Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 788
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Mol Cell ; 84(16): 3061-3079.e10, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39121853

RESUMEN

Mouse FOXA1 and GATA4 are prototypes of pioneer factors, initiating liver cell development by binding to the N1 nucleosome in the enhancer of the ALB1 gene. Using cryoelectron microscopy (cryo-EM), we determined the structures of the free N1 nucleosome and its complexes with FOXA1 and GATA4, both individually and in combination. We found that the DNA-binding domains of FOXA1 and GATA4 mainly recognize the linker DNA and an internal site in the nucleosome, respectively, whereas their intrinsically disordered regions interact with the acidic patch on histone H2A-H2B. FOXA1 efficiently enhances GATA4 binding by repositioning the N1 nucleosome. In vivo DNA editing and bioinformatics analyses suggest that the co-binding mode of FOXA1 and GATA4 plays important roles in regulating genes involved in liver cell functions. Our results reveal the mechanism whereby FOXA1 and GATA4 cooperatively bind to the nucleosome through nucleosome repositioning, opening chromatin by bending linker DNA and obstructing nucleosome packing.


Asunto(s)
Microscopía por Crioelectrón , Factor de Transcripción GATA4 , Factor Nuclear 3-alfa del Hepatocito , Nucleosomas , Unión Proteica , Factor Nuclear 3-alfa del Hepatocito/metabolismo , Factor Nuclear 3-alfa del Hepatocito/genética , Nucleosomas/metabolismo , Nucleosomas/genética , Nucleosomas/ultraestructura , Animales , Factor de Transcripción GATA4/metabolismo , Factor de Transcripción GATA4/genética , Factor de Transcripción GATA4/química , Ratones , Cromatina/metabolismo , Cromatina/genética , Histonas/metabolismo , Histonas/genética , Histonas/química , Sitios de Unión , ADN/metabolismo , ADN/genética , ADN/química , Ensamble y Desensamble de Cromatina , Humanos
2.
Cell ; 167(7): 1674-1676, 2016 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-27984717

RESUMEN

Using induced pluripotent stem cells, Ang et al. elucidate how a mutation in the transcription factor GATA4 causes congenital heart disease. They find that, although the recruitment of GATA4 to cardiac super-enhancers is retained, it no longer functions in partnership with another key transcription factor, leading to misexpression of non-cardiomyocyte genes.


Asunto(s)
Factor de Transcripción GATA4/genética , Crisis de Identidad , Corazón , Humanos , Miocitos Cardíacos/metabolismo , Factores de Transcripción/genética
3.
Cell ; 167(7): 1734-1749.e22, 2016 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-27984724

RESUMEN

Mutation of highly conserved residues in transcription factors may affect protein-protein or protein-DNA interactions, leading to gene network dysregulation and human disease. Human mutations in GATA4, a cardiogenic transcription factor, cause cardiac septal defects and cardiomyopathy. Here, iPS-derived cardiomyocytes from subjects with a heterozygous GATA4-G296S missense mutation showed impaired contractility, calcium handling, and metabolic activity. In human cardiomyocytes, GATA4 broadly co-occupied cardiac enhancers with TBX5, another transcription factor that causes septal defects when mutated. The GATA4-G296S mutation disrupted TBX5 recruitment, particularly to cardiac super-enhancers, concomitant with dysregulation of genes related to the phenotypic abnormalities, including cardiac septation. Conversely, the GATA4-G296S mutation led to failure of GATA4 and TBX5-mediated repression at non-cardiac genes and enhanced open chromatin states at endothelial/endocardial promoters. These results reveal how disease-causing missense mutations can disrupt transcriptional cooperativity, leading to aberrant chromatin states and cellular dysfunction, including those related to morphogenetic defects.


Asunto(s)
Factor de Transcripción GATA4/genética , Cardiopatías Congénitas/genética , Cardiopatías Congénitas/patología , Cromatina , Elementos de Facilitación Genéticos , Femenino , Corazón/crecimiento & desarrollo , Humanos , Células Madre Pluripotentes Inducidas , Masculino , Mutación Missense , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Fosfatidilinositol 3-Quinasas/metabolismo , Transducción de Señal , Proteínas de Dominio T Box/genética
4.
Genes Dev ; 36(21-24): 1129-1144, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36522129

RESUMEN

GATA4 is a transcription factor known for its crucial role in the development of many tissues, including the liver; however, its role in adult liver metabolism is unknown. Here, using high-throughput sequencing technologies, we identified GATA4 as a transcriptional regulator of metabolism in the liver. GATA4 expression is elevated in response to refeeding, and its occupancy is increased at enhancers of genes linked to fatty acid and lipoprotein metabolism. Knocking out GATA4 in the adult liver (Gata4LKO) decreased transcriptional activity at GATA4 binding sites, especially during feeding. Gata4LKO mice have reduced plasma HDL cholesterol and increased liver triglyceride levels. The expression of a panel of GATA4 binding genes involved in hepatic cholesterol export and triglyceride hydrolysis was down-regulated in Gata4LKO mice. We further demonstrate that GATA4 collaborates with LXR nuclear receptors in the liver. GATA4 and LXRs share a number of binding sites, and GATA4 was required for the full transcriptional response to LXR activation. Collectively, these results show that hepatic GATA4 contributes to the transcriptional control of hepatic and systemic lipid homeostasis.


Asunto(s)
Hígado , Receptores Nucleares Huérfanos , Ratones , Animales , Receptores Nucleares Huérfanos/metabolismo , Receptores X del Hígado/genética , Receptores X del Hígado/metabolismo , Hígado/metabolismo , Homeostasis/genética , Colesterol , Triglicéridos/metabolismo , Metabolismo de los Lípidos , Ratones Endogámicos C57BL , Factor de Transcripción GATA4/genética , Factor de Transcripción GATA4/metabolismo
5.
Circulation ; 149(15): 1205-1230, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38189150

RESUMEN

BACKGROUND: The relationship between heart failure (HF) and atrial fibrillation (AF) is clear, with up to half of patients with HF progressing to AF. The pathophysiological basis of AF in the context of HF is presumed to result from atrial remodeling. Upregulation of the transcription factor FOG2 (friend of GATA2; encoded by ZFPM2) is observed in human ventricles during HF and causes HF in mice. METHODS: FOG2 expression was assessed in human atria. The effect of adult-specific FOG2 overexpression in the mouse heart was evaluated by whole animal electrophysiology, in vivo organ electrophysiology, cellular electrophysiology, calcium flux, mouse genetic interactions, gene expression, and genomic function, including a novel approach for defining functional transcription factor interactions based on overlapping effects on enhancer noncoding transcription. RESULTS: FOG2 is significantly upregulated in the human atria during HF. Adult cardiomyocyte-specific FOG2 overexpression in mice caused primary spontaneous AF before the development of HF or atrial remodeling. FOG2 overexpression generated arrhythmia substrate and trigger in cardiomyocytes, including calcium cycling defects. We found that FOG2 repressed atrial gene expression promoted by TBX5. FOG2 bound a subset of GATA4 and TBX5 co-bound genomic locations, defining a shared atrial gene regulatory network. FOG2 repressed TBX5-dependent transcription from a subset of co-bound enhancers, including a conserved enhancer at the Atp2a2 locus. Atrial rhythm abnormalities in mice caused by Tbx5 haploinsufficiency were rescued by Zfpm2 haploinsufficiency. CONCLUSIONS: Transcriptional changes in the atria observed in human HF directly antagonize the atrial rhythm gene regulatory network, providing a genomic link between HF and AF risk independent of atrial remodeling.


Asunto(s)
Fibrilación Atrial , Remodelación Atrial , Insuficiencia Cardíaca , Humanos , Ratones , Animales , Fibrilación Atrial/genética , Redes Reguladoras de Genes , Calcio/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Atrios Cardíacos , Insuficiencia Cardíaca/genética , Genómica , Factor de Transcripción GATA4/genética
6.
Genes Dev ; 31(19): 1933-1938, 2017 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-29089421

RESUMEN

Senescence is a terminal differentiation program that halts the growth of damaged cells and must be circumvented for cancer to arise. Here we describe a panel of genetic screens to identify genes required for replicative senescence. We uncover a role in senescence for the potent tumor suppressor and ATM substrate USP28. USP28 controls activation of both the TP53 branch and the GATA4/NFkB branch that controls the senescence-associated secretory phenotype (SASP). These results suggest a role for ubiquitination in senescence and imply a common node downstream from ATM that links the TP53 and GATA4 branches of the senescence response.


Asunto(s)
Senescencia Celular/genética , Factor de Transcripción GATA4/metabolismo , Regulación de la Expresión Génica , Proteína p53 Supresora de Tumor/metabolismo , Ubiquitina Tiolesterasa/metabolismo , Proteínas de la Ataxia Telangiectasia Mutada/genética , Factor de Transcripción GATA4/genética , Biblioteca de Genes , Células HCT116 , Humanos , Reproducibilidad de los Resultados , Proteína p53 Supresora de Tumor/genética , Ubiquitina Tiolesterasa/genética , Ubiquitinación
7.
Circ Res ; 131(11): e152-e168, 2022 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-36263775

RESUMEN

BACKGROUND: The pioneer transcription factor (TF) GATA4 (GATA Binding Protein 4) is expressed in multiple cardiovascular lineages and is essential for heart development. GATA4 lineage-specific occupancy in the developing heart underlies its lineage specific activities. Here, we characterized GATA4 chromatin occupancy in cardiomyocyte and endocardial lineages, dissected mechanisms that control lineage specific occupancy, and analyzed GATA4 regulation of endocardial gene expression. METHODS: We mapped GATA4 chromatin occupancy in cardiomyocyte and endocardial cells of embryonic day 12.5 (E12.5) mouse heart using lineage specific, Cre-activated biotinylation of GATA4. Regulation of GATA4 pioneering activity was studied in cell lines stably overexpressing GATA4. GATA4 regulation of endocardial gene expression was analyzed using single cell RNA sequencing and luciferase reporter assays. RESULTS: Cardiomyocyte-selective and endothelial-selective GATA4 occupied genomic regions had features of lineage specific enhancers. Footprints within cardiomyocyte- and endothelial-selective GATA4 regions were enriched for NKX2-5 (NK2 homeobox 5) and ETS1 (ETS Proto-Oncogene 1) motifs, respectively, and both of these TFs interacted with GATA4 in co-immunoprecipitation assays. In stable NIH3T3 cell lines expressing GATA4 with or without NKX2-5 or ETS1, the partner TFs re-directed GATA4 pioneer binding and augmented its ability to open previously inaccessible regions, with ETS1 displaying greater potency as a pioneer partner than NKX2-5. Single-cell RNA sequencing of embryonic hearts with endothelial cell-specific Gata4 inactivation identified Gata4-regulated endocardial genes, which were adjacent to GATA4-bound, endothelial regions enriched for both GATA4 and ETS1 motifs. In reporter assays, GATA4 and ETS1 cooperatively stimulated endothelial cell enhancer activity. CONCLUSIONS: Lineage selective non-pioneer TFs NKX2-5 and ETS1 guide the activity of pioneer TF GATA4 to bind and open chromatin and create active enhancers and mechanistically link ETS1 interaction to GATA4 regulation of endocardial development.


Asunto(s)
Endocardio , Factor de Transcripción GATA4 , Proteína Proto-Oncogénica c-ets-1 , Animales , Ratones , Cromatina/metabolismo , Endocardio/metabolismo , Factor de Transcripción GATA4/genética , Factor de Transcripción GATA4/metabolismo , Miocitos Cardíacos/metabolismo , Células 3T3 NIH , Proteína Proto-Oncogénica c-ets-1/metabolismo
8.
Arterioscler Thromb Vasc Biol ; 43(2): 312-322, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36519469

RESUMEN

BACKGROUND: The endothelial-mesenchymal transition (EndoMT) is a fundamental process for heart valve formation and defects in EndoMT cause aortic valve abnormalities. Our previous genome-wide association study identified multiple variants in a large chromosome 8 segment as significantly associated with bicuspid aortic valve (BAV). The objective of this study is to determine the biological effects of this large noncoding segment in human induced pluripotent stem cell (hiPSC)-based EndoMT. METHODS: A large genomic segment enriched for BAV-associated variants was deleted in hiPSCs using 2-step CRISPR/Cas9 editing. To address the effects of the variants on GATA4 expression, we generated CRISPR repression hiPSC lines (CRISPRi) as well as hiPSCs from BAV patients. The resulting hiPSCs were differentiated to mesenchymal/myofibroblast-like cells through cardiovascular-lineage endothelial cells for molecular and cellular analysis. Single-cell RNA sequencing was also performed at different stages of EndoMT induction. RESULTS: The large deletion impaired hiPSC-based EndoMT in multiple biallelic clones compared with their isogenic control. It also reduced GATA4 transcript and protein levels during EndoMT, sparing the other genes nearby the deletion segment. Single-cell trajectory analysis revealed the molecular reprogramming during EndoMT. Putative GATA-binding protein targets during EndoMT were uncovered, including genes implicated in endocardial cushion formation and EndoMT process. Differentiation of cells derived from BAV patients carrying the rs117430032 variant as well as CRISPRi repression of the rs117430032 locus resulted in lower GATA4 expression in a stage-specific manner. TWIST1 was identified as a potential regulator of GATA4 expression, showing specificity to the locus tagged by rs117430032. CONCLUSIONS: BAV-associated distal regions regulate GATA4 expression during hiPSC-based EndoMT, which in turn promotes EndoMT progression, implicating its contribution to heart valve development.


Asunto(s)
Enfermedad de la Válvula Aórtica Bicúspide , Enfermedades de las Válvulas Cardíacas , Células Madre Pluripotentes Inducidas , Humanos , Enfermedad de la Válvula Aórtica Bicúspide/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Enfermedades de las Válvulas Cardíacas/metabolismo , Células Endoteliales/metabolismo , Estudio de Asociación del Genoma Completo , Válvula Aórtica/metabolismo , Secuencias Reguladoras de Ácidos Nucleicos , Factor de Transcripción GATA4/genética , Factor de Transcripción GATA4/metabolismo
9.
Int Heart J ; 65(1): 119-127, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38296564

RESUMEN

Astaxanthin (ASX) is a natural antioxidant with preventive and therapeutic effects on various human diseases. However, the role of ASX in cardiac hypertrophy and its underlying molecular mechanisms remain unclear.Cardiomyocytes (AC16) were used with angiotensin-II (Ang-II) to mimic the cardiac hypertrophy cell model. The protein levels of hypertrophy genes, GATA4, and methyltransferase-like 3 (METTL3) were determined by western blot analysis. Cell size was assessed using immunofluorescence staining. The expression of circ_0078450, miR-338-3p, and GATA4 were analyzed by quantitative real-time PCR. Also, the interaction between miR-338-3p and circ_0078450 or GATA4 was confirmed by dual-luciferase reporter and RIP assays, and the regulation of METTL3 on circ_0078450 was verified by MeRIP and RIP assays.ASX reduced the hypertrophy gene protein expression and cell size in Ang-II-induced AC16 cells. Circ_0078450 was promoted under Ang-II treatment, and ASX reduced circ_0078450 expression in Ang-II-induced AC16 cells. Circ_0078450 could sponge miR-338-3p to positively regulate GATA4 expression, and GATA4 overexpression overturned the suppressive effect of circ_0078450 knockdown on Ang-II-induced cardiomyocyte hypertrophy. Also, the inhibitory effect of ASX on Ang-II-induced cardiomyocyte hypertrophy could be reversed by circ_0078450 or GATA4 overexpression. In addition, METTL3 mediated the m6A methylation of circ_0078450 to enhance circ_0078450 expression. Moreover, METTL3 knockdown suppressed Ang-II-induced cardiomyocyte hypertrophy by inhibiting circ_0078450 expression.Our data showed that ASX repressed cardiac hypertrophy by regulating the METTL3/circ_0078450/miR-338-3p/GATA4 axis.


Asunto(s)
MicroARNs , Transducción de Señal , Xantófilas , Humanos , Angiotensina II , Cardiomegalia/tratamiento farmacológico , Cardiomegalia/genética , Proliferación Celular , Factor de Transcripción GATA4/genética , Metiltransferasas/genética , MicroARNs/genética
10.
Ceska Gynekol ; 89(4): 261-268, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39242200

RESUMEN

OBJECTIVE: To investigate DNA methylation of specific tumor suppressor genes in endometrial hyperplasia compared to normal endometrial tissue. File and methodology: To search for epigenetic events, methylation-specific multiplex ligation-dependent probe amplification was employed to compare the methylation status of 40 tissue samples with atypical endometrial hyperplasia, 40 tissue samples with endometrial hyperplasia without atypia, and 40 control tissue samples with a normal endometrium. RESULTS AND CONCLUSION: Differences in DNA methylation among the groups were found in TWIST1, GATA4, MUS81, and NTRK1 genes (TWIST1: atypical hyperplasia 67.5%, benign hyperplasia 2.5%, normal endometrium 22.5%; P < 0.00001; GATA4: atypical hyperplasia 95%, benign hyperplasia 65%, normal endometrium 22.5%; P < 0.00001; MUS81: atypical hyperplasia 57.5%, benign hyperplasia 22.5%, normal endometrium 5%; P < 0.00001; NTRK1: atypical hyperplasia 65%, benign hyperplasia 27.5%, normal endometrium 10%; P < 0.00001). Higher methylation rates were observed for the tumor suppressor genes of TWIST1, GATA4, MUS81, and NTRK1 in samples with atypical endometrial hyperplasia compared to samples with normal endometrial tissue, and higher methylation rates were found in samples with atypical endometrial hyperplasia compared to samples of benign endometrial hyperplasia. DNA methylation of TWIST1, GATA4, MUS81, and NTRK1 is involved in the pathogenesis of atypical endometrial hyperplasia.


Asunto(s)
Metilación de ADN , Hiperplasia Endometrial , Factor de Transcripción GATA4 , Receptor trkA , Proteína 1 Relacionada con Twist , Adulto , Femenino , Humanos , Persona de Mediana Edad , Hiperplasia Endometrial/genética , Hiperplasia Endometrial/patología , Hiperplasia Endometrial/metabolismo , Factor de Transcripción GATA4/genética , Factor de Transcripción GATA4/metabolismo , Genes Supresores de Tumor , Proteínas Nucleares/genética , Receptor trkA/genética , Proteína 1 Relacionada con Twist/genética , Proteínas de Unión al ADN/genética , Endonucleasas/genética
11.
Gut ; 72(3): 535-548, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36109153

RESUMEN

OBJECTIVE: GATA6 is a key regulator of the classical phenotype in pancreatic ductal adenocarcinoma (PDAC). Low GATA6 expression associates with poor patient outcome. GATA4 is the second most expressed GATA factor in the pancreas. We assessed whether, and how, GATA4 contributes to PDAC phenotype and analysed the association of expression with outcome and response to chemotherapy. DESIGN: We analysed PDAC transcriptomic data, stratifying cases according to GATA4 and GATA6 expression and identified differentially expressed genes and pathways. The genome-wide distribution of GATA4 was assessed, as well as the effects of GATA4 knockdown. A multicentre tissue microarray study to assess GATA4 and GATA6 expression in samples (n=745) from patients with resectable was performed. GATA4 and GATA6 levels were dichotomised into high/low categorical variables; association with outcome was assessed using univariable and multivariable Cox regression models. RESULTS: GATA4 messenger RNA is enriched in classical, compared with basal-like tumours. We classified samples in 4 groups as high/low for GATA4 and GATA6. Reduced expression of GATA4 had a minor transcriptional impact but low expression of GATA4 enhanced the effects of GATA6 low expression. GATA4 and GATA6 display a partially overlapping genome-wide distribution, mainly at promoters. Reduced expression of both proteins in tumours was associated with the worst patient survival. GATA4 and GATA6 expression significantly decreased in metastases and negatively correlated with basal markers. CONCLUSIONS: GATA4 and GATA6 cooperate to maintain the classical phenotype. Our findings provide compelling rationale to assess their expression as biomarkers of poor prognosis and therapeutic response.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Neoplasias Pancreáticas/patología , Páncreas/patología , Carcinoma Ductal Pancreático/patología , Perfilación de la Expresión Génica , Factor de Transcripción GATA6/genética , Factor de Transcripción GATA4/genética , Factor de Transcripción GATA4/metabolismo
12.
J Biol Chem ; 298(3): 101581, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35038452

RESUMEN

RNA polymerase III (pol III) products play fundamental roles in a variety of cellular processes, including protein synthesis and cancer cell proliferation. In addition, dysregulation of pol III-directed transcription closely correlates with tumorigenesis. It is therefore of interest to identify novel pathways or factors governing pol III-directed transcription. Here, we show that transcription factor (TF) GATA binding protein 4 (GATA4) expression in SaOS2 cells was stimulated by the silencing of filamin A (FLNA), a repressor of pol III-directed transcription, suggesting that GATA4 is potentially associated with the regulation of pol III-directed transcription. Indeed, we show that GATA4 expression positively correlates with pol III-mediated transcription and tumor cell proliferation. Mechanistically, we found that GATA4 depletion inhibits the occupancies of the pol III transcription machinery factors at the loci of pol III target genes by reducing expression of both TFIIIB subunit TFIIB-related factor 1 and TFIIIC subunit general transcription factor 3C subunit 2 (GTF3C2). GATA4 has been shown to activate specificity factor 1 (Sp1) gene transcription by binding to the Sp1 gene promoter, and Sp1 has been confirmed to activate pol III gene transcription by directly binding to both Brf1 and Gtf3c2 gene promoters. Thus, the findings from this study suggest that GATA4 links FLNA and Sp1 signaling to form an FLNA/GATA4/Sp1 axis to modulate pol III-directed transcription and transformed cell proliferation. Taken together, these results provide novel insights into the regulatory mechanism of pol III-directed transcription.


Asunto(s)
Filaminas , Factor de Transcripción GATA4 , Proteínas Quinasas , ARN Polimerasa III , Proliferación Celular , Filaminas/genética , Filaminas/metabolismo , Factor de Transcripción GATA4/genética , Factor de Transcripción GATA4/metabolismo , Proteínas Quinasas/metabolismo , ARN Polimerasa III/metabolismo , Transducción de Señal , Factores de Transcripción/genética , Transcripción Genética
13.
Circulation ; 146(10): 770-787, 2022 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-35938400

RESUMEN

BACKGROUND: GATA4 (GATA-binding protein 4), a zinc finger-containing, DNA-binding transcription factor, is essential for normal cardiac development and homeostasis in mice and humans, and mutations in this gene have been reported in human heart defects. Defects in alternative splicing are associated with many heart diseases, yet relatively little is known about how cell type- or cell state-specific alternative splicing is achieved in the heart. Here, we show that GATA4 regulates cell type-specific splicing through direct interaction with RNA and the spliceosome in human induced pluripotent stem cell-derived cardiac progenitors. METHODS: We leveraged a combination of unbiased approaches including affinity purification of GATA4 and mass spectrometry, enhanced cross-linking with immunoprecipitation, electrophoretic mobility shift assays, in vitro splicing assays, and unbiased transcriptomic analysis to uncover GATA4's novel function as a splicing regulator in human induced pluripotent stem cell-derived cardiac progenitors. RESULTS: We found that GATA4 interacts with many members of the spliceosome complex in human induced pluripotent stem cell-derived cardiac progenitors. Enhanced cross-linking with immunoprecipitation demonstrated that GATA4 also directly binds to a large number of mRNAs through defined RNA motifs in a sequence-specific manner. In vitro splicing assays indicated that GATA4 regulates alternative splicing through direct RNA binding, resulting in functionally distinct protein products. Correspondingly, knockdown of GATA4 in human induced pluripotent stem cell-derived cardiac progenitors resulted in differential alternative splicing of genes involved in cytoskeleton organization and calcium ion import, with functional consequences associated with the protein isoforms. CONCLUSIONS: This study shows that in addition to its well described transcriptional function, GATA4 interacts with members of the spliceosome complex and regulates cell type-specific alternative splicing via sequence-specific interactions with RNA. Several genes that have splicing regulated by GATA4 have functional consequences and many are associated with dilated cardiomyopathy, suggesting a novel role for GATA4 in achieving the necessary cardiac proteome in normal and stress-responsive conditions.


Asunto(s)
Factor de Transcripción GATA4 , Células Madre Pluripotentes Inducidas , Empalme Alternativo , Animales , Factor de Transcripción GATA4/genética , Factor de Transcripción GATA4/metabolismo , Corazón , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Ratones , Miocitos Cardíacos/metabolismo , ARN/genética , ARN/metabolismo
14.
Toxicol Appl Pharmacol ; 466: 116457, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-36914120

RESUMEN

With the world pandemic of methamphetamine (METH), METH-associated cardiomyopathy (MAC) has become a widespread epidemic and is also recognized as a cause of heart failure in young people. The mechanism of occurrence and development of MAC is not clear. In this study, firstly, the animal model was evaluated by echocardiography and myocardial pathological staining. The results revealed that the animal model exhibited cardiac injury consistent with clinical alterations of MAC, and the mice developed cardiac hypertrophy and fibrosis remodeling, which led to systolic dysfunction and left ventricular ejection fraction (%LVEF) < 40%. The expression of cellular senescence marker proteins (p16 and p21) and senescence-associated secretory phenotype (SASP) was significantly increased in mouse myocardial tissue. Secondly, mRNA sequencing analysis of cardiac tissues revealed the key molecule GATA4, and Western blot, qPCR and immunofluorescence results showed that the expression level of GATA4 was significantly increased after METH exposure. Finally, knockdown of GATA4 expression in H9C2 cells in vitro significantly attenuated METH-induced cardiomyocyte senescence. Consequently, METH causes cardiomyopathy through cellular senescence mediated by the GATA4/NF-κB/SASP axis, which is a feasible target for the treatment of MAC.


Asunto(s)
Cardiomiopatías , Metanfetamina , Animales , Ratones , FN-kappa B/metabolismo , Metanfetamina/metabolismo , Volumen Sistólico , Función Ventricular Izquierda , Senescencia Celular/genética , Miocitos Cardíacos/metabolismo , Factor de Transcripción GATA4/genética
15.
Gynecol Oncol ; 171: 39-48, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36804620

RESUMEN

OBJECTIVE: Sirtuin-7 (SIRT7) is a class III histone deacetylase that plays an important role in cancer development and frequently overexpressed in carcinomas. In this study, the tumor-supporting role and underlying mechanisms of SIRT7 were characterized in ovarian cancer (OC) aggressiveness. METHODS: SIRT7 expression was examined in OC tissues and cells. Interactions among SIRT7, GATA4, Wnt signaling pathway were explored by bioinformatics tools and experimental validations. The effect of SIRT7 and GATA4 on malignant phenotypes of OC cells were examined with gain- and loss-of-function experiments. A nude mouse model of OC was developed to verify the in vitro findings. RESULTS: It was noted that SIRT7 was highly expressed in OC tissues and cells. Cell lines with higher SIRT7 expression (OVCAR-3 and OVCAR-8) were used for subsequent in vitro experiments. The experimental data indicated that silencing of SIRT7 suppressed the OC cell proliferation, colony formation, migration, and invasion, and promoted cell senescence, which could be abolished by GATA4 knockdown. Mechanistically, SIRT7 promoted deacetylation of GATA4 and consequently inhibited the transcriptional activity of GATA4. In addition, GATA4 induced OC cell senescence by inhibiting Wnt signaling pathway. Further in vivo experiments substantiated that SIRT7 knockdown or overexpressed GATA4 could effectively inhibit tumor growth of nude mice. CONCLUSION: Taken together, our findings indicated that SIRT7 enhanced development of OC by suppressing GATA4 and activating Wnt signaling pathway, suggesting the potential of SIRT7/GATA4/Wnt axis as a therapeutic target for OC.


Asunto(s)
Neoplasias Ováricas , Sirtuinas , Animales , Ratones , Humanos , Femenino , Vía de Señalización Wnt , Neoplasias Ováricas/genética , Neoplasias Ováricas/patología , Línea Celular Tumoral , Apoptosis/genética , Ratones Desnudos , Sirtuinas/genética , Sirtuinas/metabolismo , Proliferación Celular/genética , Movimiento Celular/genética , Regulación Neoplásica de la Expresión Génica , Factor de Transcripción GATA4/genética , Factor de Transcripción GATA4/metabolismo
16.
Nature ; 551(7678): 100-104, 2017 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-29072293

RESUMEN

Direct lineage conversion offers a new strategy for tissue regeneration and disease modelling. Despite recent success in directly reprogramming fibroblasts into various cell types, the precise changes that occur as fibroblasts progressively convert to the target cell fates remain unclear. The inherent heterogeneity and asynchronous nature of the reprogramming process renders it difficult to study this process using bulk genomic techniques. Here we used single-cell RNA sequencing to overcome this limitation and analysed global transcriptome changes at early stages during the reprogramming of mouse fibroblasts into induced cardiomyocytes (iCMs). Using unsupervised dimensionality reduction and clustering algorithms, we identified molecularly distinct subpopulations of cells during reprogramming. We also constructed routes of iCM formation, and delineated the relationship between cell proliferation and iCM induction. Further analysis of global gene expression changes during reprogramming revealed unexpected downregulation of factors involved in mRNA processing and splicing. Detailed functional analysis of the top candidate splicing factor, Ptbp1, revealed that it is a critical barrier for the acquisition of cardiomyocyte-specific splicing patterns in fibroblasts. Concomitantly, Ptbp1 depletion promoted cardiac transcriptome acquisition and increased iCM reprogramming efficiency. Additional quantitative analysis of our dataset revealed a strong correlation between the expression of each reprogramming factor and the progress of individual cells through the reprogramming process, and led to the discovery of new surface markers for the enrichment of iCMs. In summary, our single-cell transcriptomics approaches enabled us to reconstruct the reprogramming trajectory and to uncover intermediate cell populations, gene pathways and regulators involved in iCM induction.


Asunto(s)
Reprogramación Celular/genética , Fibroblastos/citología , Fibroblastos/metabolismo , Miocitos Cardíacos/citología , Miocitos Cardíacos/metabolismo , Análisis de la Célula Individual , Transcriptoma , Algoritmos , Animales , Linaje de la Célula/genética , Regulación hacia Abajo/genética , Factor de Transcripción GATA4/genética , Ribonucleoproteínas Nucleares Heterogéneas/deficiencia , Ribonucleoproteínas Nucleares Heterogéneas/genética , Ribonucleoproteínas Nucleares Heterogéneas/metabolismo , Factores de Transcripción MEF2/genética , Ratones , Proteína de Unión al Tracto de Polipirimidina/deficiencia , Proteína de Unión al Tracto de Polipirimidina/genética , Proteína de Unión al Tracto de Polipirimidina/metabolismo , Empalme del ARN/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas de Dominio T Box/genética
17.
Acta Med Okayama ; 77(4): 365-370, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37635136

RESUMEN

Congenital heart disease is the most common malformative pathology in newborns, with a worldwide incidence at 0.4-5%. We investigated the possible relationship between variations in nucleotide sequences and specific cardiac malformations in the GATA-binding factor 4 (GATA4) exon 1 region by using Sanger sequencing. Forty-four newborns from a third-level neonatal intensive care unit who were diagnosed with nonsyndromic, ductal-dependent congenital heart disease (i.e., transposition of the great arteries or ductal-dependent coarctation of the aorta) were enrolled. Their DNA was extracted using commercial methods and tested using the multiplex ligation-dependent probe amplification (MLPA) technique. The Sanger sequencing for GATA4 exon 1 in the newborns' DNA identified rs61277615, rs73203482, and rs35813172 variants not reported in the ClinVar archive of human variations in newborns previously diagnosed with transposition of the great arteries (n=5) and coarctation of the aorta (n=1). The identification of these novel variants in newborns with transposition of the great arteries or ductal-dependent coarctation of the aorta may be the first step in determining the variants' contribution to the occurrence of congenital heart disease. However, these results may be inconclusive, since the observed variants within GATA4 gene were not previously reported.


Asunto(s)
Coartación Aórtica , Transposición de los Grandes Vasos , Recién Nacido , Humanos , Transposición de los Grandes Vasos/genética , Arterias , Exones , Factor de Transcripción GATA4/genética
18.
Genes Dev ; 29(12): 1239-55, 2015 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-26109048

RESUMEN

Transcription factor-mediated reprograming is a powerful method to study cell fate changes. In this study, we demonstrate that the transcription factor Gata6 can initiate reprograming of multiple cell types to induced extraembryonic endoderm stem (iXEN) cells. Intriguingly, Gata6 is sufficient to drive iXEN cells from mouse pluripotent cells and differentiated neural cells. Furthermore, GATA6 induction in human embryonic stem (hES) cells also down-regulates pluripotency gene expression and up-regulates extraembryonic endoderm (ExEn) genes, revealing a conserved function in mediating this cell fate switch. Profiling transcriptional changes following Gata6 induction in mES cells reveals step-wise pluripotency factor disengagement, with initial repression of Nanog and Esrrb, then Sox2, and finally Oct4, alongside step-wise activation of ExEn genes. Chromatin immunoprecipitation and subsequent high-throughput sequencing analysis shows Gata6 enrichment near pluripotency and endoderm genes, suggesting that Gata6 functions as both a direct repressor and activator. Together, this demonstrates that Gata6 is a versatile and potent reprograming factor that can act alone to drive a cell fate switch from diverse cell types.


Asunto(s)
Reprogramación Celular/genética , Células Madre Embrionarias/citología , Endodermo/citología , Factor de Transcripción GATA6/metabolismo , Células Madre Pluripotentes/citología , Animales , Sitios de Unión , Diferenciación Celular , Factor 4 de Crecimiento de Fibroblastos/genética , Factor 4 de Crecimiento de Fibroblastos/metabolismo , Factor de Transcripción GATA4/genética , Factor de Transcripción GATA4/metabolismo , Factor de Transcripción GATA6/genética , Regulación del Desarrollo de la Expresión Génica , Redes Reguladoras de Genes , Humanos , Ratones , Factor 3 de Transcripción de Unión a Octámeros/genética , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Unión Proteica , Transducción de Señal
19.
J Biol Chem ; 297(4): 101189, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34517007

RESUMEN

Autophagosome-lysosome pathway (ALP) insufficiency has been suggested to play a critical role in the pathogenesis of cardiac hypertrophy. However, the mechanisms underlying ALP insufficiency remain largely unknown, and strategies to specifically manipulate ALP insufficiency for treating cardiac hypertrophy are lacking. Transcription factor EB (TFEB), as a master regulator of ALP, regulates the generation and function of autophagosomes and lysosomes. We found that TFEB was significantly decreased, whereas autophagosome markers were increased in phenylephrine (PE)-induced and transverse aortic constriction-induced cardiomyocyte hypertrophy and failing hearts from patients with dilated cardiomyopathy. Knocking down TFEB induced ALP insufficiency, as indicated by increased autophagosome markers, decreased light chain 3II flux, and cardiomyocyte hypertrophy manifested through increased levels of atrial natriuretic peptide and ß-myosin heavy chain and enlarged cell size. The effects of TFEB knockdown were abolished by promoting autophagy. TFEB overexpression improved autophagic flux and attenuated PE-stimulated cardiomyocyte hypertrophy and transverse aortic constriction-induced hypertrophic remodeling, fibrosis, and cardiac dysfunction. Curcumin analog compound C1, a specific TFEB activator, similarly attenuated PE-induced ALP insufficiency and cardiomyocyte hypertrophy. TFEB knockdown increased the accumulation of GATA4, a transcription factor for several genes causing cardiac hypertrophy by blocking autophagic degradation of GATA4, whereas knocking down GATA4 attenuated TFEB downregulation-induced cardiomyocyte hypertrophy. Both TFEB overexpression and C1 promoted GATA4 autophagic degradation and alleviated PE-induced cardiomyocyte hypertrophy. In conclusion, TFEB downregulation plays a vital role in the development of pressure overload-induced cardiac hypertrophy by causing ALP insufficiency and blocking autophagic degradation. Activation of TFEB represents a potential therapeutic strategy for treating cardiac hypertrophy.


Asunto(s)
Autofagia , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Cardiomegalia/metabolismo , Factor de Transcripción GATA4/metabolismo , Proteolisis , Animales , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Cardiomegalia/genética , Factor de Transcripción GATA4/genética , Humanos , Ratones , Miocitos Cardíacos/metabolismo
20.
Hum Genet ; 141(12): 1849-1861, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35678873

RESUMEN

Osteoporosis is a serious public health problem that affects 200 million people worldwide. Genome-wide association studies have revealed the association between several single nucleotide polymorphisms (SNPs) near WNT/ß-catenin signaling genes and bone mineral density (BMD). The activation of ß-catenin by WNT ligands is required for osteoblast differentiation. SNP rs9921222 is an intronic variant of AXIN1 (a scaffold protein in the destruction complex that regulates ß-catenin signaling) that correlates with BMD. However, the biological mechanism of SNP rs9921222 has never been reported. Here, we show that the genotype of SNP rs9921222 correlates with the expression of AXIN1 in human osteoblasts. RNA and genomic DNA were analyzed from primary osteoblasts from 111 different individuals. Homozygous TT at rs9921222 correlates with a higher expression of AXIN1 than homozygous CC. Regional association analysis showed that rs9921222 is in high linkage disequilibrium (LD) with SNP rs10794639. In silico transcription factor analysis predicted that rs9921222 is within a GATA4 motif and rs10794639 is adjacent to an estrogen receptor alpha (ERα) motif. Mechanistically, GATA4 and ERα bind at SNPs rs9921222 and rs10794639 as detected by ChIP-qPCR. Luciferase assays demonstrate that rs9921222 is the causal SNP to alter ERα and GATA4 binding. GATA4 promoted the expression, and in contrast, ERα suppressed the expression of AXIN1 via the histone deacetylase complex member SIN3A. Functionally, the level of AXIN1 negatively correlates with the level of transcriptionally active ß-catenin. In summary, we have discovered a molecular mechanism of the SNP rs9921222 to regulate AXIN1 through GATA4 and ERα binding in human osteoblasts.


Asunto(s)
Receptor alfa de Estrógeno , beta Catenina , Humanos , beta Catenina/genética , beta Catenina/metabolismo , Receptor alfa de Estrógeno/genética , Proteína Axina/genética , Proteína Axina/metabolismo , Polimorfismo de Nucleótido Simple , Estudio de Asociación del Genoma Completo , Osteoblastos/metabolismo , Vía de Señalización Wnt/genética , Factor de Transcripción GATA4/genética , Factor de Transcripción GATA4/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA