Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.807
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 169(6): 1029-1041.e16, 2017 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-28575667

RESUMEN

We report a noninvasive strategy for electrically stimulating neurons at depth. By delivering to the brain multiple electric fields at frequencies too high to recruit neural firing, but which differ by a frequency within the dynamic range of neural firing, we can electrically stimulate neurons throughout a region where interference between the multiple fields results in a prominent electric field envelope modulated at the difference frequency. We validated this temporal interference (TI) concept via modeling and physics experiments, and verified that neurons in the living mouse brain could follow the electric field envelope. We demonstrate the utility of TI stimulation by stimulating neurons in the hippocampus of living mice without recruiting neurons of the overlying cortex. Finally, we show that by altering the currents delivered to a set of immobile electrodes, we can steerably evoke different motor patterns in living mice.


Asunto(s)
Estimulación Encefálica Profunda/métodos , Estimulación Transcraneal de Corriente Directa/métodos , Animales , Estimulación Encefálica Profunda/efectos adversos , Estimulación Encefálica Profunda/instrumentación , Electrodos , Hipocampo/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Neuronas/fisiología , Estimulación Transcraneal de Corriente Directa/efectos adversos , Estimulación Transcraneal de Corriente Directa/instrumentación
2.
Proc Natl Acad Sci U S A ; 121(14): e2318528121, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38536752

RESUMEN

Human working memory is a key cognitive process that engages multiple functional anatomical nodes across the brain. Despite a plethora of correlative neuroimaging evidence regarding the working memory architecture, our understanding of critical hubs causally controlling overall performance is incomplete. Causal interpretation requires cognitive testing following safe, temporal, and controllable neuromodulation of specific functional anatomical nodes. Such experiments became available in healthy humans with the advance of transcranial alternating current stimulation (tACS). Here, we synthesize findings of 28 placebo-controlled studies (in total, 1,057 participants) that applied frequency-specific noninvasive stimulation of neural oscillations and examined working memory performance in neurotypical adults. We use a computational meta-modeling method to simulate each intervention in realistic virtual brains and test reported behavioral outcomes against the stimulation-induced electric fields in different brain nodes. Our results show that stimulating anterior frontal and medial temporal theta oscillations and occipitoparietal gamma rhythms leads to significant dose-dependent improvement in working memory task performance. Conversely, prefrontal gamma modulation is detrimental to performance. Moreover, we found distinct spatial expression of theta subbands, where working memory changes followed orbitofrontal high-theta modulation and medial temporal low-theta modulation. Finally, all these results are driven by changes in working memory accuracy rather than processing time measures. These findings provide a fresh view of the working memory mechanisms, complementary to neuroimaging research, and propose hypothesis-driven targets for the clinical treatment of working memory deficits.


Asunto(s)
Memoria a Corto Plazo , Estimulación Transcraneal de Corriente Directa , Adulto , Humanos , Memoria a Corto Plazo/fisiología , Ritmo Gamma/fisiología , Encéfalo , Cognición/fisiología , Trastornos de la Memoria , Estimulación Transcraneal de Corriente Directa/métodos
3.
J Neurosci ; 44(22)2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38548336

RESUMEN

Transcranial direct current stimulation (tDCS) is a noninvasive neuromodulation technique gaining more attention in neurodevelopmental disorders (NDDs). Due to the phenotypic heterogeneity of NDDs, tDCS is unlikely to be equally effective in all individuals. The present study aimed to establish neuroanatomical markers in typically developing (TD) individuals that may be used for the prediction of individual responses to tDCS. Fifty-seven male and female children received 2 mA anodal and sham tDCS, targeting the left dorsolateral prefrontal cortex (DLPFCleft), right inferior frontal gyrus, and bilateral temporoparietal junction. Response to tDCS was assessed based on task performance differences between anodal and sham tDCS in different neurocognitive tasks (N-back, flanker, Mooney faces detection, attentional emotional recognition task). Measures of cortical thickness (CT) and surface area (SA) were derived from 3 Tesla structural MRI scans. Associations between neuroanatomy and task performance were assessed using general linear models (GLM). Machine learning (ML) algorithms were employed to predict responses to tDCS. Vertex-wise estimates of SA were more closely linked to differences in task performance than measures of CT. Across ML algorithms, highest accuracies were observed for the prediction of N-back task performance differences following stimulation of the DLPFCleft, where 65% of behavioral variance was explained by variability in SA. Lower accuracies were observed for all other tasks and stimulated regions. This suggests that it may be possible to predict individual responses to tDCS for some behavioral measures and target regions. In the future, these models might be extended to predict treatment outcome in individuals with NDDs.


Asunto(s)
Imagen por Resonancia Magnética , Estimulación Transcraneal de Corriente Directa , Humanos , Masculino , Estimulación Transcraneal de Corriente Directa/métodos , Femenino , Niño , Adolescente , Cognición/fisiología , Desempeño Psicomotor/fisiología
4.
J Neurosci ; 44(25)2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38729759

RESUMEN

Attentional control over sensory processing has been linked to neural alpha oscillations and related inhibition of cerebral cortex. Despite the wide consensus on the functional relevance of alpha oscillations for attention, precise neural mechanisms of how alpha oscillations shape perception and how this top-down modulation is implemented in cortical networks remain unclear. Here, we tested the hypothesis that alpha oscillations in frontal eye fields (FEFs) are causally involved in the top-down regulation of visual processing in humans (male and female). We applied sham-controlled, intermittent transcranial alternating current stimulation (tACS) over bilateral FEF at either 10 Hz (alpha) or 40 Hz (gamma) to manipulate attentional preparation in a visual discrimination task. Under each stimulation condition, we measured psychometric functions for contrast perception and introduced a novel linear mixed modeling approach for statistical control of neurosensory side effects of the electric stimulation. tACS at alpha frequency reduced the slope of the psychometric function, resulting in improved subthreshold and impaired superthreshold contrast perception. Side effects on the psychometric functions were complex and showed large interindividual variability. Controlling for the impact of side effects on the psychometric parameters by using covariates in the linear mixed model analysis reduced this variability and strengthened the perceptual effect. We propose that alpha tACS over FEF mimicked a state of endogenous attention by strengthening a fronto-occipitoparietal network in the alpha band. We speculate that this network modulation enhanced phasic gating in occipitoparietal cortex leading to increased variability of single-trial psychometric thresholds, measurable as a reduction of psychometric slope.


Asunto(s)
Ritmo alfa , Atención , Estimulación Transcraneal de Corriente Directa , Percepción Visual , Humanos , Femenino , Masculino , Atención/fisiología , Estimulación Transcraneal de Corriente Directa/métodos , Adulto , Percepción Visual/fisiología , Adulto Joven , Ritmo alfa/fisiología , Lóbulo Frontal/fisiología , Estimulación Luminosa/métodos , Campos Visuales/fisiología
5.
J Neurosci ; 44(27)2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38811165

RESUMEN

The intricate relationship between prestimulus alpha oscillations and visual contrast detection variability has been the focus of numerous studies. However, the causal impact of prestimulus alpha traveling waves on visual contrast detection remains largely unexplored. In our research, we sought to discern the causal link between prestimulus alpha traveling waves and visual contrast detection across different levels of mental fatigue. Using electroencephalography alongside a visual detection task with 30 healthy adults (13 females; 17 males), we identified a robust negative correlation between prestimulus alpha forward traveling waves (FTWs) and visual contrast threshold (VCT). Inspired by this correlation, we utilized 45/-45° phase-shifted transcranial alternating current stimulation (tACS) in a sham-controlled, double-blind, within-subject experiment with 33 healthy adults (23 females; 10 males) to directly modulate these alpha traveling waves. After the application of 45° phase-shifted tACS, we observed a substantial decrease in FTW and an increase in backward traveling waves, along with a concurrent increase in VCT, compared with the sham condition. These changes were particularly pronounced under a low fatigue state. The findings of state-dependent tACS effects reveal the potential causal role of prestimulus alpha traveling waves in visual contrast detection. Moreover, our study highlights the potential of 45/-45° phase-shifted tACS in cognitive modulation and therapeutic applications.


Asunto(s)
Ritmo alfa , Sensibilidad de Contraste , Estimulación Transcraneal de Corriente Directa , Humanos , Femenino , Masculino , Adulto , Ritmo alfa/fisiología , Estimulación Transcraneal de Corriente Directa/métodos , Sensibilidad de Contraste/fisiología , Adulto Joven , Método Doble Ciego , Electroencefalografía/métodos , Estimulación Luminosa/métodos , Percepción Visual/fisiología , Fatiga Mental/fisiopatología
6.
J Neurosci ; 44(37)2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39147592

RESUMEN

The act of recalling memories can paradoxically lead to the forgetting of other associated memories, a phenomenon known as retrieval-induced forgetting (RIF). Inhibitory control mechanisms, primarily mediated by the prefrontal cortex, are thought to contribute to RIF. In this study, we examined whether stimulating the medial prefrontal cortex (mPFC) with transcranial direct current stimulation modulates RIF and investigated the associated electrophysiological correlates. In a randomized study, 50 participants (27 males and 23 females) received either real or sham stimulation before performing retrieval practice on target memories. After retrieval practice, a final memory test to assess RIF was administered. We found that stimulation selectively increased the retrieval accuracy of competing memories, thereby decreasing RIF, while the retrieval accuracy of target memories remained unchanged. The reduction in RIF was associated with a more pronounced beta desynchronization within the left dorsolateral prefrontal cortex (left-DLPFC), in an early time window (<500 ms) after cue onset during retrieval practice. This led to a stronger beta desynchronization within the parietal cortex in a later time window, an established marker for successful memory retrieval. Together, our results establish the causal involvement of the mPFC in actively suppressing competing memories and demonstrate that while forgetting arises as a consequence of retrieving specific memories, these two processes are functionally independent. Our findings suggest that stimulation potentially disrupted inhibitory control processes, as evidenced by reduced RIF and stronger beta desynchronization in fronto-parietal brain regions during memory retrieval, although further research is needed to elucidate the specific mechanisms underlying this effect.


Asunto(s)
Recuerdo Mental , Lóbulo Parietal , Corteza Prefrontal , Estimulación Transcraneal de Corriente Directa , Humanos , Masculino , Femenino , Recuerdo Mental/fisiología , Corteza Prefrontal/fisiología , Lóbulo Parietal/fisiología , Estimulación Transcraneal de Corriente Directa/métodos , Adulto Joven , Adulto , Ritmo beta/fisiología , Sincronización Cortical/fisiología
7.
J Neurosci ; 44(21)2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38531634

RESUMEN

Methods of cognitive enhancement for humans are most impactful when they generalize across tasks. However, the extent to which such "transfer" is possible via interventions is widely debated. In addition, the contribution of excitatory and inhibitory processes to such transfer is unknown. Here, in a large-scale neuroimaging individual differences study with humans (both sexes), we paired multitasking training and noninvasive brain stimulation (transcranial direct current stimulation, tDCS) over multiple days and assessed performance across a range of paradigms. In addition, we varied tDCS dosage (1.0 and 2.0 mA), electrode montage (left or right prefrontal regions), and training task (multitasking vs a control task) and assessed GABA and glutamate concentrations via ultrahigh field 7T magnetic resonance spectroscopy. Generalized benefits were observed in spatial attention, indexed by visual search performance, when multitasking training was combined with 1.0 mA stimulation targeting either the left or right prefrontal cortex (PFC). This transfer effect persisted for ∼30 d post intervention. Critically, the transferred benefits associated with right prefrontal tDCS were predicted by pretraining concentrations of glutamate in the PFC. Thus, the effects of this combined stimulation and training protocol appear to be linked predominantly to excitatory brain processes.


Asunto(s)
Ácido Glutámico , Aprendizaje , Corteza Prefrontal , Estimulación Transcraneal de Corriente Directa , Humanos , Masculino , Femenino , Estimulación Transcraneal de Corriente Directa/métodos , Adulto , Ácido Glutámico/metabolismo , Corteza Prefrontal/fisiología , Corteza Prefrontal/metabolismo , Adulto Joven , Aprendizaje/fisiología , Ácido gamma-Aminobutírico/metabolismo , Atención/fisiología , Espectroscopía de Resonancia Magnética/métodos
8.
PLoS Biol ; 20(5): e3001650, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35613140

RESUMEN

Transcranial alternating current stimulation (tACS) is a popular method for modulating brain activity noninvasively. In particular, tACS is often used as a targeted intervention that enhances a neural oscillation at a specific frequency to affect a particular behavior. However, these interventions often yield highly variable results. Here, we provide a potential explanation for this variability: tACS competes with the brain's ongoing oscillations. Using neural recordings from alert nonhuman primates, we find that when neural firing is independent of ongoing brain oscillations, tACS readily entrains spiking activity, but when neurons are strongly entrained to ongoing oscillations, tACS often causes a decrease in entrainment instead. Consequently, tACS can yield categorically different results on neural activity, even when the stimulation protocol is fixed. Mathematical analysis suggests that this competition is likely to occur under many experimental conditions. Attempting to impose an external rhythm on the brain may therefore often yield precisely the opposite effect.


Asunto(s)
Estimulación Transcraneal de Corriente Directa , Animales , Encéfalo/fisiología , Neuronas/fisiología , Primates , Técnicas Estereotáxicas , Estimulación Transcraneal de Corriente Directa/métodos
9.
PLoS Comput Biol ; 20(1): e1011164, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38232116

RESUMEN

Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation technique with potential for counteracting disrupted brain network activity in Alzheimer's disease (AD) to improve cognition. However, the results of tDCS studies in AD have been variable due to different methodological choices such as electrode placement. To address this, a virtual brain network model of AD was used to explore tDCS optimization. We compared a large, representative set of virtual tDCS intervention setups, to identify the theoretically optimized tDCS electrode positions for restoring functional network features disrupted in AD. We simulated 20 tDCS setups using a computational dynamic network model of 78 neural masses coupled according to human structural topology. AD network damage was simulated using an activity-dependent degeneration algorithm. Current flow modeling was used to estimate tDCS-targeted cortical regions for different electrode positions, and excitability of the pyramidal neurons of the corresponding neural masses was modulated to simulate tDCS. Outcome measures were relative power spectral density (alpha bands, 8-10 Hz and 10-13 Hz), total spectral power, posterior alpha peak frequency, and connectivity measures phase lag index (PLI) and amplitude envelope correlation (AEC). Virtual tDCS performance varied, with optimized strategies improving all outcome measures, while others caused further deterioration. The best performing setup involved right parietal anodal stimulation, with a contralateral supraorbital cathode. A clear correlation between the network role of stimulated regions and tDCS success was not observed. This modeling-informed approach can guide and perhaps accelerate tDCS therapy development and enhance our understanding of tDCS effects. Follow-up studies will compare the general predictions to personalized virtual models and validate them with tDCS-magnetoencephalography (MEG) in a clinical AD patient cohort.


Asunto(s)
Enfermedad de Alzheimer , Estimulación Transcraneal de Corriente Directa , Humanos , Enfermedad de Alzheimer/terapia , Estimulación Transcraneal de Corriente Directa/métodos , Encéfalo/fisiología , Magnetoencefalografía , Redes Neurales de la Computación
10.
Brain ; 147(4): 1412-1422, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-37956080

RESUMEN

Cortical myoclonus is produced by abnormal neuronal discharges within the sensorimotor cortex, as demonstrated by electrophysiology. Our hypothesis is that the loss of cerebellar inhibitory control over the motor cortex, via cerebello-thalamo-cortical connections, could induce the increased sensorimotor cortical excitability that eventually causes cortical myoclonus. To explore this hypothesis, in the present study we applied anodal transcranial direct current stimulation over the cerebellum of patients affected by cortical myoclonus and healthy controls and assessed its effect on sensorimotor cortex excitability. We expected that anodal cerebellar transcranial direct current stimulation would increase the inhibitory cerebellar drive to the motor cortex and therefore reduce the sensorimotor cortex hyperexcitability observed in cortical myoclonus. Ten patients affected by cortical myoclonus of various aetiology and 10 aged-matched healthy control subjects were included in the study. All participants underwent somatosensory evoked potentials, long-latency reflexes and short-interval intracortical inhibition recording at baseline and immediately after 20 min session of cerebellar anodal transcranial direct current stimulation. In patients, myoclonus was recorded by the means of surface EMG before and after the cerebellar stimulation. Anodal cerebellar transcranial direct current stimulation did not change the above variables in healthy controls, while it significantly increased the amplitude of somatosensory evoked potential cortical components, long-latency reflexes and decreased short-interval intracortical inhibition in patients; alongside, a trend towards worsening of the myoclonus after the cerebellar stimulation was observed. Interestingly, when dividing patients in those with and without giant somatosensory evoked potentials, the increment of the somatosensory evoked potential cortical components was observed mainly in those with giant potentials. Our data showed that anodal cerebellar transcranial direct current stimulation facilitates-and does not inhibit-sensorimotor cortex excitability in cortical myoclonus syndromes. This paradoxical response might be due to an abnormal homeostatic plasticity within the sensorimotor cortex, driven by dysfunctional cerebello-thalamo-cortical input to the motor cortex. We suggest that the cerebellum is implicated in the pathophysiology of cortical myoclonus and that these results could open the way to new forms of treatment or treatment targets.


Asunto(s)
Mioclonía , Estimulación Transcraneal de Corriente Directa , Humanos , Anciano , Estimulación Transcraneal de Corriente Directa/métodos , Estimulación Magnética Transcraneal/métodos , Potenciales Evocados Motores/fisiología , Cerebelo/fisiología
11.
Cereb Cortex ; 34(1)2024 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-38100323

RESUMEN

tACS (transcranial alternating current stimulation) is a technique for modulating brain activity through electrical current. Its effects depend on cortical entrainment, which is most effective when transcranial alternating current stimulation matches the brain's natural rhythm. High-frequency oscillations produced by external stimuli are useful for studying the somatosensory pathway. Our study aims to explore transcranial alternating current stimulation's impact on the somatosensory system when synchronized with individual high-frequency oscillation frequencies. We conducted a randomized, sham-controlled study with 14 healthy participants. The study had three phases: Individualized transcranial alternating current stimulation (matching the individual's high-frequency oscillation rhythm), Standard transcranial alternating current stimulation (600 Hz), and sham stimulation. We measured early and late HFO components after median nerve electrical stimulation at three time points: before (T0), immediately after (T1), and 10 min after transcranial alternating current stimulation (T2). Compared to Sham and Standard stimulation Individualized transcranial alternating current stimulation significantly enhanced high-frequency oscillations, especially the early component, immediately after stimulation and for at least 15 min. No other effects were observed for other high-frequency oscillation measures. In summary, our study provides initial evidence that transcranial alternating current stimulation synchronized with an individual's high-frequency oscillation frequency can precisely and time-specifically modulate thalamocortical activity. These insights may pave the way for innovative, personalized neuromodulation methods for the somatosensory system.


Asunto(s)
Estimulación Transcraneal de Corriente Directa , Humanos , Estimulación Transcraneal de Corriente Directa/métodos
12.
Cereb Cortex ; 34(10)2024 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-39367728

RESUMEN

The purpose of this study was to evaluate the influence of high-definition transcranial direct current stimulation (HD-tDCS) on finger motor skill acquisition. Thirty-one healthy adult males were randomly assigned to one of three groups: online HD-tDCS (administered during motor skill learning), offline HD-tDCS (delivered before motor skill learning), and a sham group. Participants engaged in a visual isometric pinch task for three consecutive days. Overall motor skill learning and speed-accuracy tradeoff function were used to evaluate the efficacy of tDCS. Electroencephalography was recorded and power spectral density was calculated. Both online and offline HD-tDCS total motor skill acquisition was significantly higher than the sham group (P < 0.001 and P < 0.05, respectively). Motor skill acquisition in the online group was higher than offline (P = 0.132, Cohen's d = 1.46). Speed-accuracy tradeoff function in the online group was higher than both offline and sham groups in the post-test. The online group exhibited significantly lower electroencephalography activity in the frontal, fronto-central, and centro-parietal alpha band regions compared to the sham (P < 0.05). The findings suggest that HD-tDCS application can boost finger motor skill acquisition, with online HD-tDCS displaying superior facilitation. Furthermore, online HD-tDCS reduces the power of alpha rhythms during motor skill execution, enhancing information processing and skill learning efficiency.


Asunto(s)
Electroencefalografía , Aprendizaje , Destreza Motora , Estimulación Transcraneal de Corriente Directa , Humanos , Masculino , Destreza Motora/fisiología , Estimulación Transcraneal de Corriente Directa/métodos , Electroencefalografía/métodos , Adulto Joven , Aprendizaje/fisiología , Adulto , Encéfalo/fisiología
13.
Cereb Cortex ; 34(6)2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38850217

RESUMEN

This study aimed to investigate the effects of high-definition transcranial direct current stimulation on ankle force sense and underlying cerebral hemodynamics. Sixteen healthy adults (8 males and 8 females) were recruited in the study. Each participant received either real or sham high-definition transcranial direct current stimulation interventions in a randomly assigned order on 2 visits. An isokinetic dynamometer was used to assess the force sense of the dominant ankle; while the functional near-infrared spectroscopy was employed to monitor the hemodynamics of the sensorimotor cortex. Two-way analyses of variance with repeated measures and Pearson correlation analyses were performed. The results showed that the absolute error and root mean square error of ankle force sense dropped more after real stimulation than after sham stimulation (dropped by 23.4% vs. 14.9% for absolute error, and 20.0% vs. 10.2% for root mean square error). The supplementary motor area activation significantly increased after real high-definition transcranial direct current stimulation. The decrease in interhemispheric functional connectivity within the Brodmann's areas 6 was significantly correlated with ankle force sense improvement after real high-definition transcranial direct current stimulation. In conclusion, high-definition transcranial direct current stimulation can be used as a potential intervention for improving ankle force sense. Changes in cerebral hemodynamics could be one of the explanations for the energetic effect of high-definition transcranial direct current stimulation.


Asunto(s)
Tobillo , Espectroscopía Infrarroja Corta , Estimulación Transcraneal de Corriente Directa , Adulto , Femenino , Humanos , Masculino , Adulto Joven , Tobillo/fisiología , Circulación Cerebrovascular/fisiología , Hemodinámica/fisiología , Corteza Motora/fisiología , Estimulación Transcraneal de Corriente Directa/métodos , Estudios Cruzados
14.
Cereb Cortex ; 34(6)2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38839074

RESUMEN

Skin sympathetic nerve activity (SSNA) is primarily involved in thermoregulation and emotional expression; however, the brain regions involved in the generation of SSNA are not completely understood. In recent years, our laboratory has shown that blood-oxygen-level-dependent signal intensity in the ventromedial prefrontal cortex (vmPFC) and dorsolateral prefrontal cortex (dlPFC) are positively correlated with bursts of SSNA during emotional arousal and increases in signal intensity in the vmPFC occurring with increases in spontaneous bursts of SSNA even in the resting state. We have recently shown that unilateral transcranial alternating current stimulation (tACS) of the dlPFC causes modulation of SSNA but given that the current was delivered between electrodes over the dlPFC and the nasion, it is possible that the effects were due to current acting on the vmPFC. To test this, we delivered tACS to target the right vmPFC or dlPFC and nasion and recorded SSNA in 11 healthy participants by inserting a tungsten microelectrode into the right common peroneal nerve. The similarity in SSNA modulation between ipsilateral vmPFC and dlPFC suggests that the ipsilateral vmPFC, rather than the dlPFC, may be causing the modulation of SSNA during ipsilateral dlPFC stimulation.


Asunto(s)
Corteza Prefrontal , Piel , Sistema Nervioso Simpático , Estimulación Transcraneal de Corriente Directa , Humanos , Corteza Prefrontal/fisiología , Masculino , Femenino , Adulto , Sistema Nervioso Simpático/fisiología , Adulto Joven , Piel/inervación , Estimulación Transcraneal de Corriente Directa/métodos , Estimulación Eléctrica/métodos , Nervio Peroneo/fisiología , Lateralidad Funcional/fisiología
15.
Cereb Cortex ; 34(13): 8-18, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38696602

RESUMEN

Noninvasive brain stimulation (NIBS) has been increasingly investigated during the last decade as a treatment option for persons with autism spectrum disorder (ASD). Yet, previous studies did not reach a consensus on a superior treatment protocol or stimulation target. Persons with ASD often suffer from social isolation and high rates of unemployment, arising from difficulties in social interaction. ASD involves multiple neural systems involved in perception, language, and cognition, and the underlying brain networks of these functional domains have been well documented. Aiming to provide an overview of NIBS effects when targeting these neural systems in late adolescent and adult ASD, we conducted a systematic search of the literature starting at 631 non-duplicate publications, leading to six studies corresponding with inclusion and exclusion criteria. We discuss these studies regarding their treatment rationale and the accordingly chosen methodological setup. The results of these studies vary, while methodological advances may allow to explain some of the variability. Based on these insights, we discuss strategies for future clinical trials to personalize the selection of brain stimulation targets taking into account intersubject variability of brain anatomy as well as function.


Asunto(s)
Encéfalo , Humanos , Adulto , Trastorno del Espectro Autista/terapia , Medicina de Precisión/métodos , Medicina de Precisión/tendencias , Estimulación Magnética Transcraneal/métodos , Trastorno Autístico/terapia , Trastorno Autístico/fisiopatología , Trastorno Autístico/psicología , Estimulación Transcraneal de Corriente Directa/métodos
16.
J Neurosci ; 43(41): 6909-6919, 2023 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-37648451

RESUMEN

Noninvasive brain stimulation techniques, such as transcranial direct current stimulation (tDCS), show promise in treating a range of psychiatric and neurologic conditions. However, optimization of such applications requires a better understanding of how tDCS alters cognition and behavior. Existing evidence implicates dopamine in tDCS alterations of brain activity and plasticity; however, there is as yet no causal evidence for a role of dopamine in tDCS effects on cognition and behavior. Here, in a preregistered, double-blinded study, we examined how pharmacologically manipulating dopamine altered the effect of tDCS on the speed-accuracy trade-off, which taps ubiquitous strategic operations. Cathodal tDCS was delivered over the left prefrontal cortex and the superior medial frontal cortex before participants (N = 62, 24 males, 38 females) completed a dot-motion task, making judgments on the direction of a field of moving dots under instructions to emphasize speed, accuracy, or both. We leveraged computational modeling to uncover how our interventions altered latent decisional processes driving the speed-accuracy trade-off. We show that dopamine in combination with tDCS (but not tDCS alone nor dopamine alone) not only impaired decision accuracy but also impaired discriminability, which suggests that these manipulations altered the encoding or representation of discriminative evidence. This is, to the best of our knowledge, the first direct evidence implicating dopamine in the way tDCS affects cognition and behavior.SIGNIFICANCE STATEMENT tDCS can improve cognitive and behavioral impairments in clinical conditions; however, a better understanding of its mechanisms is required to optimize future clinical applications. Here, using a pharmacological approach to manipulate brain dopamine levels in healthy adults, we demonstrate a role for dopamine in the effects of tDCS in the speed-accuracy trade-off, a strategic cognitive process ubiquitous in many contexts. In doing so, we provide direct evidence implicating dopamine in the way tDCS affects cognition and behavior.


Asunto(s)
Dopamina , Estimulación Transcraneal de Corriente Directa , Adulto , Masculino , Femenino , Humanos , Dopamina/fisiología , Estimulación Transcraneal de Corriente Directa/métodos , Cognición/fisiología , Encéfalo , Corteza Prefrontal/fisiología
17.
J Neurosci ; 43(4): 635-646, 2023 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-36639896

RESUMEN

Transcranial direct current stimulation (tDCS) is a promising noninvasive neuromodulatory treatment option for multiple neurologic and psychiatric disorders, but its mechanism of action is still poorly understood. Adult hippocampal neurogenesis (AHN) continues throughout life and is crucial for preserving several aspects of hippocampal-dependent cognitive functions. Nevertheless, the contribution of AHN in the neuromodulatory effects of tDCS remains unexplored. Here, we sought to investigate whether multisession anodal tDCS may modulate AHN and its associated cognitive functions. Multisession anodal tDCS were applied on the skull over the hippocampus of adult male mice for 20 min at 0.25 mA once daily for 10 d totally. We found that multisession anodal tDCS enhances AHN by increasing the proliferation, differentiation and survival of neural stem/progenitor cells (NSPCs). In addition, tDCS treatment increased cell cycle reentry and reduced cell cycle exit of NSPCs. The tDCS-treated mice exhibited a reduced GABAergic inhibitory tone in the dentate gyrus compared with sham-treated mice. The effect of tDCS on the proliferation of NSPCs was blocked by pharmacological restoration of GABAB receptor-mediated inhibition. Functionally, multisession anodal tDCS enhances performance on a contextual fear discrimination task, and this enhancement was prevented by blocking AHN using the DNA alkylating agent temozolomide (TMZ). Our results emphasize an important role for AHN in mediating the beneficial effects of tDCS on cognitive functions that substantially broadens the mechanistic understanding of tDCS beyond its well-described in hippocampal synaptic plasticity.SIGNIFICANCE STATEMENT Transcranial direct current stimulation (tDCS) has been shown to effectively enhance cognitive functions in healthy and pathologic conditions. However, the mechanisms underlying its effects are largely unknown and need to be better understood to enable its optimal clinical use. This study shows that multisession anodal tDCS enhances adult hippocampal neurogenesis (AHN) and therefore contributes to enhance context discrimination in mice. Our results also show that the effect of tDCS on AHN is associated with reduced GABAergic inhibition in the dentate gyrus. Our study uncovers a novel mechanism of anodal tDCS to elicit cognitive-enhancing effects and may have the potential to improve cognitive decline associated with normal aging and neurodegenerative disorders.


Asunto(s)
Estimulación Transcraneal de Corriente Directa , Masculino , Ratones , Animales , Estimulación Transcraneal de Corriente Directa/métodos , Hipocampo , Plasticidad Neuronal/fisiología , Cognición , Neurogénesis
18.
J Physiol ; 602(12): 2917-2930, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38758592

RESUMEN

Fluid intelligence (Gf) involves rational thinking skills and requires the integration of information from different cortical regions to resolve novel complex problems. The effects of non-invasive brain stimulation on Gf have been studied in attempts to improve Gf, but such studies are rare and the few existing have reached conflicting conclusions. The parieto-frontal integration theory of intelligence (P-FIT) postulates that the parietal and frontal lobes play a critical role in Gf. To investigate the suggested role of parietal cortices, we applied high-definition transcranial direct current stimulation (HD-tDCS) to the left and right parietal cortices of 39 healthy adults (age 19-33 years) for 20 min in three separate sessions (left active, right active and sham). After completing the stimulation session, the participants completed a logical reasoning task based on Raven's Progressive Matrices during magnetoencephalography. Significant neural responses at the sensor level across all stimulation conditions were imaged using a beamformer. Whole-brain, spectrally constrained functional connectivity was then computed to examine the network-level activity. Behaviourally, we found that participants were significantly more accurate following left compared to right parietal stimulation. Regarding neural findings, we found significant HD-tDCS montage-related effects in brain networks thought to be critical for P-FIT, including parieto-occipital, fronto-occipital, fronto-parietal and occipito-cerebellar connectivity during task performance. In conclusion, our findings showed that left parietal stimulation improved abstract reasoning abilities relative to right parietal stimulation and support both P-FIT and the neural efficiency hypothesis. KEY POINTS: Abstract reasoning is a critical component of fluid intelligence and is known to be served by multispectral oscillatory activity in the fronto-parietal cortices. Recent studies have aimed to improve abstract reasoning abilities and fluid intelligence overall through behavioural training, but the results have been mixed. High-definition transcranial direct-current stimulation (HD-tDCS) applied to the parietal cortices modulated task performance and neural oscillations during abstract reasoning. Left parietal stimulation resulted in increased accuracy and decreased functional connectivity between occipital regions and frontal, parietal, and cerebellar regions. Future studies should investigate whether HD-tDCS alters abstract reasoning abilities in those who exhibit declines in performance, such as healthy ageing populations.


Asunto(s)
Inteligencia , Lóbulo Parietal , Estimulación Transcraneal de Corriente Directa , Humanos , Estimulación Transcraneal de Corriente Directa/métodos , Adulto , Lóbulo Parietal/fisiología , Masculino , Femenino , Inteligencia/fisiología , Adulto Joven , Red Nerviosa/fisiología , Magnetoencefalografía/métodos
19.
J Cogn Neurosci ; 36(1): 143-154, 2024 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-37870524

RESUMEN

The growing popularity of virtual reality systems has led to a renewed interest in understanding the neurophysiological correlates of the illusion of self-motion (vection), a phenomenon that can be both intentionally induced or avoided in such systems, depending on the application. Recent research has highlighted the modulation of α power oscillations over the superior parietal cortex during vection, suggesting the occurrence of inhibitory mechanisms in the sensorimotor and vestibular functional networks to resolve the inherent visuo-vestibular conflict. The present study aims to further explore this relationship and investigate whether neuromodulating these waves could causally affect the quality of vection. In a crossover design, 22 healthy volunteers received high amplitude and focused α-tACS (transcranial alternating current stimulation) over the superior parietal cortex while experiencing visually induced vection triggered by optokinetic stimulation. The tACS was tuned to each participant's individual α peak frequency, with θ-tACS and sham stimulation serving as controls. Overall, participants experienced better quality vection during α-tACS compared with control θ-tACS and sham stimulations, as quantified by the intensity of vection. The observed neuromodulation supports a causal relationship between parietal α oscillations and visually induced self-motion illusions, with their entrainment triggering overinhibition of the conflict within the sensorimotor and vestibular functional networks. These results confirm the potential of noninvasive brain stimulation for modulating visuo-vestibular conflicts, which could help to enhance the sense of presence in virtual reality environments.


Asunto(s)
Ilusiones , Estimulación Transcraneal de Corriente Directa , Realidad Virtual , Humanos , Estimulación Eléctrica , Lóbulo Parietal/fisiología , Estimulación Transcraneal de Corriente Directa/métodos , Estudios Cruzados
20.
Neuroimage ; 289: 120550, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38382861

RESUMEN

Visual crowding is the difficulty in identifying an object when surrounded by neighbouring flankers, representing a bottleneck for object perception. Crowding arises not only from the activity of visual areas but also from parietal areas and fronto-parietal network activity. Parietal areas would provide the dorsal-to-ventral guidance for object identification and the fronto-parietal network would modulate the attentional resolution. Several studies highlighted the relevance of beta oscillations (15-25 Hz) in these areas for visual crowding and other connatural visual phenomena. In the present study, we investigated the differential contribution of beta oscillations in the parietal cortex and fronto-parietal network in the resolution of visual crowding. During a crowding task with letter stimuli, high-definition transcranial Alternating Current Stimulation (tACS) in the beta band (18 Hz) was delivered bilaterally on parietal sites, on the right fronto-parietal network, and in a sham regime. Resting-state EEG was recorded before and after stimulation to measure tACS-induced aftereffects. The influence of crowding was reduced only when tACS was delivered bilaterally on parietal sites. In this condition, beta power was reduced after the stimulation. Furthermore, the magnitude of tACS-induced aftereffects varied as a function of individual differences in beta oscillations. Results corroborate the link between parietal beta oscillations and visual crowding, providing fundamental insights on brain rhythms underlying the dorsal-to-ventral guidance in visual perception and suggesting that beta tACS can induce plastic changes in these areas. Remarkably, these findings open new possibilities for neuromodulatory interventions for disorders characterised by abnormal crowding, such as dyslexia.


Asunto(s)
Lóbulo Parietal , Estimulación Transcraneal de Corriente Directa , Humanos , Percepción Visual/fisiología , Estimulación Transcraneal de Corriente Directa/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA