Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Circ Res ; 122(8): 1069-1083, 2018 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-29475983

RESUMEN

RATIONALE: Multilineage-differentiating stress enduring (Muse) cells, pluripotent marker stage-specific embryonic antigen-3+ cells, are nontumorigenic endogenous pluripotent-like stem cells obtainable from various tissues including the bone marrow. Their therapeutic efficiency has not been validated in acute myocardial infarction. OBJECTIVE: The main objective of this study is to clarify the efficiency of intravenously infused rabbit autograft, allograft, and xenograft (human) bone marrow-Muse cells in a rabbit acute myocardial infarction model and their mechanisms of tissue repair. METHODS AND RESULTS: In vivo dynamics of Nano-lantern-labeled Muse cells showed preferential homing of the cells to the postinfarct heart at 3 days and 2 weeks, with ≈14.5% of injected GFP (green fluorescent protein)-Muse cells estimated to be engrafted into the heart at 3 days. The migration and homing of the Muse cells was confirmed pharmacologically (S1PR2 [sphingosine monophosphate receptor 2]-specific antagonist JTE-013 coinjection) and genetically (S1PR2-siRNA [small interfering ribonucleic acid]-introduced Muse cells) to be mediated through the S1P (sphingosine monophosphate)-S1PR2 axis. They spontaneously differentiated into cells positive for cardiac markers, such as cardiac troponin-I, sarcomeric α-actinin, and connexin-43, and vascular markers. GCaMP3 (GFP-based Ca calmodulin probe)-labeled Muse cells that engrafted into the ischemic region exhibited increased GCaMP3 fluorescence during systole and decreased fluorescence during diastole. Infarct size was reduced by ≈52%, and the ejection fraction was increased by ≈38% compared with vehicle injection at 2 months, ≈2.5 and ≈2.1 times higher, respectively, than that induced by mesenchymal stem cells. These effects were partially attenuated by the administration of GATA4-gene-silenced Muse cells. Muse cell allografts and xenografts efficiently engrafted and recovered functions, and allografts remained in the tissue and sustained functional recovery for up to 6 months without immunosuppression. CONCLUSIONS: Muse cells may provide reparative effects and robust functional recovery and may, thus, provide a novel strategy for the treatment of acute myocardial infarction.


Asunto(s)
Lisofosfolípidos/fisiología , Infarto del Miocardio/cirugía , Células Madre Pluripotentes/trasplante , Receptores de Lisoesfingolípidos/fisiología , Esfingosina/análogos & derivados , Aloinjertos , Animales , Autoinjertos , Diferenciación Celular , Movimiento Celular/fisiología , Factor de Transcripción GATA4/antagonistas & inhibidores , Factor de Transcripción GATA4/genética , Factor de Transcripción GATA4/fisiología , Supervivencia de Injerto , Proteínas Fluorescentes Verdes/análisis , Xenoinjertos , Humanos , Luciferasas/análisis , Proteínas Luminiscentes/análisis , Masculino , Infarto del Miocardio/patología , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/metabolismo , Pirazoles/farmacología , Piridinas/farmacología , Interferencia de ARN , ARN Interferente Pequeño/farmacología , Conejos , Receptores de Lisoesfingolípidos/antagonistas & inhibidores , Receptores de Lisoesfingolípidos/genética , Proteínas Recombinantes de Fusión/análisis , Especificidad de la Especie , Esfingosina/fisiología , Receptores de Esfingosina-1-Fosfato
2.
Biochem Biophys Res Commun ; 512(2): 399-404, 2019 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-30902394

RESUMEN

A combination of extracellular signal-regulated kinase 1/2 (ERK1/2) and glycogen synthase kinase 3ß (GSK3ß) inhibitors, called 2i, is widely used for maintaining the pluripotency of mouse embryonic stem cells (ESCs) in vitro. Without 2i, a few mouse ESCs spontaneously gives rise to primitive endoderm (PrE) cells, whereas 2i completely blocks this PrE cell differentiation. However, the molecular mechanisms underlying the inhibitory action of 2i on PrE cell differentiation remain unclear. Robust PrE cell induction is achieved by enforced expression of the transcription factor Gata4. Here, we analyzed how 2i inhibits the PrE cell differentiation using mouse ESCs carrying an inducible Gata4 expression cassette. We found that 2i effectively inhibited the Gata4-induced PrE cell differentiation and the ERK1/2 inhibitor was responsible for this effect. We further revealed that the transcriptional activation ability of Gata4 was necessary for PrE cell induction and its disruption by the ERK1/2 inhibitor. The phosphorylation of Ser105, Ser266, and Ser411 of the Gata4 protein was not involved in the PrE cell induction. Overexpression of Klf4, an ERK1/2 substrate, inhibited the Gata4-mediated transcriptional activation. Our data indicated that ERK1/2 supported the PrE cell induction via the indirect transcriptional activation of Gata4.


Asunto(s)
Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Células Madre Embrionarias de Ratones/efectos de los fármacos , Células Madre Embrionarias de Ratones/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Animales , Benzamidas/farmacología , Diferenciación Celular/efectos de los fármacos , Células Cultivadas , Difenilamina/análogos & derivados , Difenilamina/farmacología , Doxiciclina/farmacología , Endodermo/citología , Endodermo/efectos de los fármacos , Factor de Transcripción GATA4/antagonistas & inhibidores , Factor de Transcripción GATA4/genética , Factor de Transcripción GATA4/metabolismo , Glucógeno Sintasa Quinasa 3 beta/antagonistas & inhibidores , Factor 4 Similar a Kruppel , Ratones , Proteína Quinasa 1 Activada por Mitógenos/antagonistas & inhibidores , Proteína Quinasa 3 Activada por Mitógenos/antagonistas & inhibidores , Células Madre Embrionarias de Ratones/citología , Fosforilación , Piridinas/farmacología , Pirimidinas/farmacología
3.
Cell Physiol Biochem ; 46(1): 269-278, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29590644

RESUMEN

BACKGROUND/AIMS: GATA4, a protein related to osteoblast differentiation and mineralization, whose acetylation is essential for cardiac defects. Here, we aimed to explore the functional impacts of GATA4 acetylation on osteoporosis (OS). METHODS: GATA4 acetylation in hFOB1.19 and 293T cells was detected after exposure of HDAC inhibitors (TSA and SAHA). Co-immunoprecipitation was conducted to determine which HATs and HDACs was involved in the modulation of GATA4 acetylation/deacetylation, and to identify the acetylation site. The transcriptional activity of GATA4 was measured in the presence or absence of cycloheximide. Furthermore, hFOB1.19 cells viability and apoptosis were evaluated after transfection with acetylation-defective mutant of GATA4. RESULTS: As a result, GATA4 acetylation was identified as a pivotal event in hFOB1.19 cells. GATA4 can be acetylated by P300/CBP, and the acetylation site was on lysine residue K313. Besides, the acetylation of GATA4 can be impaired by HDAC1, rather than by HDAC2-5. GATA4 acetylation contributed to the stability and transcription of GATA4. Moreover, GATA4 acetylation activated CCND2 transcription, and mutation of GATA4 on K-313 reduced cell viability and increased a mitochondria-dependent apoptosis in hFOB1.19 cells. CONCLUSION: Our data suggest that GATA4 exists as an acetylated protein in hFOB1.19 cells. Acetylation regulates the stability and transcription of GATA4, and activates CCND2 transcription, which may explain the growth-promoting functions of GATA4 in hFOB1.19 cells.


Asunto(s)
Factor de Transcripción GATA4/metabolismo , Lisina/química , Acetilación , Apoptosis , Línea Celular , Proliferación Celular , Ciclina D2/genética , Ciclina D2/metabolismo , Factor de Transcripción GATA4/antagonistas & inhibidores , Factor de Transcripción GATA4/genética , Células HEK293 , Histona Desacetilasa 1/metabolismo , Inhibidores de Histona Desacetilasas/farmacología , Humanos , Osteoblastos/citología , Osteoblastos/metabolismo , Mutación Puntual , Regiones Promotoras Genéticas , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Transcripción Genética , Regulación hacia Arriba/efectos de los fármacos , Factores de Transcripción p300-CBP/metabolismo
4.
Tumour Biol ; 40(7): 1010428318785498, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30074440

RESUMEN

GATA4, a transcription factor crucial for early liver development, has been implicated in the pathophysiology of hepatoblastoma, an embryonal tumor of childhood. However, the molecular and phenotypic consequences of GATA4 expression in hepatoblastoma are not fully understood. We surveyed GATA4 expression in 24 hepatoblastomas using RNA in situ hybridization and immunohistochemistry. RNA interference was used to inhibit GATA4 in human HUH6 hepatoblastoma cells, and changes in cell migration were measured with wound healing and transwell assays. RNA microarray hybridization was performed on control and GATA4 knockdown HUH6 cells, and differentially expressed genes were validated by quantitative polymerase chain reaction or immunostaining. Plasmid transfection was used to overexpress GATA4 in primary human hepatocytes and ensuring changes in gene expression were measured by quantitative polymerase chain reaction. We found that GATA4 expression was high in most hepatoblastomas but weak or negligible in normal hepatocytes. GATA4 gene silencing impaired HUH6 cell migration. We identified 106 differentially expressed genes (72 downregulated, 34 upregulated) in knockdown versus control HUH6 cells. GATA4 silencing altered the expression of genes associated with cytoskeleton organization, cell-to-cell adhesion, and extracellular matrix dynamics (e.g. ADD3, AHNAK, DOCK8, RHOU, MSF, IGFBP1, COL4A2). These changes in gene expression reflected a more epithelial (less malignant) phenotype. Consistent with this notion, there was reduced F-actin stress fiber formation in knockdown HUH6 cells. Forced expression of GATA4 in primary human hepatocytes triggered opposite changes in the expression of genes identified by GATA4 silencing in HUH6 cells. In conclusion, GATA4 is highly expressed in most hepatoblastomas and correlates with a mesenchymal, migratory phenotype of hepatoblastoma cells.


Asunto(s)
Movimiento Celular , Factor de Transcripción GATA4/metabolismo , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Hepatoblastoma/patología , Neoplasias Hepáticas/patología , Mesodermo/patología , Adolescente , Adulto , Estudios de Casos y Controles , Proliferación Celular , Niño , Preescolar , Femenino , Factor de Transcripción GATA4/antagonistas & inhibidores , Factor de Transcripción GATA4/genética , Hepatoblastoma/genética , Humanos , Lactante , Neoplasias Hepáticas/genética , Masculino , Mesodermo/metabolismo , Persona de Mediana Edad , Pronóstico , ARN Interferente Pequeño/genética , Adulto Joven
5.
Med Sci Monit ; 22: 1808-16, 2016 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-27236543

RESUMEN

BACKGROUND Myocardial infarction affects the health of many people. Post-infarction myocardial fibrosis has attracted much attention, but details of the mechanism remain elusive. In this study, the role of microRNA-208b (miR-208b) in modulating post-infarction myocardial fibrosis and the related mechanism were investigated. MATERIAL AND METHODS A rat model of myocardial infarction induced by ligating the left anterior descending artery was used to analyze the expression and roles of miR-208b by overexpression with the lentivirus vector of pre-miR-208b. Myocardial function was assessed and the expression of fibrosis-related factors type I collagen (COL1) and ACTA2 (alias αSMA) was detected. Myocardial fibroblasts isolated from newborn rats were transfected with luciferase reporter vectors containing wild-type or mutant Gata4 3' UTR to verify the relationship between Gata4 and miR-208b. We then transfected the specific small interference RNA of Gata4 to detect changes in COL1 and ACTA2. RESULTS miR-208b was down-regulated in hearts of model rats (P<0.01). Overexpressing miR-208b improved myocardial functions, such as reducing the infarction area (P<0.05) and promoting LVEF and LVFS (P<0.01), and inhibited COL1 and ACTA2 (P<0.01). Luciferase reporter assay proved Gata4 to be the direct target of miR-208b, with the target sequence in the 3'UTR. Inhibiting GATA4 resulted in the down-regulation of COL1 and ACTA2, suggesting that the role of miR-208b was achieved via regulating GATA4. CONCLUSIONS This study demonstrates the protective function of miR-208b via GATA4 in post-infarction myocardial fibrosis, providing a potential therapeutic target for treating myocardial fibrosis.


Asunto(s)
Fibrosis Endomiocárdica/genética , Factor de Transcripción GATA4/antagonistas & inhibidores , MicroARNs/metabolismo , Infarto del Miocardio/genética , Regiones no Traducidas 3' , Actinas/biosíntesis , Actinas/genética , Animales , Colágeno Tipo I/biosíntesis , Colágeno Tipo I/genética , Modelos Animales de Enfermedad , Regulación hacia Abajo , Fibrosis Endomiocárdica/metabolismo , Fibrosis Endomiocárdica/patología , Fibroblastos/metabolismo , Fibroblastos/patología , Factor de Transcripción GATA4/genética , Factor de Transcripción GATA4/metabolismo , MicroARNs/genética , Infarto del Miocardio/metabolismo , Infarto del Miocardio/patología , ARN Interferente Pequeño/administración & dosificación , ARN Interferente Pequeño/genética , Ratas , Ratas Sprague-Dawley , Transfección
6.
J Cardiovasc Pharmacol ; 66(2): 196-203, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26252173

RESUMEN

The transforming growth factor (TGF-ß)-inducible early gene (TIEG1), a member of the Sp1/Krüppel-like family of transcription factors, plays an important role in regulating cell growth, differentiation, and apoptosis in many human diseases, including breast cancer, osteoporosis, and atherosclerosis. However, little is known about the role of TIEG1 in the heart. In this study, we investigated the role of TIEG1 in angiotensin II (Ang II)-induced cardiomyocyte hypertrophy and its underlying mechanism. Our results showed that TIEG1 expression was downregulated in Ang II-induced hypertrophic cardiomyocytes. Gene silencing of TIEG1 by RNA interference upregulated cellular surface area and ANF and BNP messenger RNA levels, whereas TIEG1 overexpression inhibited the expression of those genes. Mechanistically, TIEG1 could inhibit the expression and transcriptional activity of transcription factor GATA4 in cardiomyocytes, which was recognized as an important factor mediating cardiac gene transcription. In summary, our data disclose a novel role of TIEG1 as an inhibitor in Ang II-induced hypertrophic cardiomyocytes through GATA4 signal pathway.


Asunto(s)
Angiotensina II/toxicidad , Proteínas de Unión al ADN/biosíntesis , Factor de Transcripción GATA4/antagonistas & inhibidores , Factor de Transcripción GATA4/metabolismo , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Factores de Transcripción/biosíntesis , Animales , Animales Recién Nacidos , Cardiomegalia/inducido químicamente , Cardiomegalia/metabolismo , Cardiomegalia/patología , Células Cultivadas , Miocitos Cardíacos/patología , Ratas , Ratas Sprague-Dawley , Factores de Transcripción/antagonistas & inhibidores , Factores de Transcripción/metabolismo
7.
Bioorg Med Chem ; 19(5): 1734-42, 2011 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-21310620

RESUMEN

Members of the GATA family of transcription factors are zinc finger proteins that were shown to play evolutionary conserved roles in cell differentiation and proliferation in different organisms. We hypothesized that by finding new molecules that inhibit their function to be crucial in future therapeutical interventions for various diseases. By virtual high throughput screening using a version of glide (Schrodinger®) program with both crystal and NMR structure of GATA C-terminal zinc finger, we identified new small molecular weight chemicals with lead-like properties. We used in vitro cell-based assays to show that these molecules selectively and efficiently inhibit GATA4 activity by inhibiting its interaction with the DNA. In addition we showed that these molecules can block the activation of downstream target genes by GATA4. Moreover these compounds can moderately enhanced a mouse model of myoblast differentiation into myotubes. This might be partially due to decreased GATA4/DNA interaction as shown by gel retardation assays. Further investigation is needed to reach selectivity and efficacy. Our study however do show that in silico screening combined with in vitro studies are efficient tools to unravel new molecules that interact with zinc finger proteins such as GATA4.


Asunto(s)
Diseño de Fármacos , Factor de Transcripción GATA4/antagonistas & inhibidores , Ribavirina/síntesis química , Secuencia de Aminoácidos , Animales , Diferenciación Celular/efectos de los fármacos , Química Farmacéutica , Técnicas Químicas Combinatorias , Simulación por Computador , Cristalografía por Rayos X , Humanos , Espectroscopía de Resonancia Magnética , Ratones , Datos de Secuencia Molecular , Estructura Molecular , Ratas , Ribavirina/química , Ribavirina/farmacología , Alineación de Secuencia , Relación Estructura-Actividad
8.
Biol Pharm Bull ; 34(7): 974-9, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21720000

RESUMEN

Curcumin is a natural polyphenolic compound abundant in the rhizome of the perennial herb turmeric, Curcuma longa. It is commonly used as a dietary spice and coloring agent in cooking, and is used anecdotally as an herb in traditional Indian and Chinese medicine. It has been reported that curcumin has the potential to protect against cardiac inflammation through suppression of GATA-4 and nuclear factor-κB (NF-κB); however, no study to date has addressed the effect of curcumin on experimental autoimmune myocarditis (EAM) in rats. In this study, 8-week-old male Lewis rats were immunized with cardiac myosin to induce EAM. They were then divided randomly into a treatment or vehicle group and orally administrated curcumin (50 mg/kg/d) or 1% gum arabic, respectively, for 3 weeks after myosin injection. We performed hemodynamic, echocardiographic, hematoxylin and eosin staining, mast cell staining and Western blotting studies to evaluate the protective effect of curcumin in the acute phase of EAM. Cardiac functional parameters measured by hemodynamic and echocardiographic studies were significantly improved by curcumin treatment. Furthermore, curcumin reduced the heart weight-to-body weight ratio, area of inflammatory lesions and the myocardial protein level of NF-κB, interleukin (IL)-1ß, tumor necrosis factor (TNF)-α and GATA-4. Our results indicate that curcumin has the potential to protect against cardiac inflammation through suppression of IL-1ß, TNF-α, GATA-4 and NF-κB expresses, and may provide a novel therapeutic strategy for autoimmune myocarditis.


Asunto(s)
Enfermedades Autoinmunes/prevención & control , Curcumina/farmacología , Miocarditis/prevención & control , Animales , Citocinas/genética , Ensayo de Inmunoadsorción Enzimática , Factor de Transcripción GATA4/antagonistas & inhibidores , Factor de Transcripción GATA4/metabolismo , Masculino , FN-kappa B/antagonistas & inhibidores , FN-kappa B/metabolismo , ARN Mensajero/metabolismo , Ratas , Ratas Endogámicas Lew , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
9.
J Med Chem ; 62(17): 8284-8310, 2019 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-31431011

RESUMEN

Transcription factors GATA4 and NKX2-5 directly interact and synergistically activate several cardiac genes and stretch-induced cardiomyocyte hypertrophy. Previously, we identified phenylisoxazole carboxamide 1 as a hit compound, which inhibited the GATA4-NKX2-5 transcriptional synergy. Here, the chemical space around the molecular structure of 1 was explored by synthesizing and characterizing 220 derivatives and structurally related compounds. In addition to the synergistic transcriptional activation, selected compounds were evaluated for their effects on transcriptional activities of GATA4 and NKX2-5 individually as well as potential cytotoxicity. The structure-activity relationship (SAR) analysis revealed that the aromatic isoxazole substituent in the southern part regulates the inhibition of GATA4-NKX2-5 transcriptional synergy. Moreover, inhibition of GATA4 transcriptional activity correlated with the reduced cell viability. In summary, comprehensive SAR analysis accompanied by data analysis successfully identified potent and selective inhibitors of GATA4-NKX2-5 transcriptional synergy and revealed structural features important for it.


Asunto(s)
Factor de Transcripción GATA4/antagonistas & inhibidores , Proteína Homeótica Nkx-2.5/antagonistas & inhibidores , Isoxazoles/farmacología , Animales , Células COS , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Chlorocebus aethiops , Relación Dosis-Respuesta a Droga , Factor de Transcripción GATA4/química , Factor de Transcripción GATA4/metabolismo , Proteína Homeótica Nkx-2.5/química , Proteína Homeótica Nkx-2.5/metabolismo , Isoxazoles/síntesis química , Isoxazoles/química , Estructura Molecular , Unión Proteica/efectos de los fármacos , Ratas , Ratas Wistar , Relación Estructura-Actividad
10.
PLoS One ; 14(10): e0223842, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31622977

RESUMEN

The process by which fibroblasts are directly reprogrammed into cardiomyocytes involves two stages; initiation and maturation. Initiation represents the initial expression of factors that induce fibroblasts to transdifferentiate into cardiomyocytes. Following initiation, the cell undergoes a period of maturation before becoming a mature cardiomyocyte. We wanted to understand the role of cardiac development transcription factors in the maturation process. We directly reprogram fibroblasts into cardiomyocytes by a combination of miRNAs (miR combo). The ability of miR combo to induce cardiomyocyte-specific genes in fibroblasts was lost following the knockdown of the cardiac transcription factors Gata4, Mef2C, Tbx5 and Hand2 (GMTH). To further clarify the role of GMTH in miR combo reprogramming we utilized a modified CRISPR-Cas9 approach to activate endogenous GMTH genes. Importantly, both miR combo and the modified CRISPR-Cas9 approach induced comparable levels of GMTH expression. While miR combo was able to reprogram fibroblasts into cardiomyocyte-like cells, the modified CRISPR-Cas9 approach could not. Indeed, we found that cardiomyocyte maturation only occurred with very high levels of GMT expression. Taken together, our data indicates that while endogenous cardiac transcription factors are insufficient to reprogram fibroblasts into mature cardiomyocytes, endogenous cardiac transcription factors are necessary for expression of maturation genes.


Asunto(s)
Factor de Transcripción GATA4/genética , Proteínas de Dominio T Box/genética , Animales , Sistemas CRISPR-Cas/genética , Transdiferenciación Celular , Células Cultivadas , Reprogramación Celular , Fibroblastos/citología , Fibroblastos/metabolismo , Factor de Transcripción GATA4/antagonistas & inhibidores , Factor de Transcripción GATA4/metabolismo , Edición Génica , Factores de Transcripción MEF2/antagonistas & inhibidores , Factores de Transcripción MEF2/genética , Factores de Transcripción MEF2/metabolismo , Ratones , Ratones Endogámicos C57BL , Miocitos Cardíacos/citología , Miocitos Cardíacos/metabolismo , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Proteínas de Dominio T Box/antagonistas & inhibidores , Proteínas de Dominio T Box/metabolismo
11.
Endocrinology ; 149(11): 5557-67, 2008 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-18653717

RESUMEN

Previous studies with cultured granulosa cells implicated GATA4 in gonadotropin regulation of the steroidogenic acute regulatory protein (STAR) gene. Caveats to these prior studies exist. First, GATA4 levels are reduced in granulosa-luteal cells after the LH surge when GATA6 expression is relatively high. Second, STAR mRNA expression is negligible in granulosa cells until after the LH surge. Both exogenous GATA4 and GATA6 can transactivate STAR gene promoter constructs. We used an RNA interference (RNAi) approach to determine the contributions of GATA4 and GATA6 to cAMP analog regulation of the endogenous STAR gene in luteinizing granulosa cells. STAR mRNA was stimulated by cAMP under control RNAi conditions. Surprisingly, GATA4 reduction by its respective RNAi approximately doubled the cAMP induction of STAR mRNA. At 24 h cAMP treatment, this augmentation was abolished by co-down-regulation of GATA4+GATA6. GATA6 down-regulation by itself did not alter STAR mRNA levels. GATA4+GATA6 co-down-regulation elevated basal CYP11A mRNA at 24 h treatment but did not affect its induction by cAMP. Basal levels of HSD3B mRNA were reduced by GATA4 RNAi conditions leading to a greater fold induction of its mRNA by cAMP. Fold cAMP-stimulated progesterone production was enhanced by GATA4 down-regulation but not by GATA4+GATA6 co-down-regulation. These data implicate GATA6 as the facilitator in cAMP-stimulated STAR mRNA and downstream progesterone accumulation under reduced GATA4 conditions. Data also demonstrate that basal levels of GATA4/6 are not required for cAMP induction of the STAR gene. The altered ratio of GATA4 to GATA6 after ovulation may allow GATA6 to enhance STAR mRNA accumulation.


Asunto(s)
AMP Cíclico/farmacología , Factor de Transcripción GATA4/antagonistas & inhibidores , Células de la Granulosa/efectos de los fármacos , Fosfoproteínas/genética , Progesterona/metabolismo , ARN Interferente Pequeño/farmacología , Animales , Regulación hacia Abajo/efectos de los fármacos , Femenino , Factor de Transcripción GATA4/fisiología , Factor de Transcripción GATA6/fisiología , Regulación de la Expresión Génica/efectos de los fármacos , Células de la Granulosa/metabolismo , Luteinización/efectos de los fármacos , Luteinización/genética , Luteinización/metabolismo , Ovulación/genética , Ovulación/metabolismo , ARN Mensajero/efectos de los fármacos , ARN Mensajero/metabolismo , Porcinos
13.
Mol Cell Endocrinol ; 287(1-2): 20-9, 2008 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-18343025

RESUMEN

A thorough examination of glucose-dependent insulinotropic polypeptide (GIP) expression has been hampered by difficulty in isolating widely dispersed, GIP-producing enteroendocrine K-cells. To elucidate the molecular mechanisms governing the regulation of GIP expression, 14 intestinal and pancreatic cell lines were assessed for their suitability for studies examining GIP expression. Both STC-1 cells and the pancreatic cell line betaTC-3 were found to express GIP mRNA and secrete biologically active GIP. However, levels of GIP mRNA and bioactive peptide and the activity of transfected GIP reporter constructs were significantly lower in betaTC-3 than STC-1 cells. When betaTC-3 cells were analyzed for transcription factors known to be important for GIP expression, PDX-1 and ISL-1, but not GATA-4, were detected. Double staining for GIP-1 and GATA-4 in mouse duodenum demonstrated GATA-4 expression in intestinal K-cells. Exogenous expression of GATA-4 in betaTC-3 cells led to marked increases in both GIP transcription and secretion. Lastly suppression of GATA-4 via RNA interference, in GTC-1 cells, a subpopulation of STC-1 cells with high endogenous GIP expression resulted in a marked an attenuation of GIP promoter activity. Our data support the hypothesis that GATA-4 may function to augment or enhance GIP expression rather than act as an initiator of GIP transcription.


Asunto(s)
Linaje de la Célula , Factor de Transcripción GATA4/metabolismo , Polipéptido Inhibidor Gástrico/genética , Intestinos/citología , Páncreas/citología , Regulación hacia Arriba/genética , Animales , Bioensayo , Línea Celular , Factor de Transcripción GATA4/antagonistas & inhibidores , Polipéptido Inhibidor Gástrico/metabolismo , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Mucosa Intestinal/metabolismo , Proteínas con Homeodominio LIM , Luciferasas/metabolismo , Ratones , Páncreas/metabolismo , Regiones Promotoras Genéticas/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Interferente Pequeño/farmacología , Ratas , Transactivadores/genética , Transactivadores/metabolismo , Factores de Transcripción , Regulación hacia Arriba/efectos de los fármacos
14.
Mol Endocrinol ; 21(4): 933-47, 2007 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-17227882

RESUMEN

Several studies have suggested that the transcription factor GATA4 plays an important role in ovarian function. This study evaluated the effects of GATA4 on the regulation of the Cyp19 gene in primary rat granulosa cells under basal conditions and in response to stimulation by FSH. A significant increase in GATA4 mRNA, protein, and DNA binding activity was observed in rats treated with pregnant mare serum gonadotropin, a hormone that binds to the FSH receptors, and in granulosa cells incubated with FSH. Enrichment of the Cyp19 promoter was observed in granulosa cells treated with FSH after chromatin precipitation with an anti-GATA4 antibody. Mutation of the GATA binding site on the Cyp19 promoter and inhibition of GATA4 expression with specific small interfering RNA significantly reduced FSH-enhanced Cyp19 expression, whereas overexpression of GATA4 increased Cyp19 promoter activity. A synergistic effect observed between GATA4 overexpression and FSH treatment in Cyp19 expression was abolished by mutating Ser105 in the GATA4 protein or by pretreating granulosa cells with a protein kinase A inhibitor. Inhibition of phosphatidylinositol-dependent kinase (PI3-K)/casein kinase 2 or ERK1/2 attenuated GATA4/FSH synergism, whereas the simultaneous blockade of PI3-K/casein kinase 2 and ERK1/2 activity eliminated Cyp19 stimulation. Finally, we demonstrated that FSH increases GATA4 phosphorylation and that GATA4 activation requires the activation of multiple kinases, including ERK1/2, PI3-K, and protein kinase A. These findings demonstrate that GATA4 contributes in the regulation of Cyp19 expression in the rat ovary and provide the first evidence that FSH regulates GATA4 activity.


Asunto(s)
Aromatasa/genética , Hormona Folículo Estimulante/fisiología , Factor de Transcripción GATA4/metabolismo , Regulación de la Expresión Génica , Células de la Granulosa/enzimología , Animales , Proteínas Quinasas Dependientes de AMP Cíclico/antagonistas & inhibidores , Femenino , Hormona Folículo Estimulante/farmacología , Factor de Transcripción GATA4/antagonistas & inhibidores , Factor de Transcripción GATA4/genética , Gonadotropinas Equinas/farmacología , Células de la Granulosa/efectos de los fármacos , Proteína Quinasa 1 Activada por Mitógenos/antagonistas & inhibidores , Proteína Quinasa 3 Activada por Mitógenos/antagonistas & inhibidores , Mutación , Inhibidores de las Quinasa Fosfoinosítidos-3 , Fosforilación , Regiones Promotoras Genéticas/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología , ARN Mensajero/análisis , ARN Mensajero/metabolismo , Ratas , Elementos de Respuesta/efectos de los fármacos , Serina/genética , Serina/metabolismo , Regulación hacia Arriba
15.
Cell Death Differ ; 25(9): 1598-1611, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29459770

RESUMEN

Neurons in the central nervous system (CNS) lose their intrinsic ability and fail to regenerate, but the underlying mechanisms are largely unknown. Polycomb group (PcG) proteins, which include PRC1 and PRC2 complexes function as gene repressors and are involved in many biological processes. Here we report that PRC1 components (polycomb chromobox (CBX) 2, 7, and 8) are novel regulators of axon growth and regeneration. Especially, knockdown of CBX7 in either embryonic cortical neurons or adult dorsal root ganglion (DRG) neurons enhances their axon growth ability. Two important transcription factors GATA4 and SOX11 are functional downstream targets of CBX7 in controlling axon regeneration. Moreover, knockdown of GATA4 or SOX11 in cultured DRG neurons inhibits axon regeneration response from CBX7 downregulation in DRG neurons. These findings suggest that targeting CBX signaling pathway may be a novel approach for promoting the intrinsic regenerative capacity of damaged CNS neurons.


Asunto(s)
Axones/fisiología , Proteínas del Grupo Polycomb/metabolismo , Animales , Células Cultivadas , Regulación hacia Abajo , Factor de Transcripción GATA4/antagonistas & inhibidores , Factor de Transcripción GATA4/genética , Factor de Transcripción GATA4/metabolismo , Ganglios Espinales/citología , Ratones , Neuronas/citología , Neuronas/metabolismo , Complejo Represivo Polycomb 1/antagonistas & inhibidores , Complejo Represivo Polycomb 1/genética , Complejo Represivo Polycomb 1/metabolismo , Proteínas del Grupo Polycomb/antagonistas & inhibidores , Proteínas del Grupo Polycomb/genética , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Regeneración , Factores de Transcripción SOXC/antagonistas & inhibidores , Factores de Transcripción SOXC/genética , Factores de Transcripción SOXC/metabolismo , Nervio Ciático/lesiones
16.
Cell Death Differ ; 25(11): 1996-2009, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-29523871

RESUMEN

The role of GATA-binding protein 4 (GATA4) in neural crest cells (NCCs) is poorly defined. Here we showed that mouse NCCs lacking GATA4 exhibited developmental defects in craniofacial bone, teeth, and heart. The defects likely occurred due to decreased cell proliferation at the developmental stage. The in vitro results were consistent with the mouse model. The isobaric tags for relative and absolute quantitation assay revealed that BARX1 is one of the differentially expressed proteins after GATA4 knockdown in NCCs. On the basis of the results of dual-luciferase, electro-mobility shift, and chromatin immunoprecipitation assays, Barx1 expression is directly regulated by GATA4 in NCCs. In zebrafish, gata4 knockdown affects the development of NCCs derivatives. However, the phenotype in zebrafish could be partly rescued by co-injection of gata4 morpholino oligomers and barx1 mRNA. This study identified new downstream targets of GATA4 in NCCs and uncovered additional evidence of the complex regulatory functions of GATA4 in NCC development.


Asunto(s)
Huesos Faciales/crecimiento & desarrollo , Factor de Transcripción GATA4/metabolismo , Proteínas de Homeodominio/metabolismo , Cresta Neural/crecimiento & desarrollo , Factores de Transcripción/metabolismo , Animales , Proliferación Celular , Huesos Faciales/diagnóstico por imagen , Huesos Faciales/metabolismo , Femenino , Factor de Transcripción GATA4/antagonistas & inhibidores , Factor de Transcripción GATA4/genética , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Cresta Neural/citología , Cresta Neural/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Regiones Promotoras Genéticas , Unión Proteica , Interferencia de ARN , ARN Mensajero/metabolismo , ARN Interferente Pequeño/metabolismo , Factor de Transcripción SOX9/genética , Factor de Transcripción SOX9/metabolismo , Factores de Transcripción/genética , Proteína 1 Relacionada con Twist/genética , Proteína 1 Relacionada con Twist/metabolismo , Microtomografía por Rayos X , Pez Cebra/metabolismo
17.
Sci Rep ; 8(1): 4611, 2018 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-29545582

RESUMEN

Transcription factors are fundamental regulators of gene transcription, and many diseases, such as heart diseases, are associated with deregulation of transcriptional networks. In the adult heart, zinc-finger transcription factor GATA4 is a critical regulator of cardiac repair and remodelling. Previous studies also suggest that NKX2-5 plays function role as a cofactor of GATA4. We have recently reported the identification of small molecules that either inhibit or enhance the GATA4-NKX2-5 transcriptional synergy. Here, we examined the cardiac actions of a potent inhibitor (3i-1000) of GATA4-NKX2-5 interaction in experimental models of myocardial ischemic injury and pressure overload. In mice after myocardial infarction, 3i-1000 significantly improved left ventricular ejection fraction and fractional shortening, and attenuated myocardial structural changes. The compound also improved cardiac function in an experimental model of angiotensin II -mediated hypertension in rats. Furthermore, the up-regulation of cardiac gene expression induced by myocardial infarction and ischemia reduced with treatment of 3i-1000 or when micro- and nanoparticles loaded with 3i-1000 were injected intramyocardially or intravenously, respectively. The compound inhibited stretch- and phenylephrine-induced hypertrophic response in neonatal rat cardiomyocytes. These results indicate significant potential for small molecules targeting GATA4-NKX2-5 interaction to promote myocardial repair after myocardial infarction and other cardiac injuries.


Asunto(s)
Factor de Transcripción GATA4/antagonistas & inhibidores , Proteína Homeótica Nkx-2.5/antagonistas & inhibidores , Hipertensión/prevención & control , Isoxazoles/farmacología , Infarto del Miocardio/prevención & control , Dominios y Motivos de Interacción de Proteínas/efectos de los fármacos , Daño por Reperfusión/prevención & control , Bibliotecas de Moléculas Pequeñas/farmacología , Angiotensina II/toxicidad , Animales , Factor de Transcripción GATA4/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Proteína Homeótica Nkx-2.5/metabolismo , Hipertensión/inducido químicamente , Hipertensión/metabolismo , Hipertensión/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Infarto del Miocardio/metabolismo , Infarto del Miocardio/patología , Fosforilación , Ratas Sprague-Dawley , Daño por Reperfusión/metabolismo , Daño por Reperfusión/patología
18.
Cell Death Dis ; 9(5): 503, 2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29717129

RESUMEN

Rheumatoid arthritis (RA) is a chronic autoimmune disease characterized by abnormal inflammation, angiogenesis, and cartilage destruction. In RA, neoangiogenesis is an early and crucial event to promote the formation of pannus, causing further inflammatory cell infiltration. The transcription factor GATA4 is a critical regulator of cardiac differentiation-specific gene expression. We find that a higher level of GATA4 exists in synovium of rheumatoid arthritis (RA) patients, but the function of GATA4 in RA remains unclear. In the present study, IL-1ß induces inflammation in fibroblast-like synoviocytes (FLS) MH7A, which is accompanied with the increased expression of GATA4 and VEGF production. Through application of GATA4 loss-of-function assays, we confirm the requirement of GATA4 expression for inflammation induced by IL-1ß in FLS. In addition, we demonstrate for the first time that GATA4 plays key roles in regulating VEGF secretion from RA FLS to promote cellular proliferation, induce cell migration, and angiogenic tube formation of endothelial cells. GATA4 induces the angiogenic factors VEGFA and VEGFC, by directly binding to the promoter and enhancing transcription. The knockdown of GATA4 attenuates the development of collagen-induced arthritis (CIA) and prevents RA-augmented angiogenesis in vivo, which are accompanied with decreased VEGF level. These results reveal a previously unrecognized function for GATA4 as a regulator of RA angiogenesis and we provide experimental data validating the therapeutic target of GATA4 in RA mice.


Asunto(s)
Artritis Experimental/genética , Artritis Reumatoide/genética , Factor de Transcripción GATA4/genética , Neovascularización Patológica/genética , Sinoviocitos/metabolismo , Animales , Artritis Experimental/metabolismo , Artritis Experimental/patología , Artritis Experimental/prevención & control , Artritis Reumatoide/metabolismo , Artritis Reumatoide/patología , Línea Celular , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Factor de Transcripción GATA4/antagonistas & inhibidores , Factor de Transcripción GATA4/metabolismo , Regulación de la Expresión Génica , Células Endoteliales de la Vena Umbilical Humana/citología , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Interleucina-1beta/farmacología , Masculino , Ratones Endogámicos DBA , Neovascularización Patológica/metabolismo , Neovascularización Patológica/patología , Neovascularización Patológica/prevención & control , Regiones Promotoras Genéticas , Unión Proteica , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Ratas , Ratas Sprague-Dawley , Transducción de Señal , Membrana Sinovial/metabolismo , Membrana Sinovial/patología , Sinoviocitos/efectos de los fármacos , Sinoviocitos/patología , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo , Factor C de Crecimiento Endotelial Vascular/genética , Factor C de Crecimiento Endotelial Vascular/metabolismo
19.
J Med Chem ; 60(18): 7781-7798, 2017 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-28858485

RESUMEN

Transcription factors are pivotal regulators of gene transcription, and many diseases are associated with the deregulation of transcriptional networks. In the heart, the transcription factors GATA4 and NKX2-5 are required for cardiogenesis. GATA4 and NKX2-5 interact physically, and the activation of GATA4, in cooperation with NKX2-5, is essential for stretch-induced cardiomyocyte hypertrophy. Here, we report the identification of four small molecule families that either inhibit or enhance the GATA4-NKX2-5 transcriptional synergy. A fragment-based screening, reporter gene assay, and pharmacophore search were utilized for the small molecule screening, identification, and optimization. The compounds modulated the hypertrophic agonist-induced cardiac gene expression. The most potent hit compound, N-[4-(diethylamino)phenyl]-5-methyl-3-phenylisoxazole-4-carboxamide (3, IC50 = 3 µM), exhibited no activity on the protein kinases involved in the regulation of GATA4 phosphorylation. The identified and chemically and biologically characterized active compound, and its derivatives may provide a novel class of small molecules for modulating heart regeneration.


Asunto(s)
Factor de Transcripción GATA4/metabolismo , Proteína Homeótica Nkx-2.5/metabolismo , Isoxazoles/química , Isoxazoles/farmacología , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/farmacología , Activación Transcripcional/efectos de los fármacos , Animales , Línea Celular , Factor de Transcripción GATA4/agonistas , Factor de Transcripción GATA4/antagonistas & inhibidores , Proteína Homeótica Nkx-2.5/agonistas , Proteína Homeótica Nkx-2.5/antagonistas & inhibidores , Humanos , Ratones , Modelos Moleculares , Mapas de Interacción de Proteínas/efectos de los fármacos
20.
BMB Rep ; 47(8): 463-8, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24355298

RESUMEN

Osteoblasts are specialized mesenchymal cells that are responsible for bone formation. In this study, we examine the role of GATA4 in osteoblast differentiation. GATA4 was abundantly expressed in preosteoblast cells and gradually down-regulated during osteoblast differentiation. Overexpression of GATA4 in osteoblastic cells inhibited alkaline phosphatase activity and nodule formation in osteogenic conditioned cell culture system. In addition, overexpression of GATA4 attenuated expression of osteogenic marker genes, including Runx2, alkaline phosphatase, bone sialoprotein, and osteocalcin, all of which are important for osteoblast differentiation and function. Overexpression of GATA4 attenuated Runx2 promoter activity, whereas silencing of GATA4 increased Runx2 induction. We found that GATA4 interacted with Dlx5 and subsequently decreased Dlx5 binding activity to Runx2 promoter region. Our data suggest that GATA4 acts as a negative regulator in osteoblast differentiation by downregulation of Runx2.


Asunto(s)
Diferenciación Celular , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Factor de Transcripción GATA4/metabolismo , Osteoblastos/citología , Fosfatasa Alcalina/metabolismo , Animales , Células Cultivadas , Subunidad alfa 1 del Factor de Unión al Sitio Principal/genética , Regulación hacia Abajo , Factor de Transcripción GATA4/antagonistas & inhibidores , Factor de Transcripción GATA4/genética , Células HEK293 , Proteínas de Homeodominio/metabolismo , Humanos , Ratones , Ratones Endogámicos C57BL , Osteoblastos/metabolismo , Osteocalcina/metabolismo , Regiones Promotoras Genéticas , Unión Proteica , Interferencia de ARN , ARN Mensajero/metabolismo , ARN Interferente Pequeño/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA