Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 858
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Mol Med ; 30(1): 25, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38355399

RESUMEN

BACKGROUND: Scleral extracellular matrix (ECM) remodeling plays a crucial role in the development of myopia, particularly in ocular axial elongation. Thrombospondin-1 (THBS1), also known as TSP-1, is a significant cellular protein involved in matrix remodeling in various tissues. However, the specific role of THBS1 in myopia development remains unclear. METHOD: We employed the HumanNet database to predict genes related to myopic sclera remodeling, followed by screening and visualization of the predicted genes using bioinformatics tools. To investigate the potential target gene Thbs1, we utilized lens-induced myopia models in male C57BL/6J mice and performed Western blot analysis to detect the expression level of scleral THBS1 during myopia development. Additionally, we evaluated the effects of scleral THBS1 knockdown on myopia development through AAV sub-Tenon's injection. The refractive status and axial length were measured using a refractometer and SD-OCT system. RESULTS: During lens-induced myopia, THBS1 protein expression in the sclera was downregulated, particularly in the early stages of myopia induction. Moreover, the mice in the THBS1 knockdown group exhibited alterations in myopia development in both refraction and axial length changed compared to the control group. Western blotting analysis confirmed the effectiveness of AAV-mediated knockdown, demonstrating a decrease in COLA1 expression and an increase in MMP9 levels in the sclera. CONCLUSION: Our findings indicate that sclera THBS1 levels decreased during myopia development and subsequent THBS1 knockdown showed a decrease in scleral COLA1 expression. Taken together, these results suggest that THBS1 plays a role in maintaining the homeostasis of scleral extracellular matrix, and the reduction of THBS1 may promote the remodeling process and then affect ocular axial elongation during myopia progression.


Asunto(s)
Miopía , Esclerótica , Animales , Masculino , Ratones , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Miopía/genética , Miopía/metabolismo , Esclerótica/metabolismo , Trombospondina 1/genética , Trombospondina 1/metabolismo
2.
J Transl Med ; 22(1): 710, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39080755

RESUMEN

BACKGROUND: Myopia is one of the most common eye diseases in children and adolescents worldwide, and scleral remodeling plays a role in myopia progression. However, the identity of the initiating factors and signaling pathways that induce myopia-associated scleral remodeling is still unclear. This study aimed to identify biomarkers of scleral remodeling to elucidate the pathogenesis of myopia. METHODS: The gene expression omnibus (GEO) and comparative toxicogenomics database (CTD) mining were used to identify the miRNA-mRNA regulatory network related to scleral remodeling in myopia. Real-time quantitative PCR (RT-qPCR), Western blot, immunofluorescence, H&E staining, Masson staining, and flow cytometry were used to detect the changes in the FOXO signaling pathway, fibrosis, apoptosis, cell cycle, and other related factors in scleral remodeling. RESULTS: miR-15b-5p/miR-379-3p can regulate the FOXO signaling pathway. Confirmatory studies confirmed that the axial length of the eye was significantly increased, the scleral thickness was thinner, the levels of miR-15b-5p, miR-379-3p, PTEN, p-PTEN, FOXO3a, cyclin-dependent kinase (CDK) inhibitor 1B (CDKN1B) were increased, and the levels of IGF1R were decreased in Len-induced myopia (LIM) group. CDK2, cyclin D1 (CCND1), and cell cycle block assessed by flow cytometry indicated G1/S cell cycle arrest in myopic sclera. The increase in BAX level and the decrease in BCL-2 level indicated enhanced apoptosis of the myopic sclera. In addition, we found that the levels of transforming growth factor-ß1 (TGF-ß1), collagen type 1 (COL-1), and α-smooth muscle actin (α-SMA) were decreased, suggesting scleral remodeling occurred in myopia. CONCLUSIONS: miR-15b-5p/miR-379-3p can regulate the scleral cell cycle and apoptosis through the IGF1R/PTEN/FOXO signaling pathway, thereby promoting scleral remodeling in myopia progression.


Asunto(s)
Apoptosis , Ciclo Celular , Factores de Transcripción Forkhead , MicroARNs , Miopía , Esclerótica , Transducción de Señal , Animales , Apoptosis/genética , Secuencia de Bases , Ciclo Celular/genética , Modelos Animales de Enfermedad , Factores de Transcripción Forkhead/metabolismo , Factores de Transcripción Forkhead/genética , MicroARNs/genética , MicroARNs/metabolismo , Miopía/genética , Miopía/patología , Miopía/metabolismo , Esclerótica/patología , Esclerótica/metabolismo
3.
Exp Eye Res ; 240: 109796, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38244883

RESUMEN

To investigate the metabolic difference among tissue layers of the rabbits' eye during the development of myopia using metabolomic techniques and explore any metabolic links or cascades within the ocular wall. Ultra Performance Liquid Chromatography - Mass Spectrometry (UPLC-MS) was utilized for untargeted metabolite screening (UMS) to identify the significant differential metabolites produced between myopia (MY) and control (CT) (horizontal). Subsequently, we compared those key metabolites among tissues (Sclera, Choroid, Retina) of MY for distribution and variation (longitudinal). A total of 6285 metabolites were detected in the three tissues. The differential metabolites were screened and the metabolic pathways of these metabolites in each myopic tissue were labeled, including tryptophan and its metabolites, pyruvate, taurine, caffeine metabolites, as well as neurotransmitters like glutamate and dopamine. Our study suggests that multiple metabolic pathways or different metabolites under the same pathway, might act on different parts of the eyeball and contribute to the occurrence and development of myopia by affecting the energy supply to the ocular tissues, preventing antioxidant stress, affecting scleral collagen synthesis, and regulating various neurotransmitters mutually.


Asunto(s)
Miopía , Espectrometría de Masas en Tándem , Animales , Conejos , Cromatografía Liquida , Modelos Animales de Enfermedad , Miopía/metabolismo , Retina/metabolismo , Esclerótica/metabolismo , Neurotransmisores/metabolismo
4.
Exp Eye Res ; 247: 110048, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39151773

RESUMEN

Osteogenesis imperfecta (OI), a rare genetic connective tissue disorder, primarily arises from pathogenic variants affecting the production or structure of collagen type I. In addition to skeletal fragility, individuals with OI may face an increased risk of developing ophthalmic diseases. This association is believed to stem from the widespread presence of collagen type I throughout various parts of the eye. However, the precise consequences of abnormal collagen type I on different ocular tissues remain unknown. Of particular significance is the sclera, where collagen type I is abundant and crucial for maintaining the structural integrity of the eye. Recent research on healthy individuals has uncovered a unique organizational pattern of collagen fibers within the sclera, characterized by fiber arrangement in both circular and radial layers around the optic nerve head. While the precise function of this organizational pattern remains unclear, it is hypothesized to play a role in providing mechanical support to the optic nerve. The objective of this study is to investigate the impact of abnormal collagen type I on the sclera by assessing the fiber organization near the optic nerve head in individuals with OI and comparing them to healthy individuals. Collagen fiber orientation of the sclera was measured using polarization-sensitive optical coherence tomography (PS-OCT), an extension of the conventional OCT that is sensitive to materials that exhibit birefringence (axial changes in light refraction). Birefringence was quantified and used as imaging contrast to extract collagen fiber orientation as well as the thickness of the radially oriented scleral layer. Three individuals with OI, exhibiting different degrees of disease severity, were assessed and analyzed, along with seventeen healthy individuals. Mean values obtained from individuals with OI were descriptively compared to those of the healthy participant group. PS-OCT revealed a similar orientation pattern of scleral collagen fibers around the optic nerve head between OI individuals and healthy individuals. However, two OI participants exhibited reduced mean birefringence of the radially oriented scleral layer compared to the healthy participant group (OI participant 1 oculus dexter et sinister (ODS): 0.34°/µm, OI participant 2: ODS 0.26°/µm, OI participant 3: OD: 0.29°/µm, OS: 0.28°/µm, healthy participants: ODS 0.38 ± 0.05°/µm). The radially oriented scleral layer was thinner in all OI participants although within ±2 standard deviations of the mean observed in healthy individuals (OI participant 1 OD: 101 µm, OS 104 µm, OI participant 2: OD 97 µm, OS 98 µm, OI participant 3: OD: 94 µm, OS 120 µm, healthy participants: OD 122.8 ± 13.6 µm, OS 120.8 ± 15.1 µm). These findings imply abnormalities in collagen organization or composition, underscoring the necessity for additional research to comprehend the ocular phenotype in OI.


Asunto(s)
Colágeno Tipo I , Osteogénesis Imperfecta , Esclerótica , Tomografía de Coherencia Óptica , Humanos , Osteogénesis Imperfecta/patología , Tomografía de Coherencia Óptica/métodos , Esclerótica/metabolismo , Esclerótica/patología , Adulto , Masculino , Femenino , Colágeno Tipo I/metabolismo , Adulto Joven , Disco Óptico/patología , Persona de Mediana Edad , Adolescente , Colágeno/metabolismo
5.
Exp Eye Res ; 244: 109917, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38697276

RESUMEN

In glaucoma, scleral fibroblasts are exposed to IOP-associated mechanical strain and elevated TGFß levels. These stimuli, in turn, lead to scleral remodeling. Here, we examine the scleral fibroblast migratory and transcriptional response to these stimuli to better understand mechanisms of glaucomatous scleral remodeling. Human peripapillary scleral (PPS) fibroblasts were cultured on parallel grooves, treated with TGFß (2 ng/ml) in the presence of vehicle or TGFß signaling inhibitors, and exposed to uniaxial strain (1 Hz, 5%, 12-24 h). Axis of cellular orientation was determined at baseline, immediately following strain, and 24 h after strain cessation with 0° being completely aligned with grooves and 90° being perpendicular. Fibroblasts migration in-line and across grooves was assessed using a scratch assay. Transcriptional profiling of TGFß-treated fibroblasts with or without strain was performed by RT-qPCR and pERK, pSMAD2, and pSMAD3 levels were measured by immunoblot. Pre-strain alignment of TGFß-treated cells with grooves (6.2 ± 1.5°) was reduced after strain (21.7 ± 5.3°, p < 0.0001) and restored 24 h after strain cessation (9.5 ± 2.6°). ERK, FAK, and ALK5 inhibition prevented this reduction; however, ROCK, YAP, or SMAD3 inhibition did not. TGFß-induced myofibroblast markers were reduced by strain (αSMA, POSTN, ASPN, MLCK1). While TGFß-induced phosphorylation of ERK and SMAD2 was unaffected by cyclic strain, SMAD3 phosphorylation was reduced (p = 0.0004). Wound healing across grooves was enhanced by ROCK and SMAD3 inhibition but not ERK or ALK5 inhibition. These results provide insight into the mechanisms by which mechanical strain alters the cellular response to TGFß and the potential signaling pathways that underlie scleral remodeling.


Asunto(s)
Movimiento Celular , Fibroblastos , Esclerótica , Estrés Mecánico , Factor de Crecimiento Transformador beta , Humanos , Fibroblastos/metabolismo , Fibroblastos/efectos de los fármacos , Células Cultivadas , Factor de Crecimiento Transformador beta/farmacología , Factor de Crecimiento Transformador beta/metabolismo , Esclerótica/metabolismo , Transducción de Señal , Reacción en Cadena en Tiempo Real de la Polimerasa , Regulación de la Expresión Génica , Glaucoma/metabolismo , Glaucoma/patología
6.
Exp Eye Res ; 247: 110026, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39122105

RESUMEN

Scleral hypoxia is considered a trigger in scleral remodeling-induced myopia. Identifying differentially expressed molecules within the sclera is essential for understanding the mechanism of myopia. We developed a scleral fibroblast hypoxia model and conducted RNA sequencing and bioinformatic analysis. RNA interference technology was then applied to knock down targeted genes with upregulated expression, followed by an analysis of COLLAGEN I protein level. Microarray data analysis showed that the expression of Adamts1 and Adamts5 were upregulated in fibroblasts under hypoxia (t-test, p < 0.05). Western blot analysis confirmed increased protein levels of ADAMTS1 and ADAMTS5, and a concurrent decrease in COLLAGEN I in hypoxic fibroblasts. The knockdown of either Adamts1 or Adamts5 in scleral fibroblasts under hypoxia resulted in an upregulation of COLLAGEN I. Moreover, a form-deprivation myopia (FDM) mouse model was established for validation. The sclera tissue from FDM mice exhibited increased levels of ADAMTS1 and ADAMTS5 protein and a decrease in COLLAGEN I, compared to controls. The study suggests that Adamts1 and Adamts5 may be involved in scleral remodeling induced by hypoxia and the development of myopia.


Asunto(s)
Proteína ADAMTS1 , Proteína ADAMTS5 , Western Blotting , Modelos Animales de Enfermedad , Fibroblastos , Ratones Endogámicos C57BL , Miopía , Esclerótica , Animales , Proteína ADAMTS1/metabolismo , Proteína ADAMTS1/genética , Esclerótica/metabolismo , Esclerótica/patología , Ratones , Miopía/metabolismo , Miopía/genética , Miopía/patología , Proteína ADAMTS5/metabolismo , Proteína ADAMTS5/genética , Fibroblastos/metabolismo , Fibroblastos/patología , Células Cultivadas , Hipoxia/metabolismo , Colágeno Tipo I/metabolismo , Colágeno Tipo I/genética , Masculino , Regulación de la Expresión Génica
7.
Proc Natl Acad Sci U S A ; 118(16)2021 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-33853948

RESUMEN

Primary Open Angle Glaucoma (POAG) is the most common form of glaucoma that leads to irreversible vision loss. Dysfunction of trabecular meshwork (TM) tissue, a major regulator of aqueous humor (AH) outflow resistance, is associated with intraocular pressure (IOP) elevation in POAG. However, the underlying pathological mechanisms of TM dysfunction in POAG remain elusive. In this regard, transient receptor potential vanilloid 4 (TRPV4) cation channels are known to be important Ca2+ entry pathways in multiple cell types. Here, we provide direct evidence supporting Ca2+ entry through TRPV4 channels in human TM cells and show that TRPV4 channels in TM cells can be activated by increased fluid flow/shear stress. TM-specific TRPV4 channel knockout in mice elevated IOP, supporting a crucial role for TRPV4 channels in IOP regulation. Pharmacological activation of TRPV4 channels in mouse eyes also improved AH outflow facility and lowered IOP. Importantly, TRPV4 channels activated endothelial nitric oxide synthase (eNOS) in TM cells, and loss of eNOS abrogated TRPV4-induced lowering of IOP. Remarkably, TRPV4-eNOS signaling was significantly more pronounced in TM cells compared to Schlemm's canal cells. Furthermore, glaucomatous human TM cells show impaired activity of TRPV4 channels and disrupted TRPV4-eNOS signaling. Flow/shear stress activation of TRPV4 channels and subsequent NO release were also impaired in glaucomatous primary human TM cells. Together, our studies demonstrate a central role for TRPV4-eNOS signaling in IOP regulation. Our results also provide evidence that impaired TRPV4 channel activity in TM cells contributes to TM dysfunction and elevated IOP in glaucoma.


Asunto(s)
Glaucoma de Ángulo Abierto/fisiopatología , Canales Catiónicos TRPV/metabolismo , Animales , Humor Acuoso/fisiología , Canales de Calcio/metabolismo , Femenino , Glaucoma/metabolismo , Glaucoma/fisiopatología , Glaucoma de Ángulo Abierto/metabolismo , Humanos , Presión Intraocular/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Óxido Nítrico Sintasa de Tipo III/metabolismo , Esclerótica/metabolismo , Transducción de Señal/fisiología , Canales Catiónicos TRPV/fisiología , Malla Trabecular/fisiología
8.
Biochem Biophys Res Commun ; 641: 10-17, 2023 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-36516480

RESUMEN

Previous studies have highlighted the importance of outdoor time in reducing the risk of myopia progression. Although ultraviolet A (UVA) radiation dominates in terms of energy with respect to the UV radiation reaching the Earth's surface, its effects on the exposed anterior sclera have not been well studied. This study was designed to investigate the UVA-induced biological effects at peak sunlight levels in human scleral fibroblasts (HSFs). Using next-generation sequencing (NGS), we analyzed the differentially expressed genes (DEGs) in UVA-treated and normal HSFs. Further, we then identified the functions and key regulators of the DEGs using bioinformatics analysis, and verified the effects of UVA on gene and protein expression in HSFs using real-time PCR, western blotting, and immunofluorescence imaging. The highest level of solar UVA (365 nm) was 3.4 ± 0.18 (mW/cm2). The results from the functional analysis of the DEGs were related to structural changes in the extracellular matrix (ECM) and protein metabolism. Transforming growth factor-ß1 (TGF-ß1) and Smad3 were predicted to be potential upstream regulators, associated with ECM organization. Exposure to a single wavelength of UVA (365 nm, 3 mW/cm2) for 1 h for 5 consecutive days induced the downregulation of the mRNA of ECM genes including COL1A1, COL3A1, COL5A1, VCAN and collagen I protein in HSF. UVA downregulated Smad3 protein and reduced TGF-ß-induced collagen I protein production following UVA exposure in HSF. In conclusion, high UVA exposure reduces TGF-ß signaling and collagen I production by modulating Smad levels in HSF. The effects of overexposure to high-intensity UVA on myopia control require further investigations.


Asunto(s)
Miopía , Factor de Crecimiento Transformador beta , Humanos , Factor de Crecimiento Transformador beta/metabolismo , Esclerótica/metabolismo , Colágeno/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Fibroblastos/metabolismo , Rayos Ultravioleta/efectos adversos , Miopía/metabolismo , Factores de Crecimiento Transformadores/metabolismo , Factores de Crecimiento Transformadores/farmacología
9.
Graefes Arch Clin Exp Ophthalmol ; 261(9): 2535-2545, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37074407

RESUMEN

PURPOSE: The increasing prevalence of myopia is a global public health issue. Because of the complexity of myopia pathogenesis, current control methods for myopia have great limitations. The aim of this study was to explore the effect of photobiomodulation (PBM) on human sclera fibroblasts (HSFs) under hypoxia, in the hope of providing new ideas for myopia prevention and control. METHODS: Hypoxic cell model was established at 0, 6, 12, and 24 h time points to simulate myopia microenvironment and explore the optimal time point. Control, hypoxia, hypoxia plus light, and normal plus light cell models were set up for the experiments, and cells were incubated for 24 or 48 h after PBM (660 nm, 5 J/cm2), followed by evaluation of hypoxia-inducible factor 1α (HIF-1α) and collagen I a1 (COL1A1) proteins using Western blotting and immunofluorescence, and photo damage was detected by CCK-8, scratch test, and flow cytometry assays. We also used transfection technology to further elucidate the regulatory mechanism. RESULTS: The change of target proteins is most obvious when hypoxia lasts for 24 h (p < 0.01). PBM at 660 nm increased extracellular collagen content (p < 0.001) and downregulated expression of HIF-1α (p < 0.05). This treatment did not affect the migration and proliferation of cells (p > 0.05), and effectively inhibited apoptosis under hypoxia (p < 0.0001). After overexpression of HIF-1α, the effect of PBM was attenuated (p > 0.05). CONCLUSIONS: Photobiomodulation at 660 nm promotes collagen synthesis via downregulation of HIF-1α expression without photodamage.


Asunto(s)
Miopía , Esclerótica , Humanos , Regulación hacia Abajo , Hipoxia de la Célula/fisiología , Esclerótica/metabolismo , Hipoxia/genética , Hipoxia/metabolismo , Fibroblastos/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo
10.
Int J Mol Sci ; 24(23)2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-38069354

RESUMEN

The structural and biomechanical properties of collagen-rich ocular tissues, such as the sclera, are integral to ocular function. The degradation of collagen in such tissues is associated with debilitating ophthalmic diseases such as glaucoma and myopia, which often lead to visual impairment. Collagen mimetic peptides (CMPs) have emerged as an effective treatment to repair damaged collagen in tissues of the optic projection, such as the retina and optic nerve. In this study, we used atomic force microscopy (AFM) to assess the potential of CMPs in restoring tissue stiffness in the optic nerve head (ONH), including the peripapillary sclera (PPS) and the glial lamina. Using rat ONH tissue sections, we induced collagen damage with MMP-1, followed by treatment with CMP-3 or vehicle. MMP-1 significantly reduced the Young's modulus of both the PPS and the glial lamina, indicating tissue softening. Subsequent CMP-3 treatment partially restored tissue stiffness in both the PPS and the glial lamina. Immunohistochemical analyses revealed reduced collagen fragmentation after MMP-1 digestion in CMP-3-treated tissues compared to vehicle controls. In summary, these results demonstrate the potential of CMPs to restore collagen stiffness and structure in ONH tissues following enzymatic damage. CMPs may offer a promising therapeutic avenue for preserving vision in ocular disorders involving collagen remodeling and degradation.


Asunto(s)
Disco Óptico , Animales , Disco Óptico/metabolismo , Esclerótica/metabolismo , Roedores/metabolismo , Metaloproteinasa 1 de la Matriz/metabolismo , Colágeno/metabolismo , Presión Intraocular , Fenómenos Biomecánicos
11.
Int J Mol Sci ; 24(21)2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37958819

RESUMEN

Myopia, one of the most prevalent ocular diseases worldwide, is projected to affect nearly half of the global population by 2050. The main cause of myopia in most patients is axial myopia, which primarily occurs due to the elongation of the eyeball, driven by changes in the extracellular matrix (ECM) of scleral cells. Previous studies have shown that NLRP3, an important inflammatory mediator, plays a critical role in regulating the expression of MMP-2 in the sclera. This, in turn, leads to a decrease in the expression of Collagen-1, a major component of the scleral ECM, triggering the remodeling of the scleral ECM. This study aimed to investigate the effect of MCC950, an inhibitor of NLRP3, on the progression of myopia using a mouse form-deprivation myopia (FDM) model. The FDM mouse model was constructed by subjecting three-week-old C57BL/6J mice to form-deprivation. The mice were divided into experimental (n = 10/group; FDM2M, FDM4M, FDM2W, and FDM4W) and control groups (n = 5/group). The experimental groups were further categorized based on the duration of form deprivation (2 and 4 weeks, labeled as 2 and 4, respectively) and the type of injection received (MCC950 or saline, labeled as M and W, respectively). MCC950 was injected at a concentration of 50 mg/mL, with a dose of 10 mg per kilogram of body weight. Meanwhile, the saline group received the same volume of saline. Refraction and axial length measurements were performed for each eye. The expression levels of NLRP3, caspase-1, IL-1ß, IL-18, MMP-2, and Collagen-1 in the sclera were assessed using immunohistochemistry and Western blotting. The intraperitoneal injection of MCC950 did not significantly affect refraction or axial length in normal mice (p > 0.05). However, in FDM mice, MCC950 attenuated the elongation of the axial length and resulted in a smaller shift towards myopia compared to the saline group (FDM4M vs. FDM4W, p = 0.03 and p < 0.05, respectively). MCC950 decreased MMP-2 expression (p < 0.05) but increased Collagen-1 expression (p < 0.05) in the experimental eyes when compared to the saline group. Within the MCC950 group, the expression of MMP-2 was increased in the experimental eyes at 4 weeks (p < 0.05), while that of Collagen-1 was decreased (p < 0.05), which is consistent with changes in refractive error. Immunohistochemical analysis yielded similar results (p < 0.05). MCC950 also reduced the expression levels of NLRP3 (p = 0.03), caspase-1 (p < 0.05), IL-1ß (p < 0.05), and IL-18 (p < 0.05) in the experimental eyes compared to the saline group. Within the MCC950 group, the expression levels of NLRP3 and caspase-1 were comparable between the experimental and control eyes (p > 0.05), whereas IL-18 expression was higher in experimental eyes (p < 0.05). IL-1ß expression was higher in the experimental eyes only at week 4 (p < 0.05). The intraperitoneal injection of MCC950 can inhibit the progression of myopia in FDM mice, possibly by regulating collagen remodeling in the sclera through the NLRP3-MMP-2 signaling pathway. Therefore, MCC950 holds promise as a potential therapeutic agent for controlling the progression of myopia.


Asunto(s)
Metaloproteinasa 2 de la Matriz , Miopía , Animales , Ratones , Humanos , Metaloproteinasa 2 de la Matriz/genética , Metaloproteinasa 2 de la Matriz/metabolismo , Interleucina-18/metabolismo , Inyecciones Intraperitoneales , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Ratones Endogámicos C57BL , Miopía/tratamiento farmacológico , Miopía/metabolismo , Esclerótica/metabolismo , Colágeno/metabolismo , Colágeno Tipo I/metabolismo , Caspasas/metabolismo , Modelos Animales de Enfermedad
12.
Exp Eye Res ; 219: 109071, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35447101

RESUMEN

The global prevalence of myopia, or nearsightedness, has increased at an alarming rate over the last few decades. An eye is myopic if incoming light focuses prior to reaching the retinal photoreceptors, which indicates a mismatch in its shape and optical power. This mismatch commonly results from excessive axial elongation. Important drivers of the myopia epidemic include environmental factors, genetic factors, and their interactions, e.g., genetic factors influencing the effects of environmental factors. One factor often hypothesized to be a driver of the myopia epidemic is environmental light, which has changed drastically and rapidly on a global scale. In support of this, it is well established that eye size is regulated by a homeostatic process that incorporates visual cues (emmetropization). This process allows the eye to detect and minimize refractive errors quite accurately and locally over time by modulating the rate of elongation of the eye via remodeling its outermost coat, the sclera. Critically, emmetropization is not dependent on post-retinal processing. Thus, visual cues appear to influence axial elongation through a retina-to-sclera, or retinoscleral, signaling cascade, capable of transmitting information from the innermost layer of the eye to the outermost layer. Despite significant global research interest, the specifics of retinoscleral signaling pathways remain elusive. While a few pharmacological treatments have proven to be effective in slowing axial elongation (most notably topical atropine), the mechanisms behind these treatments are still not fully understood. Additionally, several retinal neuromodulators, neurotransmitters, and other small molecules have been found to influence axial length and/or refractive error or be influenced by myopigenic cues, yet little progress has been made explaining how the signal that originates in the retina crosses the highly vascular choroid to affect the sclera. Here, we compile and synthesize the evidence surrounding three of the major candidate pathways receiving significant research attention - dopamine, retinoic acid, and adenosine. All three candidates have both correlational and causal evidence backing their involvement in axial elongation and have been implicated by multiple independent research groups across diverse species. Two hypothesized mechanisms are presented for how a retina-originating signal crosses the choroid - via 1) all-trans retinoic acid or 2) choroidal blood flow influencing scleral oxygenation. Evidence of crosstalk between the pathways is discussed in the context of these two mechanisms.


Asunto(s)
Miopía , Errores de Refracción , Animales , Modelos Animales de Enfermedad , Miopía/metabolismo , Refracción Ocular , Errores de Refracción/metabolismo , Retina/metabolismo , Esclerótica/metabolismo
13.
Cell Commun Signal ; 20(1): 162, 2022 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-36261846

RESUMEN

BACKGROUND: Frameshift mutations in LRPAP1 are responsible for autosomal recessive high myopia in human beings but its underlying mechanism remains elusive. This study aims to investigate the effect of LRPAP1 defect on ocular refractive development and its involved mechanism. METHODS: A lrpap1 mutant zebrafish line with homozygous frameshift mutation was generated by CRISPR/Cas9 technology and confirmed by Sanger sequencing. The ocular refractive phenotype was analyzed by calculating the relative refractive error (RRE) with vivo photography and histological analysis at different development stages, together with examining ocular structure change via transmission electron microscopy. Further, RNA sequencing and bioinformatics analysis were performed. The potentially involved signaling pathway as well as the interacted protein were investigated in vivo. RESULTS: The lrpap1 homozygous mutant zebrafish line showed myopic phenotype. Specifically, the mutant lines showed larger eye axial length-to-body length in one-month old individuals and a myopic shift with an RRE that changed after two months. Collagen fibers became thinning and disordered in the sclera. Further, RNA sequencing and bioinformatics analysis indicated that apoptosis signaling was activated in mutant line; this was further confirmed by acridine orange and TUNEL staining. Moreover, the expression of TGF-ß protein was elevated in the mutant lines. Finally, the treatment of wild-type embryos with a TGF-ß agonist aggravated the degree of eyeball apoptosis; conversely, the use of a TGF-ß inhibitor mitigated apoptosis in mutant embryos. CONCLUSION: The study provides functional evidence of a link between lrpap1 and myopia, suggesting that lrpap1 deficiency could lead to myopia through TGF-ß-induced apoptosis signaling. Video abstract.


Asunto(s)
Proteína Asociada a Proteínas Relacionadas con Receptor de LDL , Miopía , Proteínas de Pez Cebra , Pez Cebra , Animales , Humanos , Naranja de Acridina/metabolismo , Apoptosis , Colágeno/metabolismo , Miopía/genética , Miopía/patología , Esclerótica/metabolismo , Esclerótica/patología , Factor de Crecimiento Transformador beta/metabolismo , Pez Cebra/metabolismo
14.
Histochem Cell Biol ; 156(2): 123-132, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33966129

RESUMEN

The sclera is an ocular tissue rich of collagenous extracellular matrix, which is built up and maintained by relatively few, still poorly characterized fibroblast-like cells. The aims of this study are to add to the characterization of scleral fibroblasts and to examine the reaction of these fibroblasts to inflammatory stimulation in an ex vivo organotypic model. Scleras of scleraxis-GFP (SCX-GFP) mice were analyzed using immunohistochemistry and qRT-PCR for the expression of the tendon cell associated marker genes scleraxis (SCX), mohawk and tenomodulin. In organotypic tissue culture, explanted scleras of adult scleraxis GFP reporter mice were exposed to 10 ng/ml recombinant interleukin 1-ß (IL1-ß) and IL1-ß in combination with dexamethasone. The tissue was then analyzed by immunofluorescence staining of the inflammation- and fibrosis-associated proteins IL6, COX-2, iNOS, connective tissue growth factor, MMP2, MMP3, and MMP13 as well as for collagen fibre degradation using a Collagen Hybridizing Peptide (CHP) binding assay. The mouse sclera displayed a strong expression of scleraxis promoter-driven GFP, indicating a tendon cell-like phenotype, as well as expression of scleraxis, tenomodulin and mohawk mRNA. Upon IL1-ß stimulation, SCX-GFP+ cells significantly upregulated the expression of all proteins analysed. Moreover, IL1-ß stimulation resulted in significant collagen degradation. Adding the corticosteroid dexamethasone significantly reduced the response to IL1-ß stimulation. Collagen degradation was significantly enhanced in the IL1-ß group. Dexamethasone demonstrated a significant rescue effect. This work provides insights into the characteristics of scleral cells and establishes an ex vivo model of scleral inflammation.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Fibroblastos/metabolismo , Inflamación/metabolismo , Esclerótica/metabolismo , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/análisis , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Fibroblastos/patología , Proteínas Fluorescentes Verdes/análisis , Inflamación/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Esclerótica/patología
15.
Mol Vis ; 27: 494-505, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34526757

RESUMEN

Objective: Scleral remodeling plays a key role in axial elongation in myopia. The aim of the present study was to identify the proteomics changes and specific signaling networks to gain insight into the molecular basis of scleral remodeling in myopic eyes. Methods: Guinea pig form-deprivation myopia was induced with a translucent diffuser on a random eye for 4 weeks, while the other eye served as the contralateral control group. The axial length and refraction were measured at the beginning and end of the treatment. The proteins were extracted from the sclerae of each group and prepared for quantitative isobaric tags for relative and absolute quantification (iTRAQ) labeling combined with liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis. The coexpression networks and protein functions were analyzed using Gene Ontology (GO) and Ingenuity Pathway Analysis (IPA). Quantitative real-time PCR (qRT-PCR) and western blotting were performed to confirm the authenticity and accuracy of the iTRAQ results. Results: After 4 weeks, the form-deprivation eyes developed significant degrees of myopia, and the axial length increased statistically significantly (p<0.05). A total of 2,579 unique proteins with <1% false discovery rate (FDR) were identified. Furthermore, 56 proteins were found to be upregulated, and 84 proteins were found to be downregulated, with a threshold of a 1.2-fold change and p<0.05 in the myopia group, when compared to the control group. Further bioinformatics analysis indicated that 44 of 140 differentially expressed proteins were involved in cellular movement and cellular assembly and organization. The qRT-PCR or western blotting results confirmed that myosin IIB, ACTIN3, and cellular cytoskeletons were downregulated, while RhoA and RAP1A were upregulated in the sclera in myopic eyes. These results were consistent with the proteomics results. Conclusions: Proteomics and bioinformatics results can be helpful for identifying proteins and providing new insights for better understanding of the molecular mechanism underlying scleral remodeling. These results revealed that the proteins associated with cellular movement and cellular assembly and organization are altered during the development of myopia. Furthermore, RhoA plays a key role in the pathways involved in cellular movement and cellular assembly and organization.


Asunto(s)
Proteínas del Citoesqueleto/metabolismo , Proteínas de Unión al GTP/metabolismo , Miopía/metabolismo , Proteoma/metabolismo , Proteómica/métodos , Esclerótica/metabolismo , Actinas/metabolismo , Animales , Western Blotting , Cromatografía Liquida , Biología Computacional , Modelos Animales de Enfermedad , Ontología de Genes , Cobayas , Miosina Tipo IIB no Muscular/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Privación Sensorial , Espectrometría de Masas en Tándem , Proteínas de Unión al GTP rap1/metabolismo , Proteína de Unión al GTP rhoA/metabolismo
16.
Exp Eye Res ; 213: 108800, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34688622

RESUMEN

Aging is a predominant risk factor for various eye diseases. Age-related macular degeneration (AMD) is the leading cause of blindness in the elderly, and its etiology remains unclear. Fragmented and dysfunctional mitochondria are associated with age-related diseases. The retinal pigment epithelium (RPE), a polarized cell layer that functions in visual pigment recycling and degeneration, is suspected as the primary region site of AMD. In the present study, we investigated the relationship between mitochondrial dysfunction and RPE aging. Compared to young mice, aged pigmented mice (C57BL/6J, 12-month-old) exhibit decreased visual function without retinal thinning. Consistently, the rhodopsin expression level decreased in the outer segment of aged mice. Moreover, the cell volume of the RPE increased in aged animals. Interestingly, the expression of mitochondria dynamics-related proteins, including Drp1, was altered in the RPE-choroid complex but not in the neural retina after aging. Electron microscopy revealed that mitochondrial size decreased and cristae width increased in aged RPE. The photoreceptor outer segment (POS) treatment of ARPE-19 cells causes Drp1 activation. Furthermore, pharmacological suppression of mitochondrial fission improved the phagocytosis of the POS. These findings indicate that mitochondrial dysfunction and fission in RPE impede phagocytosis and cause retardation of the visual cycle, which can be one of the age-related defects in the retina that may contribute to the onset of AMD.


Asunto(s)
Envejecimiento/fisiología , Mitocondrias/metabolismo , Fagocitosis/fisiología , Epitelio Pigmentado de la Retina/metabolismo , Animales , Western Blotting , Tamaño de la Célula , Células Cultivadas , Coroides/metabolismo , Dinaminas/metabolismo , Electrorretinografía , Etiquetado Corte-Fin in Situ , Masculino , Ratones , Ratones Endogámicos C57BL , Microscopía Electrónica de Transmisión , Segmento Externo de las Células Fotorreceptoras Retinianas/metabolismo , Rodopsina/metabolismo , Esclerótica/metabolismo , Porcinos , Tomografía de Coherencia Óptica
17.
Exp Eye Res ; 212: 108758, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34506801

RESUMEN

Myopia is the most common cause of a visual refractive error worldwide. Cyclic adenosine monophosphate (cAMP)-linked signaling pathways contribute to the regulation of myopia development, and increases in cAMP accumulation promote myopia progression. To pinpoint the underlying mechanisms by which cAMP modulates myopia progression, we performed scleral transcriptome sequencing analysis in form-deprived mice, a well-established model of myopia development. Form deprivation significantly inhibited the expression levels of genes in the cAMP catabolic pathway. Quantitative real-time polymerase chain reaction analysis validated that the gene expression level of phosphodiesterase 4B (PDE4B), a cAMP hydrolase, was downregulated in form-deprived mouse eyes. Under visually unobstructed conditions, loss of PDE4B function in Pde4b-knockout mice increased the myopic shift in refraction, -3.661 ± 1.071 diopters, more than that in the Pde4b-wildtype littermates (P < 0.05). This suggests that downregulation and inhibition of PDE4B gives rise to myopia. In guinea pigs, subconjunctival injection of rolipram, a selective inhibitor of PDE4, led to myopia in normal eyes, and it also enhanced form-deprivation myopia (FDM). Subconjunctival injection of dibutyryl-cyclic adenosine monophosphate, a cAMP analog, induced only a myopic shift in the normal visually unobstructed eyes, but it did not enhance FDM. As myopia developed, axial elongation occurred during scleral remodeling that was correlated with changes in collagen fibril thickness and distribution. The median collagen fibril diameter in the FDM + rolipram group, 55.09 ± 1.83 nm, was thinner than in the FDM + vehicle group, 59.33 ± 2.06 nm (P = 0.011). Thus, inhibition of PDE4 activity with rolipram thinned the collagen fibril diameter relative to the vehicle treatment in form-deprived eyes. Rolipram also inhibited increases in collagen synthesis induced by TGF-ß2 in cultured human scleral fibroblasts. The current results further support a role for PDE enzymes such as PDE4B in the regulation of normal refractive development and myopia because either loss or inhibition of PDE4B function increased myopia and FDM development through declines in the scleral collagen fibril diameter.


Asunto(s)
Fosfodiesterasas de Nucleótidos Cíclicos Tipo 4/genética , Regulación hacia Abajo/genética , Regulación de la Expresión Génica , Miopía Degenerativa/genética , ARN/genética , Esclerótica/metabolismo , Animales , Colágeno/metabolismo , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 4/biosíntesis , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Femenino , Cobayas , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microscopía Electrónica , Miopía Degenerativa/diagnóstico , Miopía Degenerativa/metabolismo , Refracción Ocular/fisiología , Esclerótica/ultraestructura
18.
Exp Eye Res ; 212: 108695, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34228966

RESUMEN

OBJECTIVE: The aim of this study is to evaluate the cellular biomechanical properties and MMP-2 expression changes in rabbit scleral fibroblasts using two modes of riboflavin and ultraviolet A (UVA) collagen cross-linking (CXL). METHODS: Twenty-four New Zealand white rabbits were randomly divided into two groups, A and B. The left eye was chosen for the experimental group and the right eye for the control group. In group A, the eyes were irradiated for 30 min, with a power density of 3.0 mW/cm2. In group B, the eyes were irradiated for 9 min, with a power density of 10.0 mW/cm2. One week after CXL, full-field electroretinography was performed. Sixty days after CXL, the rabbits were sacrificed, and scleral fibroblasts were extracted from the CXL-treated sclera area and corresponding parts of control sclera and cultured. Cellular biomechanical properties were evaluated using the micropipette aspiration technique, and the MMP-2 protein expression was determined by Western blot analysis. RESULTS: There was no statistical difference in the amplitude and latency of the dark adaptation 3.0 and light adaptation 3.0 between the CXL and control eyes of groups A and B (P > 0.05). Compared with the control groups, the Young's modulus of the fibroblasts and apparent viscosity of the experimental eyes in groups A and B were increased after CXL (P < 0.05), but there was no significant difference between the two groups under different irradiation modes (P > 0.05). The MMP-2 expression in scleral fibroblasts from experimental eyes was significantly higher than that in scleral fibroblasts from control eyes in groups A and B. Under the two different irradiation modes, the MMP-2 expression in the scleral fibroblasts from experimental eyes in group A was significantly higher than that in the scleral fibroblasts from experimental eyes in group B. CONCLUSION: The riboflavin-UVA scleral CXL conducted in two different modes produced no significant side effects on the retina and could strengthen the cell biomechanical properties as well as increase the MMP-2 expression of scleral fibroblasts significantly.


Asunto(s)
Colágeno/farmacología , Reactivos de Enlaces Cruzados/farmacología , Metaloproteinasa 2 de la Matriz/biosíntesis , Miopía/tratamiento farmacológico , Riboflavina/farmacología , Esclerótica/patología , Rayos Ultravioleta , Animales , Adaptación a la Oscuridad , Modelos Animales de Enfermedad , Elasticidad , Electrorretinografía , Fibroblastos/metabolismo , Fibroblastos/patología , Miopía/metabolismo , Miopía/fisiopatología , Fármacos Fotosensibilizantes/farmacología , Conejos , Esclerótica/metabolismo
19.
Mol Pharm ; 18(2): 506-521, 2021 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-32501716

RESUMEN

Retinal diseases, such as age-related macular degeneration and diabetic retinopathy, are the leading causes of blindness worldwide. The mainstay of treatment for these blinding diseases remains to be surgery, and the available pharmaceutical therapies on the market are limited, partially owing to various biological barriers in hindering the delivery of therapeutics to the retina. The nanoparticulate drug delivery system confers the capability for delivering therapeutics to the specific ocular targets and, hence, potentially revolutionizes the current treatment landscape of retinal diseases. While the research to date indicates the enormous therapeutics potentials of the nanoparticulate delivery systems, the successful translation of these systems from the bench to bedside is challenging and requires a combined understanding of retinal pathology, physiology of the eye, and particle and formulation designs of nanoparticles. To this end, the review begins with an overview of the most prevalent retinal diseases and related pharmacotherapy. Highlights of the current challenges encountered in ocular drug delivery for each administration route are provided, followed by critical appraisal of various nanoparticulate drug delivery systems for the retinal diseases, including their formulation designs, therapeutic merits, limitations, and future direction. It is believed that a greater understanding of the nano-biointeraction in eyes will lead to the development of more sophisticated drug delivery systems for retinal diseases.


Asunto(s)
Ceguera/prevención & control , Nanopartículas/química , Soluciones Oftálmicas/administración & dosificación , Enfermedades de la Retina/tratamiento farmacológico , Administración Intravenosa , Administración Oftálmica , Administración Oral , Animales , Ceguera/etiología , Barrera Hematorretinal/metabolismo , Coroides/metabolismo , Conjuntiva/metabolismo , Córnea/metabolismo , Modelos Animales de Enfermedad , Liberación de Fármacos , Humanos , Soluciones Oftálmicas/farmacocinética , Permeabilidad , Retina/patología , Enfermedades de la Retina/complicaciones , Enfermedades de la Retina/patología , Esclerótica/metabolismo
20.
Proc Natl Acad Sci U S A ; 115(30): E7091-E7100, 2018 07 24.
Artículo en Inglés | MEDLINE | ID: mdl-29987045

RESUMEN

Worldwide, myopia is the leading cause of visual impairment. It results from inappropriate extension of the ocular axis and concomitant declines in scleral strength and thickness caused by extracellular matrix (ECM) remodeling. However, the identities of the initiators and signaling pathways that induce scleral ECM remodeling in myopia are unknown. Here, we used single-cell RNA-sequencing to identify pathways activated in the sclera during myopia development. We found that the hypoxia-signaling, the eIF2-signaling, and mTOR-signaling pathways were activated in murine myopic sclera. Consistent with the role of hypoxic pathways in mouse model of myopia, nearly one third of human myopia risk genes from the genome-wide association study and linkage analyses interact with genes in the hypoxia-inducible factor-1α (HIF-1α)-signaling pathway. Furthermore, experimental myopia selectively induced HIF-1α up-regulation in the myopic sclera of both mice and guinea pigs. Additionally, hypoxia exposure (5% O2) promoted myofibroblast transdifferentiation with down-regulation of type I collagen in human scleral fibroblasts. Importantly, the antihypoxia drugs salidroside and formononetin down-regulated HIF-1α expression as well as the phosphorylation levels of eIF2α and mTOR, slowing experimental myopia progression without affecting normal ocular growth in guinea pigs. Furthermore, eIF2α phosphorylation inhibition suppressed experimental myopia, whereas mTOR phosphorylation induced myopia in normal mice. Collectively, these findings defined an essential role of hypoxia in scleral ECM remodeling and myopia development, suggesting a therapeutic approach to control myopia by ameliorating hypoxia.


Asunto(s)
Matriz Extracelular/metabolismo , Hipoxia , Miopía/terapia , Esclerótica/metabolismo , Transducción de Señal , Animales , Modelos Animales de Enfermedad , Factor 2 Eucariótico de Iniciación/metabolismo , Matriz Extracelular/patología , Proteínas del Ojo/metabolismo , Cobayas , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Masculino , Ratones , Miopía/metabolismo , Miopía/patología , Esclerótica/irrigación sanguínea , Esclerótica/patología , Serina-Treonina Quinasas TOR/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA