Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 329
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Annu Rev Biochem ; 83: 779-812, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24499181

RESUMEN

In eukaryotes, the translation initiation codon is generally identified by the scanning mechanism, wherein every triplet in the messenger RNA leader is inspected for complementarity to the anticodon of methionyl initiator transfer RNA (Met-tRNAi). Binding of Met-tRNAi to the small (40S) ribosomal subunit, in a ternary complex (TC) with eIF2-GTP, is stimulated by eukaryotic initiation factor 1 (eIF1), eIF1A, eIF3, and eIF5, and the resulting preinitiation complex (PIC) joins the 5' end of mRNA preactivated by eIF4F and poly(A)-binding protein. RNA helicases remove secondary structures that impede ribosome attachment and subsequent scanning. Hydrolysis of eIF2-bound GTP is stimulated by eIF5 in the scanning PIC, but completion of the reaction is impeded at non-AUG triplets. Although eIF1 and eIF1A promote scanning, eIF1 and possibly the C-terminal tail of eIF1A must be displaced from the P decoding site to permit base-pairing between Met-tRNAi and the AUG codon, as well as to allow subsequent phosphate release from eIF2-GDP. A second GTPase, eIF5B, catalyzes the joining of the 60S subunit to produce an 80S initiation complex that is competent for elongation.


Asunto(s)
Factor 1 Eucariótico de Iniciación/metabolismo , Factor 3 de Iniciación Eucariótica/metabolismo , Factor 5 Eucariótico de Iniciación/metabolismo , ARN de Transferencia de Metionina/genética , Subunidades Ribosómicas Pequeñas de Eucariotas/química , Animales , Emparejamiento Base , Sitios de Unión , Codón Iniciador , Guanosina Trifosfato/química , Humanos , Hidrólisis , Metionina/química , Unión Proteica , ARN Helicasas/química , Ribosomas/química , Tetrahymena
2.
Cell ; 158(5): 1123-1135, 2014 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-25171412

RESUMEN

Eukaryotic translation initiation requires the recruitment of the large, multiprotein eIF3 complex to the 40S ribosomal subunit. We present X-ray structures of all major components of the minimal, six-subunit Saccharomyces cerevisiae eIF3 core. These structures, together with electron microscopy reconstructions, cross-linking coupled to mass spectrometry, and integrative structure modeling, allowed us to position and orient all eIF3 components on the 40S⋅eIF1 complex, revealing an extended, modular arrangement of eIF3 subunits. Yeast eIF3 engages 40S in a clamp-like manner, fully encircling 40S to position key initiation factors on opposite ends of the mRNA channel, providing a platform for the recruitment, assembly, and regulation of the translation initiation machinery. The structures of eIF3 components reported here also have implications for understanding the architecture of the mammalian 43S preinitiation complex and the complex of eIF3, 40S, and the hepatitis C internal ribosomal entry site RNA.


Asunto(s)
Factor 1 Eucariótico de Iniciación/química , Factor 3 de Iniciación Eucariótica/química , Iniciación de la Cadena Peptídica Traduccional , Subunidades Ribosómicas Pequeñas de Eucariotas/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/química , Secuencia de Aminoácidos , Animales , Cristalografía por Rayos X , Dimerización , Factor 1 Eucariótico de Iniciación/metabolismo , Factor 3 de Iniciación Eucariótica/metabolismo , Hepacivirus/química , Humanos , Mamíferos/metabolismo , Microscopía Electrónica , Modelos Moleculares , Datos de Secuencia Molecular , Ribonucleoproteínas/química , Subunidades Ribosómicas Pequeñas de Eucariotas/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Alineación de Secuencia
3.
Cell ; 159(3): 475-6, 2014 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-25417100

RESUMEN

Eukaryotic translation initiation requires coordinated assembly of a remarkable array of initiation factors onto the small ribosomal subunit to select an appropriate mRNA start codon. Studies from Erzberger et al. and Hussain et al. bring new insights into this mechanism by looking at early and late initiation intermediates.


Asunto(s)
Factor 1 Eucariótico de Iniciación/química , Factor 3 de Iniciación Eucariótica/química , Factores Eucarióticos de Iniciación/metabolismo , Kluyveromyces/metabolismo , Iniciación de la Cadena Peptídica Traduccional , Subunidades Ribosómicas Pequeñas de Eucariotas/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Animales , Humanos
4.
Nature ; 607(7917): 185-190, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35732735

RESUMEN

Translation initiation defines the identity and quantity of a synthesized protein. The process is dysregulated in many human diseases1,2. A key commitment step is when the ribosomal subunits join at a translation start site on a messenger RNA to form a functional ribosome. Here, we combined single-molecule spectroscopy and structural methods using an in vitro reconstituted system to examine how the human ribosomal subunits join. Single-molecule fluorescence revealed when the universally conserved eukaryotic initiation factors eIF1A and eIF5B associate with and depart from initiation complexes. Guided by single-molecule dynamics, we visualized initiation complexes that contained both eIF1A and eIF5B using single-particle cryo-electron microscopy. The resulting structure revealed how eukaryote-specific contacts between the two proteins remodel the initiation complex to orient the initiator aminoacyl-tRNA in a conformation compatible with ribosomal subunit joining. Collectively, our findings provide a quantitative and architectural framework for the molecular choreography orchestrated by eIF1A and eIF5B during translation initiation in humans.


Asunto(s)
Factor 1 Eucariótico de Iniciación , Factores Eucarióticos de Iniciación , ARN de Transferencia de Metionina , Subunidades Ribosómicas , Microscopía por Crioelectrón , Factor 1 Eucariótico de Iniciación/metabolismo , Factores Eucarióticos de Iniciación/genética , Humanos , ARN de Transferencia de Metionina/genética , ARN de Transferencia de Metionina/metabolismo , Subunidades Ribosómicas/química , Subunidades Ribosómicas/metabolismo , Imagen Individual de Molécula
5.
Nucleic Acids Res ; 52(18): 11317-11335, 2024 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-39193907

RESUMEN

In eukaryotic translation initiation, the 48S preinitiation complex (PIC) scans the 5' untranslated region of mRNAs to search for the cognate start codon (AUG) with assistance from various eukaryotic initiation factors (eIFs). Cognate start codon recognition is precise, rejecting near-cognate codons with a single base difference. However, the structural basis of discrimination of near-cognate start codons was not known. We have captured multiple yeast 48S PICs with a near-cognate AUC codon at the P-site, revealing that the AUC codon induces instability in the codon-anticodon at the P-site, leading to a disordered N-terminal tail of eIF1A. Following eIF1 dissociation, the N-terminal domain of eIF5 fails to occupy the vacant eIF1 position, and eIF2ß becomes flexible. Consequently, 48S with an AUC codon is less favourable for initiation. Furthermore, we observe hitherto unreported metastable states of the eIF2-GTP-Met-tRNAMet ternary complex, where the eIF2ß helix-turn-helix domain may facilitate eIF5 association by preventing eIF1 rebinding to 48S PIC. Finally, a swivelled head conformation of 48S PIC appears crucial for discriminating incorrect and selection of the correct codon-anticodon pair during translation initiation.


Asunto(s)
Codón Iniciador , Iniciación de la Cadena Peptídica Traduccional , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Codón Iniciador/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Factores Eucarióticos de Iniciación/metabolismo , Factores Eucarióticos de Iniciación/genética , Factores Eucarióticos de Iniciación/química , Factor 1 Eucariótico de Iniciación/metabolismo , Factor 1 Eucariótico de Iniciación/genética , Anticodón/genética , Factor 2 Eucariótico de Iniciación/metabolismo , Factor 2 Eucariótico de Iniciación/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Mensajero/química , Modelos Moleculares , Regiones no Traducidas 5'
6.
Mol Cell ; 63(2): 206-217, 2016 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-27373335

RESUMEN

mRNA translation initiation in eukaryotes requires the cooperation of a dozen eukaryotic initiation factors (eIFs) forming several complexes, which leads to mRNA attachment to the small ribosomal 40S subunit, mRNA scanning for start codon, and accommodation of initiator tRNA at the 40S P site. eIF3, composed of 13 subunits, 8 core (a, c, e, f, h, l, k, and m) and 5 peripheral (b, d, g, i, and j), plays a central role during this process. Here we report a cryo-electron microscopy structure of a mammalian 48S initiation complex at 5.8 Å resolution. It shows the relocation of subunits eIF3i and eIF3g to the 40S intersubunit face on the GTPase binding site, at a late stage in initiation. On the basis of a previous study, we demonstrate the relocation of eIF3b to the 40S intersubunit face, binding below the eIF2-Met-tRNAi(Met) ternary complex upon mRNA attachment. Our analysis reveals the deep rearrangement of eIF3 and unravels the molecular mechanism underlying eIF3 function in mRNA scanning and timing of ribosomal subunit joining.


Asunto(s)
Codón Iniciador , Factor 3 de Iniciación Eucariótica/metabolismo , Biosíntesis de Proteínas , ARN Mensajero/metabolismo , Ribosomas/metabolismo , Animales , Sitios de Unión , Factor 1 Eucariótico de Iniciación/química , Factor 1 Eucariótico de Iniciación/metabolismo , Factor 2 Eucariótico de Iniciación/química , Factor 2 Eucariótico de Iniciación/metabolismo , Factor 3 de Iniciación Eucariótica/química , Humanos , Modelos Moleculares , Complejos Multiproteicos , Conformación de Ácido Nucleico , Unión Proteica , Conformación Proteica , Subunidades de Proteína , ARN Mensajero/química , ARN Mensajero/genética , ARN de Transferencia/química , ARN de Transferencia/metabolismo , Conejos , Ribosomas/química , Relación Estructura-Actividad , Globinas beta/química , Globinas beta/metabolismo
7.
Retina ; 44(9): 1580-1589, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39167579

RESUMEN

PURPOSE: To determine the association between gene-expression profiling (GEP), next-generation sequencing (NGS), preferentially expressed antigen in melanoma (PRAME) features, and metastatic risk in patients with uveal melanoma (UM). METHODS: A retrospective analysis of patients with UM treated by brachytherapy or enucleation by a single ocular oncologist was conducted from November 2020 and July 2022. Clinicopathologic features, patient outcomes, GEP classification, NGS, and PRAME results were recorded. RESULTS: Comprehensive GEP, PRAME, and NGS testing was performed on 135 UMs. The presence of eukaryotic translation initiation factor 1A, X-chromosomal and splicing factor 3B subunit 1 mutations was significantly associated with GEP class 1A and GEP class 1B, respectively. The presence of BRCA- associated protein-1 mutation was significantly associated with GEP class 2. The average largest basal diameter for tumors with eukaryotic translation initiation factor 1A, X-chromosomal mutations was significantly smaller than those with splicing factor 3B subunit 1 mutations and BRCA1-associated protein-1 mutations. Class 2 tumors metastasized sooner than GEP class 1 tumors. Tumors with splicing factor 3B subunit 1 and/or BRCA1-associated protein-1 mutations metastasized sooner compared with tumors that had either no driver mutation or no mutations at all. Tumors with splicing factor 3B subunit 1 did not have a significantly different time to metastasis compared with tumors with BRCA1-associated protein-1 (P value = 0.97). Forty tumors (30%) were PRAME positive, and the remaining 95 tumors (70%) were PRAME negative. Tumors with PRAME-positive status did not have a significantly different time to metastasis compared with tumors without PRAME-positive status (P value = 0.11). CONCLUSION: GEP, NGS, and PRAME expression analysis help determine different levels of metastatic risk in UM. Although other prognostic tests exist, the following study reports on the use of NGS for metastatic prognostication in UM. However, limitations of NGS exist, especially with small lesions that are technically difficult to biopsy.


Asunto(s)
Antígenos de Neoplasias , Biomarcadores de Tumor , Perfilación de la Expresión Génica , Secuenciación de Nucleótidos de Alto Rendimiento , Melanoma , Neoplasias de la Úvea , Humanos , Neoplasias de la Úvea/genética , Neoplasias de la Úvea/diagnóstico , Melanoma/genética , Estudios Retrospectivos , Masculino , Femenino , Persona de Mediana Edad , Antígenos de Neoplasias/genética , Perfilación de la Expresión Génica/métodos , Anciano , Biomarcadores de Tumor/genética , Mutación , Adulto , Regulación Neoplásica de la Expresión Génica , Anciano de 80 o más Años , Factor 1 Eucariótico de Iniciación/genética , Factores de Empalme de ARN/genética , Factores de Empalme de ARN/metabolismo , Braquiterapia , Fosfoproteínas , Proteínas Supresoras de Tumor , Ubiquitina Tiolesterasa
8.
Nucleic Acids Res ; 50(9): 5282-5298, 2022 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-35489072

RESUMEN

Selection of the translation start codon is a key step during protein synthesis in human cells. We obtained cryo-EM structures of human 48S initiation complexes and characterized the intermediates of codon recognition by kinetic methods using eIF1A as a reporter. Both approaches capture two distinct ribosome populations formed on an mRNA with a cognate AUG codon in the presence of eIF1, eIF1A, eIF2-GTP-Met-tRNAiMet and eIF3. The 'open' 40S subunit conformation differs from the human 48S scanning complex and represents an intermediate preceding the codon recognition step. The 'closed' form is similar to reported structures of complexes from yeast and mammals formed upon codon recognition, except for the orientation of eIF1A, which is unique in our structure. Kinetic experiments show how various initiation factors mediate the population distribution of open and closed conformations until 60S subunit docking. Our results provide insights into the timing and structure of human translation initiation intermediates and suggest the differences in the mechanisms of start codon selection between mammals and yeast.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Animales , Codón Iniciador/metabolismo , Factor 1 Eucariótico de Iniciación/metabolismo , Factor 2 Eucariótico de Iniciación/metabolismo , Factor 3 de Iniciación Eucariótica/metabolismo , Humanos , Mamíferos/genética , Iniciación de la Cadena Peptídica Traduccional , Ribosomas/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
9.
Mol Cell ; 57(6): 1059-1073, 2015 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-25794616

RESUMEN

Reinitiation is a strategy used by viruses to express several cistrons from one mRNA. Although extremely weak after translation of long open reading frames (ORFs) on cellular mRNAs, reinitiation occurs efficiently on subgenomic bicistronic calicivirus mRNAs, enabling synthesis of minor capsid proteins. The process is governed by a short element upstream of the restart AUG, designated "termination upstream ribosomal binding site" (TURBS). It contains the conserved Motif 1 complementary to h26 of 18S rRNA, displayed in the loop of a hairpin formed by species-specific Motifs 2/2(∗). To determine the advantages conferred on reinitiation by TURBS, we reconstituted this process in vitro on two model bicistronic calicivirus mRNAs. We found that post-termination ribosomal tethering of mRNA by TURBS allows reinitiation by post-termination 80S ribosomes and diminishes dependence on eukaryotic initiation factor 3 (eIF3) of reinitiation by recycled 40S subunits, which can be mediated either by eIFs 2/1/1A or by Ligatin following ABCE1-dependent or -independent splitting of post-termination complexes.


Asunto(s)
Regulación Viral de la Expresión Génica , Virus de la Enfermedad Hemorrágica del Conejo/genética , Norovirus/genética , ARN Mensajero/metabolismo , Secuencia de Bases , Sitios de Unión , Codón , Factor 1 Eucariótico de Iniciación/genética , Factor 1 Eucariótico de Iniciación/metabolismo , Factor 2 Eucariótico de Iniciación/genética , Factor 2 Eucariótico de Iniciación/metabolismo , Factor 3 de Iniciación Eucariótica/genética , Factor 3 de Iniciación Eucariótica/metabolismo , Genes Virales , Virus de la Enfermedad Hemorrágica del Conejo/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Datos de Secuencia Molecular , Norovirus/metabolismo , Subunidades Ribosómicas Pequeñas de Eucariotas/genética , Subunidades Ribosómicas Pequeñas de Eucariotas/metabolismo , Ribosomas/genética , Ribosomas/metabolismo
10.
RNA ; 26(4): 419-438, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31915290

RESUMEN

The translation preinitiation complex (PIC) scans the mRNA for an AUG codon in a favorable context. Previous findings suggest that the factor eIF1 discriminates against non-AUG start codons by impeding full accommodation of Met-tRNAi in the P site of the 40S ribosomal subunit, necessitating eIF1 dissociation for start codon selection. Consistent with this, yeast eIF1 substitutions that weaken its binding to the PIC increase initiation at UUG codons on a mutant his4 mRNA and particular synthetic mRNA reporters; and also at the AUG start codon of the mRNA for eIF1 itself owing to its poor Kozak context. It was not known however whether such eIF1 mutants increase initiation at suboptimal start codons genome-wide. By ribosome profiling, we show that the eIF1-L96P variant confers increased translation of numerous upstream open reading frames (uORFs) initiating with either near-cognate codons (NCCs) or AUGs in poor context. The increased uORF translation is frequently associated with the reduced translation of the downstream main coding sequences (CDS). Initiation is also elevated at certain NCCs initiating amino-terminal extensions, including those that direct mitochondrial localization of the GRS1 and ALA1 products, and at a small set of main CDS AUG codons with especially poor context, including that of eIF1 itself. Thus, eIF1 acts throughout the yeast translatome to discriminate against NCC start codons and AUGs in poor context; and impairing this function enhances the repressive effects of uORFs on CDS translation and alters the ratios of protein isoforms translated from near-cognate versus AUG start codons.


Asunto(s)
Codón Iniciador , Factor 1 Eucariótico de Iniciación/metabolismo , Sistemas de Lectura Abierta , Iniciación de la Cadena Peptídica Traduccional , Oxidorreductasas de Alcohol/genética , Oxidorreductasas de Alcohol/metabolismo , Aminohidrolasas/genética , Aminohidrolasas/metabolismo , Regulación Fúngica de la Expresión Génica , Genoma Fúngico , Glicina-ARNt Ligasa/genética , Glicina-ARNt Ligasa/metabolismo , Pirofosfatasas/genética , Pirofosfatasas/metabolismo , ARN Mensajero/química , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ribosomas/metabolismo , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
11.
Mol Biol Rep ; 48(2): 1677-1685, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33575959

RESUMEN

Quantitative gene expression analysis by qPCR requires reference genes for normalization. Lagerstroemia indica (crape myrtle) is a popular ornamental plant in the world, but suitable endogenous reference genes are lacking. To find suitable reference genes, we evaluated the stabilities of nine candidate genes in six experimental data sets: six different tissues, three leaf colors, nine flower colors, and under three abiotic stresses (salt, drought, cold) using four statistical algorithms. A target gene LiMYB56 (homolog of Arabidopsis MYB56) was used to verify the authenticity and accuracy of the candidate reference genes. The results showed that the combination of two stably expressed reference genes, rather than a single reference gene, improved the accuracy of the qPCR. LiEF1α-2 + LiEF1α-3 was best for the tissue, salt treatment, and drought treatment sets; LiEF1α-2 + LiEF1α-1 was optimal for leaf color; LiEF1α-2 + LiACT7 was optimal for cold treatment; and LiUBC + LiEF1α-1 was best for the flower color set. Notably, LiEF1α-2 had high expression stability in all six experimental sets, implying it may be a good reference gene for expression studies in L. indica. Our results will facilitate future gene expression studies in L. indica.


Asunto(s)
Flores/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Lagerstroemia/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Estrés Fisiológico/genética , Algoritmos , Proteínas de Arabidopsis/genética , Respuesta al Choque por Frío/genética , Sequías , Factor 1 Eucariótico de Iniciación/genética , Flores/genética , Perfilación de la Expresión Génica , Genes de Plantas , Lagerstroemia/genética , Especificidad de Órganos/genética , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Estrés Salino/genética , Sensibilidad y Especificidad , Cloruro de Sodio/farmacología , Factores de Transcripción/genética
12.
Mol Cell ; 51(2): 249-64, 2013 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-23810859

RESUMEN

During ribosome recycling, posttermination complexes are dissociated by ABCE1 and eRF1 into 60S and tRNA/mRNA-associated 40S subunits, after which tRNA and mRNA are released by eIF1/eIF1A, Ligatin, or MCT-1/DENR. Occasionally, 40S subunits remain associated with mRNA and reinitiate at nearby AUGs. We recapitulated reinitiation using a reconstituted mammalian translation system. The presence of eIF2, eIF3, eIF1, eIF1A, and Met-tRNAi(Met) was sufficient for recycled 40S subunits to remain on mRNA, scan bidirectionally, and reinitiate at upstream and downstream AUGs if mRNA regions flanking the stop codon were unstructured. Imposition of 3' directionality additionally required eIF4F. Strikingly, posttermination ribosomes were not stably anchored on mRNA and migrated bidirectionally to codons cognate to the P site tRNA. Migration depended on the mode of peptide release (puromycin > eRF1⋅eRF3) and nature of tRNA and was enhanced by eEF2. The mobility of posttermination ribosomes suggests that some reinitiation events could involve 80S ribosomes rather than 40S subunits.


Asunto(s)
Codón de Terminación/genética , Eucariontes/genética , Complejos Multiproteicos/metabolismo , Iniciación de la Cadena Peptídica Traduccional , Biosíntesis de Proteínas/fisiología , ARN Mensajero/genética , Ribosomas/fisiología , Animales , Codón de Terminación/metabolismo , Electroforesis en Gel de Poliacrilamida , Factor 1 Eucariótico de Iniciación/metabolismo , Factor 2 Eucariótico de Iniciación/metabolismo , Factor 3 de Iniciación Eucariótica/metabolismo , Factor 4F Eucariótico de Iniciación/metabolismo , Factores de Terminación de Péptidos/metabolismo , Biosíntesis de Proteínas/efectos de los fármacos , Inhibidores de la Síntesis de la Proteína/farmacología , Puromicina/farmacología , ARN Mensajero/metabolismo , ARN de Transferencia de Metionina/genética , Proteínas Represoras/metabolismo , eIF-2 Quinasa/metabolismo
13.
Nucleic Acids Res ; 47(15): 8282-8300, 2019 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-31291455

RESUMEN

eIF3 is a large multiprotein complex serving as an essential scaffold promoting binding of other eIFs to the 40S subunit, where it coordinates their actions during translation initiation. Perhaps due to a high degree of flexibility of multiple eIF3 subunits, a high-resolution structure of free eIF3 from any organism has never been solved. Employing genetics and biochemistry, we previously built a 2D interaction map of all five yeast eIF3 subunits. Here we further improved the previously reported in vitro reconstitution protocol of yeast eIF3, which we cross-linked and trypsin-digested to determine its overall shape in 3D by advanced mass-spectrometry. The obtained cross-links support our 2D subunit interaction map and reveal that eIF3 is tightly packed with its WD40 and RRM domains exposed. This contrasts with reported cryo-EM structures depicting eIF3 as a molecular embracer of the 40S subunit. Since the binding of eIF1 and eIF5 further fortified the compact architecture of eIF3, we suggest that its initial contact with the 40S solvent-exposed side makes eIF3 to open up and wrap around the 40S head with its extended arms. In addition, we mapped the position of eIF5 to the region below the P- and E-sites of the 40S subunit.


Asunto(s)
Factor 1 Eucariótico de Iniciación/química , Factor 3 de Iniciación Eucariótica/química , Factor 5 Eucariótico de Iniciación/química , Iniciación de la Cadena Peptídica Traduccional , Subunidades Ribosómicas Pequeñas de Eucariotas/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Sitios de Unión/genética , Microscopía por Crioelectrón , Factor 1 Eucariótico de Iniciación/genética , Factor 1 Eucariótico de Iniciación/metabolismo , Factor 3 de Iniciación Eucariótica/genética , Factor 3 de Iniciación Eucariótica/metabolismo , Factor 5 Eucariótico de Iniciación/genética , Factor 5 Eucariótico de Iniciación/metabolismo , Modelos Moleculares , Unión Proteica , Dominios Proteicos , Subunidades Ribosómicas Pequeñas de Eucariotas/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/ultraestructura , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
14.
Nucleic Acids Res ; 47(5): 2574-2593, 2019 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-30576497

RESUMEN

In translation initiation, a 43S preinitiation complex (PIC) containing eIF1 and a ternary complex (TC) of GTP-bound eIF2 and Met-RNAi scans the mRNA for the start codon. AUG recognition triggers eIF1 release and rearrangement from an open PIC conformation to a closed state with more tightly-bound Met-tRNAi (PIN state). Cryo-EM models reveal eIF2ß contacts with eIF1 and Met-tRNAi exclusive to the open complex that should destabilize the closed state. eIF2ß or eIF1 substitutions disrupting these contacts increase initiation at UUG codons, and compound substitutions also derepress translation of GCN4, indicating slower TC recruitment. The latter substitutions slow TC loading while stabilizing TC binding at UUG codons in reconstituted PICs, indicating a destabilized open complex and shift to the closed/PIN state. An eIF1 substitution that should strengthen the eIF2ß:eIF1 interface has the opposite genetic and biochemical phenotypes. eIF2ß is also predicted to restrict Met-tRNAi movement into the closed/PIN state, and substitutions that should diminish this clash increase UUG initiation in vivo and stabilize Met-tRNAi binding at UUG codons in vitro with little effect on TC loading. Thus, eIF2ß anchors eIF1 and TC to the open complex, enhancing PIC assembly and scanning, while impeding rearrangement to the closed conformation at non-AUG codons.


Asunto(s)
Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Factor 2B Eucariótico de Iniciación/genética , Iniciación de la Cadena Peptídica Traduccional , Biosíntesis de Proteínas , Proteínas de Saccharomyces cerevisiae/genética , Codón Iniciador/genética , Microscopía por Crioelectrón , Factor 1 Eucariótico de Iniciación , ARN de Transferencia de Metionina , Saccharomyces cerevisiae/genética , Factores Complejos Ternarios/genética
15.
Nucleic Acids Res ; 47(2): 806-823, 2019 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-30481328

RESUMEN

The small ribosomal subunit protein uS9 (formerly called rpS16 in Saccharomyces cerevisiae), has a long protruding C-terminal tail (CTT) that extends towards the mRNA cleft of the ribosome. The last C-terminal residue of uS9 is an invariably conserved, positively charged Arg that is believed to enhance interaction of the negatively charged initiator tRNA with the ribosome when the tRNA is base-paired to the AUG codon in the P-site. In order to more fully characterize the role of the uS9 CTT in eukaryotic translation, we tested how truncations, extensions and substitutions within the CTT affect initiation and elongation processes in Saccharomyces cerevisiae. We found that uS9 C-terminal residues are critical for efficient recruitment of the eIF2•GTP•Met-tRNAiMet ternary complex to the ribosome and for its proper response to the presence of an AUG codon in the P-site during the scanning phase of initiation. These residues also regulate hydrolysis of the GTP in the eIF2•GTP•Met-tRNAiMet complex to GDP and Pi. In addition, our data show that uS9 CTT modulates elongation fidelity. Therefore, we propose that uS9 CTT is critical for proper control of the complex interplay of events surrounding accommodation of initiator and elongator tRNAs in the P- and A-sites of the ribosome.


Asunto(s)
Extensión de la Cadena Peptídica de Translación , Iniciación de la Cadena Peptídica Traduccional , Proteínas Ribosómicas/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Codón , Factor 1 Eucariótico de Iniciación/metabolismo , Factor 2 Eucariótico de Iniciación/metabolismo , Factor 5 Eucariótico de Iniciación/metabolismo , Guanosina Trifosfato/metabolismo , Mutación , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismo , Ribosomas/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
16.
Proc Natl Acad Sci U S A ; 115(18): E4159-E4168, 2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29666249

RESUMEN

The eukaryotic 43S preinitiation complex (PIC), bearing initiator methionyl transfer RNA (Met-tRNAi) in a ternary complex (TC) with eukaryotic initiation factor 2 (eIF2)-GTP, scans the mRNA leader for an AUG codon in favorable context. AUG recognition evokes rearrangement from an open PIC conformation with TC in a "POUT" state to a closed conformation with TC more tightly bound in a "PIN" state. eIF1 binds to the 40S subunit and exerts a dual role of enhancing TC binding to the open PIC conformation while antagonizing the PIN state, necessitating eIF1 dissociation for start codon selection. Structures of reconstituted PICs reveal juxtaposition of eIF1 Loop 2 with the Met-tRNAi D loop in the PIN state and predict a distortion of Loop 2 from its conformation in the open complex to avoid a clash with Met-tRNAi We show that Ala substitutions in Loop 2 increase initiation at both near-cognate UUG codons and AUG codons in poor context. Consistently, the D71A-M74A double substitution stabilizes TC binding to 48S PICs reconstituted with mRNA harboring a UUG start codon, without affecting eIF1 affinity for 40S subunits. Relatively stronger effects were conferred by arginine substitutions; and no Loop 2 substitutions perturbed the rate of TC loading on scanning 40S subunits in vivo. Thus, Loop 2-D loop interactions specifically impede Met-tRNAi accommodation in the PIN state without influencing the POUT mode of TC binding; and Arg substitutions convert the Loop 2-tRNAi clash to an electrostatic attraction that stabilizes PIN and enhances selection of poor start codons in vivo.


Asunto(s)
Codón Iniciador/química , Factor 1 Eucariótico de Iniciación/química , Conformación de Ácido Nucleico , Iniciación de la Cadena Peptídica Traduccional , ARN de Hongos/química , ARN de Transferencia de Metionina/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/química , Codón Iniciador/genética , Codón Iniciador/metabolismo , Factor 1 Eucariótico de Iniciación/genética , Factor 1 Eucariótico de Iniciación/metabolismo , Estructura Secundaria de Proteína , ARN de Hongos/genética , ARN de Hongos/metabolismo , ARN de Transferencia de Metionina/genética , Subunidades Ribosómicas Pequeñas de Eucariotas/química , Subunidades Ribosómicas Pequeñas de Eucariotas/genética , Subunidades Ribosómicas Pequeñas de Eucariotas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
17.
Ophthalmic Res ; 63(3): 358-368, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31614358

RESUMEN

BACKGROUND: The purpose of this study is to determine the mutation frequencies of key driver genes in uveal melanoma (UM) in Chinese patients and to detect associations between metastasis and the mutation of these genes. METHOD: A total of 85 patients with UM were enrolled in this study, including 18 patients with metastasis and 67 without metastasis. Sanger sequencing covering the mutational hotspot regions of the G protein subunit alpha Q (GNAQ), GNA11, splicing factor 3B subunit 1 (SF3B1), X-linked eukaryotic translation initiation factor 1A (EIF1AX), phospholipase C beta 4 (PLCB4) and cysteinyl leukotriene receptor 2 (CYSLTR2) genes was used to analyse the mutations in Chinese patients. RESULTS: The frequencies of GNAQ and GNA11 mutations in UM were 45% (38/85) and 35% (30/85) respectively. The frequencies of SF3B1 and EIF1AX mutations were 37% (31/85) and 9% (8/85) respectively. Only 2 mutations were detected in exon 4 of GNAQ, and no mutations were detected in exon 4 of GNA11. A novel mutation, c.627G>T (Q209H) in GNA11 was found. The detected mutations affecting SF3B1 were c.1873C>T (R625C), c.1874G>A (R625H) and c.1874G>T (R625L). The association between the mutations in SF3B1 and low risk of metastasis was statistically significant (OR 0.17, 95% CI 0.035-0.819). The mutations affecting EIF1AX were -23G>A (5'-UTR), c.5C>G (P2R), c.23G>A (G8Q), c.25G>C (G9A) and c.38_39GC>CT (R13P). No mutations were found in the PLCB4 and CYSLTR2 genes. Unfortunately, information on BRCA1-associated protein 1 could not be obtained. CONCLUSIONS: These data indicate that mutations in the PLCB4 and CYSLTR2 genes are rare in Chinese UM patients. The mutations in GNAQ, GNA11 and EIF1AX were not associated with metastasis, whereas SF3B1 mutations were correlated with low risk of metastasis and demonstrated a protective effect in UM patients in China.


Asunto(s)
Factor 1 Eucariótico de Iniciación/genética , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/genética , Melanoma/genética , Mutación , Fosfolipasa C beta/genética , Fosfoproteínas/genética , Factores de Empalme de ARN/genética , Receptores de Leucotrienos/genética , Neoplasias de la Úvea/genética , Adolescente , Adulto , Anciano , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Análisis Mutacional de ADN , ADN de Neoplasias/genética , Factor 1 Eucariótico de Iniciación/metabolismo , Neoplasias del Ojo/diagnóstico , Neoplasias del Ojo/genética , Neoplasias del Ojo/metabolismo , Femenino , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/metabolismo , Humanos , Masculino , Melanoma/diagnóstico , Melanoma/metabolismo , Persona de Mediana Edad , Fosfolipasa C beta/metabolismo , Fosfoproteínas/metabolismo , Factores de Empalme de ARN/metabolismo , Receptores de Leucotrienos/metabolismo , Estudios Retrospectivos , Neoplasias de la Úvea/diagnóstico , Neoplasias de la Úvea/metabolismo , Adulto Joven
18.
Bull Exp Biol Med ; 169(5): 669-672, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32990852

RESUMEN

The feasibility of using molecular genetic markers associated with thyroid neoplasms and more aggressive course of the disease is now actively studied. We analyzed the diagnostic value of somatic mutations in the hot spots of BRAF, KRAS, KRAS, EIF1AX, and TERT genes in histological material from 153 patients with thyroid gland neoplasms. BRAF mutations (exon 15, codon area 600-601) were found in 54 patients, NRAS mutations (exon 3, codon 61) were detected in 12 patients; mutations KRAS, TERT, and EIF1AX genes were not detected.


Asunto(s)
Codón/genética , Factor 1 Eucariótico de Iniciación/genética , Exones/genética , GTP Fosfohidrolasas/genética , Proteínas de la Membrana/genética , Mutación/genética , Proteínas Proto-Oncogénicas p21(ras)/genética , Telomerasa/genética , Neoplasias de la Tiroides/genética , Neoplasias de la Tiroides/patología , Humanos , Proteínas Proto-Oncogénicas B-raf/genética
19.
Hum Mol Genet ; 26(2): 293-304, 2017 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-28025327

RESUMEN

The Myocyte Enhancer Factor 2 (MEF2) transcription factors suppress an excitatory synapse number by promoting degradation of the synaptic scaffold protein, postsynaptic density protein 95 (PSD-95), a process that is deficient in the mouse model of Fragile X Syndrome, Fmr1 KO. How MEF2 activation results in PSD-95 degradation and why this is defective in Fmr1 KO neurons is unknown. Here we report that MEF2 induces a Protein phosphatase 2A (PP2A)-mediated dephosphorylation of murine double minute-2 (Mdm2), the ubiquitin E3 ligase for PSD-95, which results in nuclear export and synaptic accumulation of Mdm2 as well as PSD-95 degradation and synapse elimination. In Fmr1 KO neurons, Mdm2 is hyperphosphorylated, nuclear localized basally, and unaffected by MEF2 activation, which our data suggest due to an enhanced interaction with Eukaryotic Elongation Factor 1α (EF1α), whose protein levels are elevated in Fmr1 KO. Expression of a dephosphomimetic of Mdm2 rescues PSD-95 ubiquitination, degradation and synapse elimination in Fmr1 KO neurons. This work reveals detailed mechanisms of synapse elimination in health and a developmental brain disorder.


Asunto(s)
Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/genética , Guanilato-Quinasas/genética , Factores de Transcripción MEF2/genética , Proteínas de la Membrana/genética , Proteínas Proto-Oncogénicas c-mdm2/genética , Animales , Dendritas/metabolismo , Dendritas/patología , Homólogo 4 de la Proteína Discs Large , Factor 1 Eucariótico de Iniciación/genética , Síndrome del Cromosoma X Frágil/patología , Humanos , Ratones , Ratones Noqueados , Neuronas/metabolismo , Neuronas/patología , Fosforilación , Proteína Fosfatasa 2/genética , Proteolisis , Sinapsis/genética , Sinapsis/patología , Ubiquitinación/genética
20.
Am J Hum Genet ; 99(5): 1190-1198, 2016 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-27745836

RESUMEN

Uveal melanoma (UM) is a rare intraocular tumor that, similar to cutaneous melanoma, originates from melanocytes. To gain insights into its genetics, we performed whole-genome sequencing at very deep coverage of tumor-control pairs in 33 samples (24 primary and 9 metastases). Genome-wide, the number of coding mutations was rather low (only 17 variants per tumor on average; range 7-28), thus radically different from cutaneous melanoma, where hundreds of exonic DNA insults are usually detected. Furthermore, no UV light-induced mutational signature was identified. Recurrent coding mutations were found in the known UM drivers GNAQ, GNA11, BAP1, EIF1AX, and SF3B1. Other genes, i.e., TP53BP1, CSMD1, TTC28, DLK2, and KTN1, were also found to harbor somatic mutations in more than one individual, possibly indicating a previously undescribed association with UM pathogenesis. De novo assembly of unmatched reads from non-coding DNA revealed peculiar copy-number variations defining specific UM subtypes, which in turn could be associated with metastatic transformation. Mutational-driven comparison with other tumor types showed that UM is very similar to pediatric tumors, characterized by very few somatic insults and, possibly, important epigenetic changes. Through the analysis of whole-genome sequencing data, our findings shed new light on the molecular genetics of uveal melanoma, delineating it as an atypical tumor of the adult for which somatic events other than mutations in exonic DNA shape its genetic landscape and define its metastatic potential.


Asunto(s)
Estudio de Asociación del Genoma Completo , Melanoma/genética , Neoplasias de la Úvea/genética , Adulto , Anciano , Anciano de 80 o más Años , Estudios de Casos y Controles , Variaciones en el Número de Copia de ADN , Factor 1 Eucariótico de Iniciación/genética , Factor 1 Eucariótico de Iniciación/metabolismo , Exones , Femenino , Subunidades alfa de la Proteína de Unión al GTP/genética , Subunidades alfa de la Proteína de Unión al GTP/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/genética , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/metabolismo , Humanos , Masculino , Melanocitos/patología , Melanoma/diagnóstico , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Persona de Mediana Edad , Mutación , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Factores de Empalme de ARN/genética , Factores de Empalme de ARN/metabolismo , Neoplasias Cutáneas , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo , Proteína 1 de Unión al Supresor Tumoral P53/genética , Proteína 1 de Unión al Supresor Tumoral P53/metabolismo , Ubiquitina Tiolesterasa/genética , Ubiquitina Tiolesterasa/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Neoplasias de la Úvea/diagnóstico , Melanoma Cutáneo Maligno
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA