of types I and II. Affected patients show multiple disease phenotypes, reflecting the central role of the enzyme in glucose homeostasis, where it catalyzes the interconversion of glucose 1-phosphate and glucose 6-phosphate. The influence of PGM1 deficiency on protein glycosylation patterns is also widespread, affecting both biosynthesis and processing of glycans and their precursors. To date, 21 different mutations involved in PGM1 deficiency have been identified, including 13 missense mutations resulting in single amino acid changes. Growing clinical interest in PGM1 deficiency prompts a review of the molecular context of these mutations in the three-dimensional structure of the protein. Here the known crystal structure of PGM from rabbit (97 % sequence identity to human) is used to analyze the mutations associated with disease and find that many map to regions with clear significance to enzyme function. In particular, amino acids in and around the active site cleft are frequently involved, including regions responsible for catalysis, binding of the metal ion required for activity, and interactions with the phosphosugar substrate. Several of the known mutations, however, are distant from the active site and appear to manifest their effects indirectly. An understanding of how the different mutations that cause PGM1 deficiency affect enzyme structure and function is foundational to providing clinical prognosis and the development of effective treatment strategies.


Asunto(s)
Enfermedad del Almacenamiento de Glucógeno/genética , Mutación Missense , Fosfoglucomutasa/genética , Secuencia de Aminoácidos , Animales , Dominio Catalítico , Predisposición Genética a la Enfermedad , Enfermedad del Almacenamiento de Glucógeno/diagnóstico , Enfermedad del Almacenamiento de Glucógeno/enzimología , Glicosilación , Herencia , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Fenotipo , Fosfoglucomutasa/química , Fosfoglucomutasa/deficiencia , Conformación Proteica , Procesamiento Proteico-Postraduccional , Conejos , Relación Estructura-Actividad , Especificidad por Sustrato
12.
BMC Evol Biol ; 14: 183, 2014 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-25148856

RESUMEN

BACKGROUND: Branched polymers of glucose are universally used for energy storage in cells, taking the form of glycogen in animals, fungi, Bacteria, and Archaea, and of amylopectin in plants. Some enzymes involved in glycogen and amylopectin metabolism are similarly conserved in all forms of life, but some, interestingly, are not. In this paper we focus on the phylogeny of glycogen branching and debranching enzymes, respectively involved in introducing and removing of the α(1-6) bonds in glucose polymers, bonds that provide the unique branching structure to glucose polymers. RESULTS: We performed a large-scale phylogenomic analysis of branching and debranching enzymes in over 400 completely sequenced genomes, including more than 200 from eukaryotes. We show that branching and debranching enzymes can be found in all kingdoms of life, including all major groups of eukaryotes, and thus were likely to have been present in the last universal common ancestor (LUCA) but have been lost in seemingly random fashion in numerous single-celled eukaryotes. We also show how animal branching and debranching enzymes evolved from their LUCA ancestors by acquiring additional domains. Furthermore, we show that enzymes commonly perceived as orthologous, such as human branching enzyme GBE1 and E. coli branching enzyme GlgB, are in fact related by a gene duplication and consequently paralogous. CONCLUSIONS: Despite being usually associated with animal liver glycogen and plant starch, energy storage in the form of branched glucose polymers is clearly an ancient process and has probably been present in the last universal common ancestor of all present life. The evolution of the enzymes enabling this form of energy storage is more complex than previously thought and illustrates the need for explicit phylogenomic analysis in the study of even seemingly "simple" metabolic enzymes. Patterns of conservation in the evolution of the glycogen/starch branching and debranching enzymes hint at some as yet unknown mechanisms, as mutations disrupting these patterns lead to a variety of genetic diseases in humans and other mammals.


Asunto(s)
Enzima Ramificadora de 1,4-alfa-Glucano/genética , Evolución Molecular , Filogenia , Animales , Bacterias/genética , Eucariontes/clasificación , Eucariontes/enzimología , Eucariontes/metabolismo , Glucógeno/metabolismo , Enfermedad del Almacenamiento de Glucógeno/enzimología , Humanos , Plantas/enzimología , Plantas/genética , Almidón/metabolismo
13.
Ann Neurol ; 74(6): 914-9, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23798481

RESUMEN

Glycogen storage diseases are important causes of myopathy and cardiomyopathy. We describe 10 patients from 8 families with childhood or juvenile onset of myopathy, 8 of whom also had rapidly progressive cardiomyopathy, requiring heart transplant in 4. The patients were homozygous or compound heterozygous for missense or truncating mutations in RBCK1, which encodes for a ubiquitin ligase, and had extensive polyglucosan accumulation in skeletal muscle and in the heart in cases of cardiomyopathy. We conclude that RBCK1 deficiency is a frequent cause of polyglucosan storage myopathy associated with progressive muscle weakness and cardiomyopathy.


Asunto(s)
Enfermedad del Almacenamiento de Glucógeno/enzimología , Enfermedad del Almacenamiento de Glucógeno/genética , Enfermedades Musculares/enzimología , Enfermedades Musculares/genética , Enfermedades del Sistema Nervioso/enzimología , Enfermedades del Sistema Nervioso/genética , Factores de Transcripción/deficiencia , Ubiquitina/genética , Adolescente , Adulto , Cardiomiopatías/enzimología , Cardiomiopatías/etiología , Cardiomiopatías/genética , Femenino , Genoma Humano , Enfermedad del Almacenamiento de Glucógeno/complicaciones , Humanos , Masculino , Persona de Mediana Edad , Debilidad Muscular/enzimología , Debilidad Muscular/etiología , Debilidad Muscular/genética , Enfermedades Musculares/etiología , Mutación Missense/genética , Enfermedades del Sistema Nervioso/complicaciones , Ubiquitina-Proteína Ligasas , Adulto Joven
14.
J Inherit Metab Dis ; 35(2): 311-6, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21687968

RESUMEN

A high performance liquid chromatography method, adapted from an established urinary sugars method, has been developed for the analysis of a tetraglucose oligomer (Glc(4)) in urine. Pompe disease results from defects in the activity of lysosomal acid α-glucosidase (GAA) with patients typically excreting increased amounts of Glc(4). Rapid determination of GAA in dried blood spots is now possible. However, enzymatic analysis is unable to discriminate between patients with Pompe disease and those individuals harbouring pseudo deficiency mutations. This method was able to quantify Glc(4) levels in all patients analysed with an established diagnosis of Pompe disease, and all controls analysed had Glc(4) levels below the limit of detection for this method. Importantly the method was able to discriminate between an individual known to harbour a pseudo Pompe mutation and patients with Pompe disease, providing a useful supporting test to enzymatic analysis. Sequential measurement of urinary Glc(4) has been proposed to monitor the effects of enzyme replacement therapy (ERT). We observed a clear decrease in Glc(4) levels following commencement of treatment in three patients studied. Additionally, raised levels of Glc(4) were observed in patients with glycogen storage disease (GSD) type Ia and type III suggesting that this method may have applications in other GSDs.


Asunto(s)
Enfermedad del Almacenamiento de Glucógeno Tipo II/orina , Enfermedad del Almacenamiento de Glucógeno/orina , Oligosacáridos/orina , Biomarcadores/sangre , Biomarcadores/orina , Niño , Preescolar , Cromatografía Líquida de Alta Presión/métodos , Terapia de Reemplazo Enzimático/métodos , Femenino , Enfermedad del Almacenamiento de Glucógeno/sangre , Enfermedad del Almacenamiento de Glucógeno/diagnóstico , Enfermedad del Almacenamiento de Glucógeno/enzimología , Enfermedad del Almacenamiento de Glucógeno Tipo II/sangre , Enfermedad del Almacenamiento de Glucógeno Tipo II/diagnóstico , Enfermedad del Almacenamiento de Glucógeno Tipo II/enzimología , Humanos , Lactante , Masculino , Persona de Mediana Edad , Oligosacáridos/sangre , Oligosacáridos/genética
15.
J Biol Chem ; 285(17): 12851-61, 2010 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-20178984

RESUMEN

Conversion to glycogen is a major fate of ingested glucose in the body. A rate-limiting enzyme in the synthesis of glycogen is glycogen synthase encoded by two genes, GYS1, expressed in muscle and other tissues, and GYS2, primarily expressed in liver (liver glycogen synthase). Defects in GYS2 cause the inherited monogenic disease glycogen storage disease 0. We have generated mice with a liver-specific disruption of the Gys2 gene (liver glycogen synthase knock-out (LGSKO) mice), using Lox-P/Cre technology. Conditional mice carrying floxed Gys2 were crossed with mice expressing Cre recombinase under the albumin promoter. The resulting LGSKO mice are viable, develop liver glycogen synthase deficiency, and have a 95% reduction in fed liver glycogen content. They have mild hypoglycemia but dispose glucose less well in a glucose tolerance test. Fed, LGSKO mice also have a reduced capacity for exhaustive exercise compared with mice carrying floxed alleles, but the difference disappears after an overnight fast. Upon fasting, LGSKO mice reach within 4 h decreased blood glucose levels attained by control floxed mice only after 24 h of food deprivation. The LGSKO mice maintain this low blood glucose for at least 24 h. Basal gluconeogenesis is increased in LGSKO mice, and insulin suppression of endogenous glucose production is impaired as assessed by euglycemic-hyperinsulinemic clamp. This observation correlates with an increase in the liver gluconeogenic enzyme phosphoenolpyruvate carboxykinase expression and activity. This mouse model mimics the pathophysiology of glycogen storage disease 0 patients and highlights the importance of liver glycogen stores in whole body glucose homeostasis.


Asunto(s)
Ayuno , Enfermedad del Almacenamiento de Glucógeno/enzimología , Glucógeno Sintasa/metabolismo , Hígado/enzimología , Animales , Glucemia/genética , Glucemia/metabolismo , Cruzamientos Genéticos , Gluconeogénesis/genética , Técnica de Clampeo de la Glucosa/métodos , Prueba de Tolerancia a la Glucosa , Glucógeno/genética , Glucógeno/metabolismo , Enfermedad del Almacenamiento de Glucógeno/genética , Glucógeno Sintasa/genética , Hipoglucemia/genética , Hipoglucemia/metabolismo , Ratones , Ratones Noqueados , Especificidad de Órganos , Factores de Tiempo
16.
Mol Genet Metab ; 102(2): 222-5, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21131218

RESUMEN

The diagnosis of glycogen storage disease (GSD) type IX is often complicated by the complexity of the phosphorylase kinase enzyme (PHK), and molecular analysis is the preferred way to provide definitive diagnosis. Here we reported two novel mutations found in two GSD type IX patients with different residual enzyme activities from Hong Kong, China using genetic analysis and, provided the molecular interpretation of the deficient PHK activity. These two newly described mutations would be useful for the study of future GSD patients.


Asunto(s)
Enfermedad del Almacenamiento de Glucógeno/genética , Mutación , Fosforilasa Quinasa/genética , Secuencia de Aminoácidos , Secuencia de Bases , Niño , Preescolar , Orden Génico , Enfermedad del Almacenamiento de Glucógeno/enzimología , Hong Kong , Humanos , Hígado/diagnóstico por imagen , Hígado/patología , Masculino , Ultrasonografía
17.
Mol Genet Metab ; 104(1-2): 137-43, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21646031

RESUMEN

Glycogen storage disease (GSD) due to a deficient hepatic phosphorylase system defines a genetically heterogeneous group of disorders that mainly manifests in children. We investigated 45 unrelated children in whom a liver GSD VI or IX was suspected on the basis of clinical symptoms including hepatomegaly, increased serum transaminases, postprandial lactatemia and/or mild fasting hypoglycemia. Liver phosphorylase and phosphorylase b kinase activities studied in peripheral blood cells allowed to suspect diagnosis in 37 cases but was uninformative in 5. Sequencing of liver phosphorylase genes was useful to establish an accurate diagnosis. Causative mutations were found either in the PYGL (11 patients), PHKA2 (26 patients), PHKG2 (three patients) or in the PHKB (three patients) genes. Eleven novel disease causative mutations, five missense (p.N188K, p.D228Y, p.P382L, p.R491H, p.L500R) and six truncating mutations (c.501_502ins361pb, c.528+2T>C, c.856-29_c.1518+614del, c.1620+1G>C, p.E703del and c.2313-1G>T) were identified in the PYGL gene. Seventeen novel disease causative mutations, ten missense (p.A42P, p.Q95R, p.G131D, p.G131V, p.Q134R, p.G187R, p.G300V, p.G300A, p.C326Y, p.W820G) and seven truncating (c.537+5G>A, p.G396DfsX28, p.Q404X, p.N653X, p.L855PfsX87, and two large deletions) were identified in the PHKA2 gene. Four novel truncating mutations (p.R168X, p.Q287X, p.I268PfsX12 and c.272-1G>C) were identified in the PHKG2 gene and three (c.573_577del, p.R364X, c.2427+3A>G) in the PHKB gene. Patients with PHKG2 mutations evolved towards cirrhosis. Molecular analysis of GSD VI or IX genes allows to confirm diagnosis suspected on the basis of enzymatic analysis and to establish diagnosis and avoid liver biopsy when enzymatic studies are not informative in blood cells.


Asunto(s)
Enfermedad del Almacenamiento de Glucógeno/sangre , Enfermedad del Almacenamiento de Glucógeno/diagnóstico , Hígado/enzimología , Hígado/patología , Fosforilasa Quinasa/deficiencia , Fosforilasas/deficiencia , Preescolar , Femenino , Estudios de Asociación Genética , Enfermedad del Almacenamiento de Glucógeno/enzimología , Enfermedad del Almacenamiento de Glucógeno/genética , Humanos , Lactante , Masculino , Mutación/genética , Fosforilasa Quinasa/genética , Fosforilasas/genética
18.
Biochem J ; 432(2): 249-54, 2010 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-20854262

RESUMEN

GSD-1 (glycogen storage disease type 1) is caused by an inherited defect in glucose-6-phosphatase activity, resulting in a massive accumulation of hepatic glycogen content and an induction of de novo lipogenesis. The chlorogenic acid derivative S4048 is a pharmacological inhibitor of the glucose 6-phosphate transporter, which is part of glucose-6-phosphatase, and allows for mechanistic studies concerning metabolic defects in GSD-1. Treatment of mice with S4048 resulted in an ~60% reduction in blood glucose, increased hepatic glycogen and triacylglycerol (triglyceride) content, and a markedly enhanced hepatic lipogenic gene expression. In mammals, hepatic expression of lipogenic genes is regulated by the co-ordinated action of the transcription factors SREBP (sterol-regulatory-element-binding protein)-1c, LXRα (liver X receptor α) and ChREBP (carbohydrate-response-element-binding protein). Treatment of Lxra-/- mice and Chrebp-/- mice with S4048 demonstrated that ChREBP, but not LXRα, mediates the induction of hepatic lipogenic gene expression in this murine model of GSD-1. Thus ChREBP is an attractive target to alleviate derangements in lipid metabolism observed in patients with GSD-1.


Asunto(s)
Regulación de la Expresión Génica , Enfermedad del Almacenamiento de Glucógeno/genética , Proteínas Nucleares/deficiencia , Factores de Transcripción/deficiencia , Animales , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice , Colesterol/metabolismo , Modelos Animales de Enfermedad , Glucosa-6-Fosfatasa/efectos adversos , Glucosa-6-Fosfatasa/genética , Glucosa-6-Fosfatasa/metabolismo , Enfermedad del Almacenamiento de Glucógeno/enzimología , Enfermedad del Almacenamiento de Glucógeno/metabolismo , Humanos , Imidazoles/administración & dosificación , Imidazoles/farmacología , Hígado/enzimología , Hígado/metabolismo , Glucógeno Hepático/metabolismo , Receptores X del Hígado , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Receptores Nucleares Huérfanos/deficiencia , Receptores Nucleares Huérfanos/genética , Receptores Nucleares Huérfanos/metabolismo , Piridinas/administración & dosificación , Piridinas/farmacología , ARN/genética , ARN/aislamiento & purificación , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Triglicéridos/metabolismo
19.
Ultrastruct Pathol ; 35(5): 183-96, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21910565

RESUMEN

Glycogen storage diseases (GSD) affect primarily the liver, skeletal muscle, heart, and sometimes the central nervous system and the kidneys. These unique diseases are quite varied in age of onset of symptoms, morbidity, and mortality. Glycogen storage diseases are classified according to their individual enzyme deficiency. Each of these enzymes regulates synthesis or degradation of glycogen. Interestingly, there is great phenotypic variation and variable clinical courses even when a specific enzyme is altered by mutation. Depending on the specific mutation in an enzyme, a GSD patient may have a favorable or unfavorable prognosis. With neonatal or infantile forms, some GSDs lead to death within the first year of life, whereas other glycogen storage diseases are relatively asymptomatic or may cause only exercise intolerance. The paper provides a brief review and update of glycogen storage diseases, with respect to clinical features, genetic abnormalities, pathologic features, and treatment.


Asunto(s)
Enfermedad del Almacenamiento de Glucógeno/diagnóstico , Glucógeno/metabolismo , Animales , Modelos Animales de Enfermedad , Glucógeno/ultraestructura , Enfermedad del Almacenamiento de Glucógeno/enzimología , Enfermedad del Almacenamiento de Glucógeno/genética , Enfermedad del Almacenamiento de Glucógeno/terapia , Hepatocitos/metabolismo , Hepatocitos/ultraestructura , Humanos , Lactante , Recién Nacido , Hígado/patología , Microscopía Electrónica de Transmisión , Diagnóstico Prenatal
20.
Biochimie ; 183: 44-48, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32898648

RESUMEN

Once experimentally prohibitive, structural studies of individual missense variants in proteins are increasingly feasible, and can provide a new level of insight into human genetic disease. One example of this is the recently identified inborn error of metabolism known as phosphoglucomutase-1 (PGM1) deficiency. Just as different variants of a protein can produce different patient phenotypes, they may also produce distinct biochemical phenotypes, affecting properties such as catalytic activity, protein stability, or 3D structure/dynamics. Experimental studies of missense variants, and particularly structural characterization, can reveal details of the underlying biochemical pathomechanisms of missense variants. Here, we review four examples of enzyme dysfunction observed in disease-related variants of PGM1. These studies are based on 11 crystal structures of wild-type (WT) and mutant enzymes, and multiple biochemical assays. Lessons learned include the value of comparing mutant and WT structures, synergy between structural and biochemical studies, and the rich understanding of molecular pathomechanism provided by experimental characterization relative to the use of predictive algorithms. We further note functional insights into the WT enzyme that can be gained from the study of pathogenic variants.


Asunto(s)
Enfermedad del Almacenamiento de Glucógeno , Fosfoglucomutasa , Cristalografía por Rayos X , Enfermedad del Almacenamiento de Glucógeno/enzimología , Enfermedad del Almacenamiento de Glucógeno/genética , Humanos , Mutación , Fosfoglucomutasa/química , Fosfoglucomutasa/genética , Fosfoglucomutasa/metabolismo , Dominios Proteicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA