Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 531
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
J Neurovirol ; 30(1): 86-99, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38453879

RESUMEN

Simian varicella virus (SVV) produces peripheral inflammatory responses during varicella (primary infection) and zoster (reactivation) in rhesus macaques (RM). However, it is unclear if peripheral measures are accurate proxies for central nervous system (CNS) responses. Thus, we analyzed cytokine and Aß42/Aß40 changes in paired serum and cerebrospinal fluid (CSF) during the course of infection. During varicella and zoster, every RM had variable changes in serum and CSF cytokine and Aß42/Aß40 levels compared to pre-inoculation levels. Overall, peripheral infection appears to affect CNS cytokine and Aß42/Aß40 levels independent of serum responses, suggesting that peripheral disease may contribute to CNS disease.


Asunto(s)
Péptidos beta-Amiloides , Citocinas , Macaca mulatta , Animales , Péptidos beta-Amiloides/líquido cefalorraquídeo , Péptidos beta-Amiloides/sangre , Citocinas/líquido cefalorraquídeo , Citocinas/sangre , Activación Viral , Fragmentos de Péptidos/líquido cefalorraquídeo , Fragmentos de Péptidos/sangre , Varicellovirus/genética , Varicellovirus/inmunología , Herpesvirus Humano 3/patogenicidad , Herpesvirus Humano 3/inmunología , Infecciones por Herpesviridae/líquido cefalorraquídeo , Infecciones por Herpesviridae/virología , Infecciones por Herpesviridae/sangre , Infecciones por Herpesviridae/inmunología , Masculino , Herpes Zóster/líquido cefalorraquídeo , Herpes Zóster/virología , Herpes Zóster/sangre , Herpes Zóster/inmunología , Enfermedades de los Monos/virología , Enfermedades de los Monos/líquido cefalorraquídeo , Enfermedades de los Monos/sangre
2.
J Med Primatol ; 53(4): e12728, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39148335

RESUMEN

BACKGROUND: Oral focal epithelial hyperplasia (FEH) is an uncommon infection affecting humans, chimpanzees, bonobos, and howler monkeys. This study describes 10 cases of free-ranging brown howler monkeys (Alouatta guariba clamitans) diagnosed with FEH and Alouatta guariba Papillomavirus 1 (AgPV 1). METHODS: We analyzed demographic characteristics, rescue conditions, clinical and pathological findings, and species-specific behavior factors in these cases. The study assessed the frequency of occurrence and potential contributing factors of FEH and AgPV 1 infection. RESULTS: The frequency of FEH was 8.13%. Most affected howlers were adult or geriatric males with comorbidities or stressful conditions. Clinical and pathological observations were consistent with AgPV 1 infection. Species-specific behaviors and environmental stressors were identified as contributing factors. CONCLUSIONS: FEH associated with AgPV 1 affected mainly adult or geriatric males with ongoing comorbidities or stressful conditions. Further research is needed to understand these factors for effective management.


Asunto(s)
Alouatta , Hiperplasia Epitelial Focal , Enfermedades de los Monos , Animales , Alouatta/virología , Masculino , Enfermedades de los Monos/epidemiología , Enfermedades de los Monos/virología , Enfermedades de los Monos/patología , Femenino , Hiperplasia Epitelial Focal/epidemiología , Hiperplasia Epitelial Focal/virología , Hiperplasia Epitelial Focal/veterinaria , Hiperplasia Epitelial Focal/patología , Infecciones por Papillomavirus/veterinaria , Infecciones por Papillomavirus/epidemiología , Infecciones por Papillomavirus/virología , Papillomaviridae/aislamiento & purificación
3.
J Med Primatol ; 53(4): e12726, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39073161

RESUMEN

Historically, to generate Simian Retrovirus (SRV) positive control materials, we performed in vivo passage by inoculating uninfected rhesus macaques with whole blood from an SRV-1 infected (antibody and PCR positive) macaque. However, recent attempts using this approach have failed. This study reports observations and explores why it has become more difficult to transmit SRV via in vivo passage.


Asunto(s)
Macaca mulatta , Enfermedades de los Monos , Infecciones por Retroviridae , Retrovirus de los Simios , Animales , Macaca mulatta/virología , Retrovirus de los Simios/aislamiento & purificación , Retrovirus de los Simios/fisiología , Infecciones por Retroviridae/veterinaria , Infecciones por Retroviridae/transmisión , Infecciones por Retroviridae/virología , Enfermedades de los Monos/virología , Enfermedades de los Monos/transmisión , Infecciones Tumorales por Virus/veterinaria , Infecciones Tumorales por Virus/virología , Infecciones Tumorales por Virus/transmisión
4.
J Med Primatol ; 53(3): e12717, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38853391

RESUMEN

BACKGROUND: Oral cavity squamous cell carcinomas (OCSCCs) are relatively common in multiple non-human primate species but are poorly documented in Goeldi's monkeys. METHODS: Four Goeldi's monkeys with OCSCC, from three zoological collections, underwent necropsy with cytology, histopathology, immunohistochemistry, and pan-herpesvirus PCR analysis. RESULTS: All animals were euthanised and exhibited poor-to-emaciated body condition. Three OCSCCs arose from the maxillary oral mucosa and a single OCSCC was primarily mandibular, with bone invasion evident in three cases. Histologically, one OCSCC in situ was diagnosed, whilst the rest were typically invasive OCSCCs. Neoplastic cells were immunopositive for pancytokeratin and E-cadherin. All examined cases were negative for regional lymph node (RLN) and/or distant metastases, cyclooxygenase-2 (COX-2) immunoexpression, and panherpesvirus PCR expression. CONCLUSIONS: OCSCCs in Goeldi's monkeys may be deeply invasive, but not readily metastatic. No herpesvirus-association or COX-2 expression was evident; the latter suggesting that NSAIDs are unlikely to be a viable chemotherapeutic treatment.


Asunto(s)
Animales de Zoológico , Carcinoma de Células Escamosas , Enfermedades de los Monos , Neoplasias de la Boca , Animales , Carcinoma de Células Escamosas/veterinaria , Carcinoma de Células Escamosas/patología , Carcinoma de Células Escamosas/etiología , Carcinoma de Células Escamosas/virología , Neoplasias de la Boca/veterinaria , Neoplasias de la Boca/patología , Neoplasias de la Boca/etiología , Enfermedades de los Monos/patología , Enfermedades de los Monos/virología , Masculino , Femenino
5.
Am J Primatol ; 86(8): e23654, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38922738

RESUMEN

Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), was declared a pandemic by the World Health Organization in March 2020. Since then, viral spread from humans to animals has occurred worldwide. Nonhuman primates (NHPs) have been found to be susceptible to reverse-zoonosis transmission of SARS-CoV-2, but initial research suggested that platyrrhine primates are less susceptible than catarrhine primates. Here we report the natural SARS-CoV-2 infection of a common woolly monkey (Lagothrix lagothricha) from a wildlife rehabilitation center in Ecuador. The course of the disease, the eventual death of the specimen, and the pathological findings are described. Our results show the susceptibility of a new platyrrhine species to SARS-CoV-2 and provide evidence for the first time of a COVID-19-associated death in a naturally infected NHP. The putative route of transmission from humans, and implications for captive NHPs management, are also discussed. Given that common woolly monkeys are at risk of extinction in Ecuador, further understanding of the potential threat of SARS-CoV-2 to their health should be a conservation priority. A One Health approach is the best way to protect NHPs from a new virus in the same way that we would protect the human population.


Asunto(s)
Atelinae , COVID-19 , Enfermedades de los Monos , SARS-CoV-2 , Animales , COVID-19/veterinaria , COVID-19/mortalidad , COVID-19/transmisión , Atelinae/virología , Ecuador/epidemiología , Enfermedades de los Monos/virología , Resultado Fatal , Masculino , Femenino
6.
J Zoo Wildl Med ; 55(2): 471-478, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38875205

RESUMEN

Through collaborative efforts, One Health partners have responded to outbreaks of COVID-19 among animals, including those in human care at zoos. Zoos have been faced with numerous challenges, including the susceptibility of many mammalian species, and therefore the need to heighten biosecurity measures rapidly. Robust One Health collaborations already exist in Arizona to address endemic and emerging zoonoses, but these have rarely included zoos. The pandemic shed light on this, and Arizona subsequently expanded its SARS-CoV-2 surveillance efforts to include zoo animals. Testing and epidemiologic support was provided to expedite the detection of and response to zoonotic SARS-CoV-2 infection in zoo animals, as well as to understand possible transmission events. Resulting from this program, SARS-CoV-2 was detected from a rectal swab collected from an 8-yr-old squirrel monkey (Saimiri sciureus) from a zoo in Southern Arizona. The animal had rapidly become ill with nonrespiratory symptoms and died in July 2022. Genomic sequencing from the swab revealed mutations consistent with the Omicron (BA.2) lineage. An epidemiologic investigation identified an animal caretaker in close proximity to the affected squirrel monkey who tested positive for COVID-19 the same day the squirrel monkey died. Critical One Health partners provided support to the zoo through engagement of local, state, and federal agencies. Necropsy and pathologic evaluation showed significant necrotizing colitis; the overall clinical and histopathological findings did not implicate SARS-CoV-2 infection alone as a causal or contributing factor in the squirrel monkey's illness and death. This report documents the first identification of SARS-CoV-2 in a squirrel monkey and highlights a successful and timely One Health investigation conducted through multisectoral collaboration.


Asunto(s)
Animales de Zoológico , COVID-19 , Enfermedades de los Monos , Salud Única , SARS-CoV-2 , Saimiri , Animales , Saimiri/virología , COVID-19/veterinaria , COVID-19/epidemiología , COVID-19/virología , COVID-19/diagnóstico , Arizona/epidemiología , SARS-CoV-2/aislamiento & purificación , Enfermedades de los Monos/virología , Enfermedades de los Monos/epidemiología , Enfermedades de los Monos/diagnóstico
7.
J Virol ; 96(3): e0165321, 2022 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-34788083

RESUMEN

Rhesus cytomegalovirus (RhCMV) infection of rhesus macaques (Macaca mulatta) is a valuable nonhuman primate model of human CMV (HCMV) persistence and pathogenesis. In vivo studies predominantly use tissue culture-adapted variants of RhCMV that contain multiple genetic mutations compared to wild-type (WT) RhCMV. In many studies, animals have been inoculated by nonnatural routes (e.g., subcutaneous, intravenous) that do not recapitulate disease progression via the normative route of mucosal exposure. Accordingly, the natural history of RhCMV would be more accurately reproduced by infecting macaques with strains of RhCMV that reflect the WT genome using natural routes of mucosal transmission. Here, we tested two WT-like RhCMV strains, UCD52 and UCD59, and demonstrated that systemic infection and frequent, high-titer viral shedding in bodily fluids occurred following oral inoculation. RhCMV disseminated to a broad range of tissues, including the central nervous system and reproductive organs. Commonly infected tissues included the thymus, spleen, lymph nodes, kidneys, bladder, and salivary glands. Histological examination revealed prominent nodular hyperplasia in spleens and variable levels of lymphoid lymphofollicular hyperplasia in lymph nodes. One of six inoculated animals had limited viral dissemination and shedding, with commensurately weak antibody responses to RhCMV antigens. These data suggest that long-term RhCMV infection parameters might be restricted by local innate factors and/or de novo host immune responses in a minority of primary infections. Together, we have established an oral RhCMV infection model that mimics natural HCMV infection. The virological and immunological parameters characterized in this study will greatly inform HCMV vaccine designs for human immunization. IMPORTANCE Human cytomegalovirus (HCMV) is globally ubiquitous with high seroprevalence rates in all communities. HCMV infections can occur vertically following mother-to-fetus transmission across the placenta and horizontally following shedding of virus in bodily fluids in HCMV-infected hosts and subsequent exposure of susceptible individuals to virus-laden fluids. Intrauterine HCMV has long been recognized as an infectious threat to fetal growth and development. Since vertical HCMV infections occur following horizontal HCMV transmission to the pregnant mother, the nonhuman primate model of HCMV pathogenesis was used to characterize the virological and immunological parameters of infection following primary mucosal exposures to rhesus cytomegalovirus.


Asunto(s)
Infecciones por Citomegalovirus/veterinaria , Citomegalovirus/fisiología , Susceptibilidad a Enfermedades , Interacciones Huésped-Patógeno , Enfermedades de los Monos/inmunología , Enfermedades de los Monos/virología , Animales , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Biopsia , ADN Viral , Susceptibilidad a Enfermedades/inmunología , Interacciones Huésped-Patógeno/inmunología , Inmunoglobulina G/inmunología , Inmunohistoquímica , Macaca mulatta , Enfermedades de los Monos/patología , Enfermedades de los Monos/transmisión , Sistemas de Lectura Abierta , Especificidad de Órganos , Carga Viral , Viremia , Esparcimiento de Virus
8.
PLoS Pathog ; 17(11): e1010084, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34807956

RESUMEN

Primary infection with varicella-zoster virus (VZV) causes varicella and the establishment of lifelong latency in sensory ganglion neurons. In one-third of infected individuals VZV reactivates from latency to cause herpes zoster, often complicated by difficult-to-treat chronic pain. Experimental infection of non-human primates with simian varicella virus (SVV) recapitulates most features of human VZV disease, thereby providing the opportunity to study the pathogenesis of varicella and herpes zoster in vivo. However, compared to VZV, the transcriptome and the full coding potential of SVV remains incompletely understood. Here, we performed nanopore direct RNA sequencing to annotate the SVV transcriptome in lytically SVV-infected African green monkey (AGM) and rhesus macaque (RM) kidney epithelial cells. We refined structures of canonical SVV transcripts and uncovered numerous RNA isoforms, splicing events, fusion transcripts and non-coding RNAs, mostly unique to SVV. We verified the expression of canonical and newly identified SVV transcripts in vivo, using lung samples from acutely SVV-infected cynomolgus macaques. Expression of selected transcript isoforms, including those located in the unique left-end of the SVV genome, was confirmed by reverse transcription PCR. Finally, we performed detailed characterization of the SVV homologue of the VZV latency-associated transcript (VLT), located antisense to ORF61. Analogous to VZV VLT, SVV VLT is multiply spliced and numerous isoforms are generated using alternative transcription start sites and extensive splicing. Conversely, low level expression of a single spliced SVV VLT isoform defines in vivo latency. Notably, the genomic location of VLT core exons is highly conserved between SVV and VZV. This work thus highlights the complexity of lytic SVV gene expression and provides new insights into the molecular biology underlying lytic and latent SVV infection. The identification of the SVV VLT homolog further underlines the value of the SVV non-human primate model to develop new strategies for prevention of herpes zoster.


Asunto(s)
Infecciones por Herpesviridae/genética , Enfermedades de los Monos/genética , Transcriptoma , Varicellovirus/genética , Proteínas Virales/genética , Latencia del Virus , Animales , Variaciones en el Número de Copia de ADN , Infecciones por Herpesviridae/virología , Macaca mulatta , Enfermedades de los Monos/virología , Empalme del ARN
9.
PLoS Pathog ; 17(7): e1009668, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34280241

RESUMEN

SARS-CoV-2 infection presents clinical manifestations ranging from asymptomatic to fatal respiratory failure. Despite the induction of functional SARS-CoV-2-specific CD8+ T-cell responses in convalescent individuals, the role of virus-specific CD8+ T-cell responses in the control of SARS-CoV-2 replication remains unknown. In the present study, we show that subacute SARS-CoV-2 replication can be controlled in the absence of CD8+ T cells in cynomolgus macaques. Eight macaques were intranasally inoculated with 105 or 106 TCID50 of SARS-CoV-2, and three of the eight macaques were treated with a monoclonal anti-CD8 antibody on days 5 and 7 post-infection. In these three macaques, CD8+ T cells were undetectable on day 7 and thereafter, while virus-specific CD8+ T-cell responses were induced in the remaining five untreated animals. Viral RNA was detected in nasopharyngeal swabs for 10-17 days post-infection in all macaques, and the kinetics of viral RNA levels in pharyngeal swabs and plasma neutralizing antibody titers were comparable between the anti-CD8 antibody treated and untreated animals. SARS-CoV-2 RNA was detected in the pharyngeal mucosa and/or retropharyngeal lymph node obtained at necropsy on day 21 in two of the untreated group but undetectable in all macaques treated with anti-CD8 antibody. CD8+ T-cell responses may contribute to viral control in SARS-CoV-2 infection, but our results indicate possible containment of subacute viral replication in the absence of CD8+ T cells, implying that CD8+ T-cell dysfunction may not solely lead to viral control failure.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , COVID-19/veterinaria , Macaca fascicularis/inmunología , Macaca fascicularis/virología , Enfermedades de los Monos/inmunología , Enfermedades de los Monos/virología , SARS-CoV-2/inmunología , SARS-CoV-2/fisiología , Animales , Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , COVID-19/inmunología , COVID-19/virología , Modelos Animales de Enfermedad , Femenino , Humanos , Cinética , Depleción Linfocítica/veterinaria , Masculino , ARN Viral/genética , ARN Viral/metabolismo , SARS-CoV-2/genética , Replicación Viral/inmunología
10.
PLoS Pathog ; 17(12): e1010162, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34929014

RESUMEN

The novel coronavirus SARS-CoV-2, the causative agent of COVID-19 disease, has killed over five million people worldwide as of December 2021 with infections rising again due to the emergence of highly transmissible variants. Animal models that faithfully recapitulate human disease are critical for assessing SARS-CoV-2 viral and immune dynamics, for understanding mechanisms of disease, and for testing vaccines and therapeutics. Pigtail macaques (PTM, Macaca nemestrina) demonstrate a rapid and severe disease course when infected with simian immunodeficiency virus (SIV), including the development of severe cardiovascular symptoms that are pertinent to COVID-19 manifestations in humans. We thus proposed this species may likewise exhibit severe COVID-19 disease upon infection with SARS-CoV-2. Here, we extensively studied a cohort of SARS-CoV-2-infected PTM euthanized either 6- or 21-days after respiratory viral challenge. We show that PTM demonstrate largely mild-to-moderate COVID-19 disease. Pulmonary infiltrates were dominated by T cells, including CD4+ T cells that upregulate CD8 and express cytotoxic molecules, as well as virus-targeting T cells that were predominantly CD4+. We also noted increases in inflammatory and coagulation markers in blood, pulmonary pathologic lesions, and the development of neutralizing antibodies. Together, our data demonstrate that SARS-CoV-2 infection of PTM recapitulates important features of COVID-19 and reveals new immune and viral dynamics and thus may serve as a useful animal model for studying pathogenesis and testing vaccines and therapeutics.


Asunto(s)
COVID-19 , Modelos Animales de Enfermedad , Macaca nemestrina , Enfermedades de los Monos/virología , Animales , COVID-19/inmunología , COVID-19/patología , COVID-19/fisiopatología , COVID-19/virología , Humanos , Inmunidad Humoral , Pulmón/inmunología , Pulmón/virología , Masculino , Enfermedades de los Monos/inmunología , Enfermedades de los Monos/patología , Enfermedades de los Monos/fisiopatología , Linfocitos T/inmunología
11.
J Virol ; 95(2)2020 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-33087463

RESUMEN

Mother-to-child transmission of human immunodeficiency virus type 1 (HIV-1) continues to cause new pediatric cases of infection through breastfeeding, a setting where it is not always possible to initiate early antiretroviral therapy (ART). Without novel interventions that do not rely on daily ART, HIV-1-infected children face lifelong medications to control infection. A detailed analysis of virus persistence following breast milk transmission of HIV-1 and ART has not been performed. Here, we used infant rhesus macaques orally infected with simian/human immunodeficiency virus (SHIV) (SHIV.C.CH505) to identify cellular and anatomical sites of virus persistence under ART. Viral DNA was detected at similar levels in blood and tissue CD4+ T cells after a year on ART, with virus in blood and lymphoid organs confirmed to be replication competent. Viral RNA/DNA ratios were elevated in rectal CD4+ T cells compared to those of other sites (P ≤ 0.0001), suggesting that the gastrointestinal tract is an active site of virus transcription during ART-mediated suppression of viremia. SHIV.C.CH505 DNA was detected in multiple CD4+ T cell subsets, including cells with a naive phenotype (CD45RA+ CCR7+ CD95-). While the frequency of naive cells harboring intact provirus was lower than in memory cells, the high abundance of naive cells in the infant CD4+ T cell pool made them a substantial source of persistent viral DNA (approximately 50% of the total CD4+ T cell reservoir), with an estimated 1:2 ratio of intact provirus to total viral DNA. This viral reservoir profile broadens our understanding of virus persistence in a relevant infant macaque model and provides insight into targets for cure-directed approaches in the pediatric population.IMPORTANCE Uncovering the sanctuaries of the long-lived HIV-1 reservoir is crucial to develop cure strategies. Pediatric immunity is distinct from that of adults, which may alter where the reservoir is established in infancy. Thus, it is important to utilize pediatric models to inform cure-directed approaches for HIV-1-infected children. We used an infant rhesus macaque model of HIV-1 infection via breastfeeding to identify key sites of viral persistence under antiretroviral therapy (ART). The gastrointestinal tract was found to be a site for low-level viral transcription during ART. We also show that naive CD4+ T cells harbored intact provirus and were a major contributor to blood and lymphoid reservoir size. This is particularly striking, as memory CD4+ T cells are generally regarded as the main source of latent HIV/simian immunodeficiency virus (SIV) infection of adult humans and rhesus macaques. Our findings highlight unique features of reservoir composition in pediatric infection that should be considered for eradication efforts.


Asunto(s)
Antirretrovirales/uso terapéutico , Linfocitos T CD4-Positivos/inmunología , Infecciones por VIH/veterinaria , Macaca mulatta , Enfermedades de los Monos/virología , Síndrome de Inmunodeficiencia Adquirida del Simio/inmunología , Virus de la Inmunodeficiencia de los Simios/inmunología , Administración Oral , Animales , Animales Recién Nacidos , ADN Viral/análisis , Reservorios de Enfermedades , Femenino , Infecciones por VIH/inmunología , Infecciones por VIH/transmisión , VIH-1 , Masculino , Enfermedades de los Monos/inmunología , Enfermedades de los Monos/transmisión , ARN Viral/análisis , Virus Reordenados/inmunología , Síndrome de Inmunodeficiencia Adquirida del Simio/virología , Carga Viral
12.
J Virol ; 94(11)2020 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-32188737

RESUMEN

Zika virus (ZIKV) infection is now firmly linked to congenital Zika syndrome (CZS), including fetal microcephaly. While Aedes species of mosquito are the primary vector for ZIKV, sexual transmission of ZIKV is a significant route of infection. ZIKV has been documented in human, mouse, and nonhuman primate (NHP) semen. It is critical to establish NHP models of the vertical transfer of ZIKV that recapitulate human pathogenesis. We hypothesized that vaginal deposition of ZIKV-infected baboon semen would lead to maternal infection and vertical transfer in the olive baboon (Papio anubis). Epidemiological studies suggest an increased rate of CZS in the Americas compared to the original link to CZS in French Polynesia; therefore, we also compared the French Polynesian (FP) ZIKV isolate to the Puerto Rican (PR) isolate. Timed-pregnant baboons (n = 6) were inoculated via vaginal deposition of baboon semen containing 106 focus-forming units (FFU) of ZIKV (n = 3 for FP isolate H/PF/2013; n = 3 for PR isolate PRVABC59) at midgestation (86 to 95 days of gestation [dG]; term, 183 dG) on day 0 (all dams) and then at 7-day intervals through 3 weeks. Maternal blood, saliva, and cervicovaginal wash (CVW) samples were obtained. Animals were euthanized at 28 days (n = 5) or 39 days (n = 1) after the initial inoculation, and maternal/fetal tissues were collected. Viremia was achieved in 3/3 FP ZIKV-infected dams and 2/3 PR ZIKV-infected dams. ZIKV RNA was detected in CVW samples of 5/6 dams. ZIKV RNA was detected in lymph nodes but not the ovaries, uterus, cervix, or vagina in FP isolate-infected dams. ZIKV RNA was detected in lymph nodes (3/3), uterus (2/3), and vagina (2/3) in PR isolate-infected dams. Placenta, amniotic fluid, and fetal tissues were ZIKV RNA negative in the FP isolate-infected dams, whereas 2/3 PR isolate-infected dam placentas were ZIKV RNA positive. We conclude that ZIKV-infected semen is a means of ZIKV transmission during pregnancy in primates. The PR isolate appeared more capable of widespread dissemination to tissues, including reproductive tissues and placenta, than the FP isolate.IMPORTANCE Zika virus remains a worldwide health threat, with outbreaks still occurring in the Americas. While mosquitos are the primary vector for the spread of the virus, sexual transmission of Zika virus is also a significant means of infection, especially in terms of passage from an infected to an uninfected partner. While sexual transmission has been documented in humans, and male-to-female transmission has been reported in mice, ours is the first study in nonhuman primates to demonstrate infection via vaginal deposition of Zika virus-infected semen. The latter is important since a recent publication indicated that human semen inhibited, in a laboratory setting, Zika virus infection of reproductive tissues. We also found that compared to the French Polynesian isolate, the Puerto Rican Zika virus isolate led to greater spread throughout the body, particularly in reproductive tissues. The American isolates of Zika virus appear to have acquired mutations that increase their efficacy.


Asunto(s)
Enfermedades de los Monos , Complicaciones Infecciosas del Embarazo , Semen/virología , Vagina/virología , Infección por el Virus Zika , Virus Zika/metabolismo , Animales , Femenino , Masculino , Enfermedades de los Monos/metabolismo , Enfermedades de los Monos/patología , Enfermedades de los Monos/transmisión , Enfermedades de los Monos/virología , Papio anubis , Embarazo , Complicaciones Infecciosas del Embarazo/metabolismo , Complicaciones Infecciosas del Embarazo/patología , Complicaciones Infecciosas del Embarazo/veterinaria , ARN Viral/metabolismo , Vagina/patología , Infección por el Virus Zika/metabolismo , Infección por el Virus Zika/patología , Infección por el Virus Zika/transmisión , Infección por el Virus Zika/veterinaria
13.
J Virol ; 94(11)2020 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-32213610

RESUMEN

Ebola virus (EBOV) continues to pose a significant threat to human health, as evidenced by the 2013-2016 epidemic in West Africa and the ongoing outbreak in the Democratic Republic of the Congo. EBOV causes hemorrhagic fever, organ damage, and shock culminating in death, with case fatality rates as high as 90%. This high lethality combined with the paucity of licensed medical countermeasures makes EBOV a critical human pathogen. Although EBOV infection results in significant damage to the liver and the adrenal glands, little is known about the molecular signatures of injury in these organs. Moreover, while changes in peripheral blood cells are becoming increasingly understood, the host responses within organs and lymphoid tissues remain poorly characterized. To address this knowledge gap, we tracked longitudinal transcriptional changes in tissues collected from EBOV-Makona-infected cynomolgus macaques. Following infection, both liver and adrenal glands exhibited significant and early downregulation of genes involved in metabolism, coagulation, hormone synthesis, and angiogenesis; upregulated genes were associated with inflammation. Analysis of lymphoid tissues showed early upregulation of genes that play a role in innate immunity and inflammation and downregulation of genes associated with cell cycle and adaptive immunity. Moreover, transient activation of innate immune responses and downregulation of humoral immune responses in lymphoid tissues were confirmed with flow cytometry. Together, these data suggest that the liver, adrenal gland, and lymphatic organs are important sites of EBOV infection and that dysregulating the function of these vital organs contributes to the development of Ebola virus disease.IMPORTANCE Ebola virus (EBOV) remains a high-priority pathogen since it continues to cause outbreaks with high case fatality rates. Although it is well established that EBOV results in severe organ damage, our understanding of tissue injury in the liver, adrenal glands, and lymphoid tissues remains limited. We begin to address this knowledge gap by conducting longitudinal gene expression studies in these tissues, which were collected from EBOV-infected cynomolgus macaques. We report robust and early gene expression changes within these tissues, indicating they are primary sites of EBOV infection. Furthermore, genes involved in metabolism, coagulation, and adaptive immunity were downregulated, while inflammation-related genes were upregulated. These results indicate significant tissue damage consistent with the development of hemorrhagic fever and lymphopenia. Our study provides novel insight into EBOV-host interactions and elucidates how host responses within the liver, adrenal glands, and lymphoid tissues contribute to EBOV pathogenesis.


Asunto(s)
Glándulas Suprarrenales , Ebolavirus , Regulación Viral de la Expresión Génica/inmunología , Fiebre Hemorrágica Ebola , Hígado , Tejido Linfoide , Enfermedades de los Monos , Transcripción Genética/inmunología , Glándulas Suprarrenales/inmunología , Glándulas Suprarrenales/metabolismo , Glándulas Suprarrenales/patología , Glándulas Suprarrenales/virología , Animales , Ebolavirus/inmunología , Ebolavirus/metabolismo , Femenino , Fiebre Hemorrágica Ebola/inmunología , Fiebre Hemorrágica Ebola/metabolismo , Fiebre Hemorrágica Ebola/patología , Fiebre Hemorrágica Ebola/veterinaria , Hígado/inmunología , Hígado/metabolismo , Hígado/patología , Hígado/virología , Tejido Linfoide/inmunología , Tejido Linfoide/metabolismo , Tejido Linfoide/patología , Tejido Linfoide/virología , Macaca fascicularis , Masculino , Enfermedades de los Monos/inmunología , Enfermedades de los Monos/metabolismo , Enfermedades de los Monos/patología , Enfermedades de los Monos/virología
14.
BMC Vet Res ; 17(1): 213, 2021 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-34107958

RESUMEN

BACKGROUND: Enterocytozoon bieneusi, a microsporidian species, is a zoonotic pathogen found in both humans and animals. Here, we determined the prevalence, explored the different genotypes of E. bieneusi in wild rhesus macaques (Macaca mulatta) (Hainan Island of China), and assessed their zoonotic potential. METHODS: We collected 173 fecal specimens from wild rhesus macaques living in Nanwan Monkey Island, Hainan, China. Subsequently, we identified and genotyped E. bieneusi using nested PCR analysis amplification of the internal transcribed spacer region (ITS) of the rRNA gene. Lastly, a neighbor-joining tree was built based on gene sequences from the ITS region of E. bieneusi. RESULTS: Of the 173 specimens from wild rhesus macaques, 26 (15%) were infected with E. bieneusi. We identified six genotypes of E. bieneusi, of which five were known: PigEBITS7 (n = 20), D (n = 2), Type IV (n = 1), Peru6 (n = 1), Henan-III (n = 1), and a novel genotype: HNM-IX (n = 1). From the phylogenetic analysis, the six genotypes identified here were all clustered into zoonotic group 1. CONCLUSION: This study is the first report to detect E. bieneusi infection in wild rhesus macaques from Hainan, China. Human-pathogenic genotypes D, Henan-III, Peru6, PigEbITS7, and Type IV in the wild rhesus macaques support these animals infected with E. bieneusi have a public health significance.


Asunto(s)
Enterocytozoon/genética , Macaca mulatta/virología , Microsporidiosis/veterinaria , Enfermedades de los Monos/virología , Animales , Animales Salvajes , China/epidemiología , Enterocytozoon/aislamiento & purificación , Femenino , Genoma Viral , Genotipo , Humanos , Incidencia , Masculino , Microsporidiosis/epidemiología , Microsporidiosis/virología , Enfermedades de los Monos/epidemiología , Filogenia , Prevalencia , Salud Pública , Zoonosis/virología
15.
J Infect Dis ; 221(Suppl 4): S436-S447, 2020 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-32022850

RESUMEN

BACKGROUND: The henipaviruses, Hendra virus (HeV) and Nipah virus (NiV), are capable of causing severe and often lethal respiratory and/or neurologic disease in animals and humans. Given the sporadic nature of henipavirus outbreaks, licensure of vaccines and therapeutics for human use will likely require demonstration of efficacy in animal models that faithfully reproduce the human condition. Currently, the African green monkey (AGM) best mimics human henipavirus-induced disease. METHODS: The pathogenic potential of HeV and both strains of NiV (Malaysia, Bangladesh) was assessed in cynomolgus monkeys and compared with henipavirus-infected historical control AGMs. Multiplex gene and protein expression assays were used to compare host responses. RESULTS: In contrast to AGMs, in which henipaviruses cause severe and usually lethal disease, HeV and NiVs caused only mild or asymptomatic infections in macaques. All henipaviruses replicated in macaques with similar kinetics as in AGMs. Infection in macaques was associated with activation and predicted recruitment of cytotoxic CD8+ T cells, Th1 cells, IgM+ B cells, and plasma cells. Conversely, fatal outcome in AGMs was associated with aberrant innate immune signaling, complement dysregulation, Th2 skewing, and increased secretion of MCP-1. CONCLUSION: The restriction factors identified in macaques can be harnessed for development of effective countermeasures against henipavirus disease.


Asunto(s)
Virus Hendra , Infecciones por Henipavirus/veterinaria , Inmunidad Celular , Inmunidad Humoral , Macaca fascicularis , Virus Nipah , Animales , Infecciones por Henipavirus/virología , Masculino , Enfermedades de los Monos/inmunología , Enfermedades de los Monos/virología , Carga Viral , Tropismo Viral
16.
J Infect Dis ; 222(11): 1894-1901, 2020 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-32479636

RESUMEN

Marburg virus (MARV) is a filovirus with documented human case-fatality rates of up to 90%. Here, we evaluated the therapeutic efficacy of remdesivir (GS-5734) in nonhuman primates experimentally infected with MARV. Beginning 4 or 5 days post inoculation, cynomolgus macaques were treated once daily for 12 days with vehicle, 5 mg/kg remdesivir, or a 10-mg/kg loading dose followed by 5 mg/kg remdesivir. All vehicle-control animals died, whereas 83% of animals receiving a 10-mg/kg loading dose of remdesivir survived, as did 50% of animals receiving a 5-mg/kg remdesivir regimen. Remdesivir-treated animals exhibited improved clinical scores, lower plasma viral RNA, and improved markers of kidney function, liver function, and coagulopathy versus vehicle-control animals. The small molecule remdesivir showed therapeutic efficacy in this Marburg virus disease model with treatment initiation 5 days post inoculation, supporting further assessment of remdesivir for the treatment of Marburg virus disease in humans.


Asunto(s)
Antimetabolitos/uso terapéutico , Antivirales/uso terapéutico , Enfermedad del Virus de Marburg/tratamiento farmacológico , Marburgvirus/efectos de los fármacos , Enfermedades de los Monos/tratamiento farmacológico , Adenosina Monofosfato/análogos & derivados , Alanina/análogos & derivados , Animales , Modelos Animales de Enfermedad , Femenino , Estimación de Kaplan-Meier , Macaca fascicularis , Masculino , Enfermedad del Virus de Marburg/mortalidad , Enfermedad del Virus de Marburg/patología , Enfermedad del Virus de Marburg/virología , Enfermedades de los Monos/mortalidad , Enfermedades de los Monos/patología , Enfermedades de los Monos/virología , ARN Viral
17.
J Infect Dis ; 222(10): 1596-1600, 2020 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-32745172

RESUMEN

Using a reliable primate model is critical for developing therapeutic advances to treat humans infected with severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Here, we exposed macaques to high titers of SARS-CoV-2 via combined transmission routes. We observed acute interstitial pneumonia with endotheliitis in the lungs of all infected macaques. All macaques had a significant loss of total lymphocytes during infection, which were restored over time. These data show that SARS-CoV-2 causes a coronavirus disease 2019 (COVID-19)-like disease in macaques. This new model could investigate the interaction between SARS-CoV-2 and the immune system to test therapeutic strategies.


Asunto(s)
Betacoronavirus/genética , Infecciones por Coronavirus/complicaciones , Modelos Animales de Enfermedad , Enfermedades Pulmonares Intersticiales/complicaciones , Linfopenia/complicaciones , Enfermedades de los Monos/virología , Neumonía Viral/complicaciones , Animales , COVID-19 , Infecciones por Coronavirus/patología , Infecciones por Coronavirus/virología , Femenino , Enfermedades Pulmonares Intersticiales/patología , Linfopenia/patología , Macaca fascicularis , Macaca mulatta , Masculino , Enfermedades de los Monos/patología , Pandemias , Neumonía Viral/patología , Neumonía Viral/virología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , SARS-CoV-2
18.
J Med Primatol ; 49(6): 322-331, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32621339

RESUMEN

BACKGROUND: The emergence of SARS-CoV-2 and the ensuing COVID-19 pandemic prompted the need for a surveillance program to determine the viral status of the California National Primate Research Center non-human primate breeding colony, both for reasons of maintaining colony health and minimizing the risk of interference in COVID-19 and other research studies. METHODS: We collected biological samples from 10% of the rhesus macaque population for systematic testing to detect SARS-CoV-2 virus by RT-PCR and host antibody response by ELISA. Testing required the development and validation of new assays and an algorithm using in laboratory-developed and commercially available reagents and protocols. RESULTS AND CONCLUSIONS: No SARS-CoV-2 RNA or antibody was detected in this study; therefore, we have proposed a modified testing algorithm for sentinel surveillance to monitor for any future transmissions. As additional reagents and controls become available, assay development and validation will continue, leading to the enhanced sensitivity, specificity, accuracy, and efficiency of testing.


Asunto(s)
Betacoronavirus/aislamiento & purificación , Infecciones por Coronavirus/veterinaria , Macaca mulatta/virología , Enfermedades de los Monos/virología , Pandemias/veterinaria , Neumonía Viral/veterinaria , Animales , Anticuerpos Antivirales/sangre , Betacoronavirus/genética , Betacoronavirus/inmunología , COVID-19 , Infecciones por Coronavirus/virología , Heces/virología , Humanos , Neumonía Viral/virología , ARN Viral/aislamiento & purificación , SARS-CoV-2 , Vigilancia de Guardia/veterinaria
19.
J Med Primatol ; 49(6): 341-343, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32412106
20.
Vet Pathol ; 57(5): 681-686, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32783517

RESUMEN

Yellow fever is an important zoonotic viral disease that can be fatal for both human and nonhuman primates. We evaluated histopathologic changes in free-ranging neotropical primates naturally infected with yellow fever virus (YFV) compared with uninfected cohorts. The most frequent lesions in primates infected with YFV were hepatic changes characterized by midzonal necrosis with lipidosis and mild inflammation including lymphocytes, macrophages, plasma cells, and infrequently neutrophils. Importantly, severe necrotizing hepatic lesions were often observed in Alouatta sp. (howler monkeys), whereas Callithrix sp. (common marmosets) had nearly no hepatic changes. Moderate to severe hepatic necrosis was present in 21/23 (91%) of the YFV-positive Alouatta sp. compared with 10/29 (34%) of the YFV-positive Callithrix sp. (P < .0001; odds ratio = 20). Similarly, hepatitis was more intense in Alouatta sp. compared with Callithrix sp. Furthermore, the frequency of YFV infection was significantly higher in Alouatta sp. compared with Callithrix sp. or Sapajus sp. (capuchin monkeys). Therefore, these data support the notion that Alouatta sp. is highly susceptible to infection and YFV-induced lesions, whereas Callithrix sp. is susceptible to infection but has a lower frequency of YFV-induced lesions.


Asunto(s)
Alouatta/virología , Callithrix/virología , Enfermedades de los Monos/patología , Fiebre Amarilla/veterinaria , Animales , Susceptibilidad a Enfermedades , Femenino , Hígado/patología , Hígado/virología , Masculino , Enfermedades de los Monos/virología , Fiebre Amarilla/patología , Fiebre Amarilla/virología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA