Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 205
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Biol Chem ; 299(4): 104573, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36870685

RESUMEN

Sideromycins are a unique subset of siderophores comprising of a siderophore conjugated to an antimicrobial agent. The "Trojan horse" antibiotic albomycins are unique sideromycins consisting of a ferrichrome-type siderophore conjugated to a peptidyl nucleoside antibiotic. They exhibit potent antibacterial activities against many model bacteria and a number of clinical pathogens. Earlier studies have provided significant insight into the biosynthetic pathway of the peptidyl nucleoside moiety. We herein decipher the biosynthetic pathway of the ferrichrome-type siderophore in Streptomyces sp. ATCC 700974. Our genetic studies suggested that abmA, abmB, and abmQ are involved in the formation of the ferrichrome-type siderophore. Additionally, we performed biochemical studies to demonstrate that a flavin-dependent monooxygenase AbmB and an N-acyltransferase AbmA catalyze sequential modifications of L-ornithine to generate N5-acetyl-N5-hydroxyornithine. Three molecules of N5-acetyl-N5-hydroxyornithine are then assembled to generate the tripeptide ferrichrome through the action of a nonribosomal peptide synthetase AbmQ. Of special note, we found out that orf05026 and orf03299, two genes scattered elsewhere in the chromosome of Streptomyces sp. ATCC 700974, have functional redundancy for abmA and abmB, respectively. Interestingly, both orf05026 and orf03299 are situated within gene clusters encoding putative siderophores. In summary, this study provided new insight into the siderophore moiety of albomycin biosynthesis and shed light on the contingency of multiple siderophores in albomycin-producing Streptomyces sp. ATCC 700974.


Asunto(s)
Sideróforos , Streptomyces , Sideróforos/metabolismo , Ferricromo/química , Ferricromo/metabolismo , Streptomyces/genética , Streptomyces/metabolismo , Vías Biosintéticas , Nucleósidos/metabolismo , Antibacterianos/metabolismo
2.
Mol Microbiol ; 119(3): 340-349, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36648393

RESUMEN

In Bradyrhizobium japonicum, iron uptake from ferric siderophores involves selective outer membrane proteins and non-selective periplasmic and cytoplasmic membrane components that accommodate numerous structurally diverse siderophores. Free iron traverses the cytoplasmic membrane through the ferrous (Fe2+ ) transporter system FeoAB, but the other non-selective components have not been described. Here, we identify fsrB as an iron-regulated gene required for growth on iron chelates of catecholate- and hydroxymate-type siderophores, but not on inorganic iron. Utilization of the non-physiological iron chelator EDDHA as an iron source was also dependent on fsrB. Uptake activities of 55 Fe3+ bound to ferrioxamine B, ferrichrome or enterobactin were severely diminished in the fsrB mutant compared with the wild type. Growth of the fsrB or feoB strains on ferrichrome were rescued with plasmid-borne E. coli fhuCDB ferrichrome transport genes, suggesting that FsrB activity occurs in the periplasm rather than the cytoplasm. Whole cells of an fsrB mutant are defective in ferric reductase activity. Both whole cells and spheroplasts catalyzed the demetallation of ferric siderophores that were defective in an fsrB mutant. Collectively, the data support a model whereby FsrB is required for reduction of iron and its dissociation from the siderophore in the periplasm, followed by transport of the ferrous ion into the cytoplasm by FeoAB.


Asunto(s)
Hierro , Sideróforos , Sideróforos/metabolismo , Hierro/metabolismo , Ferricromo/metabolismo , Escherichia coli/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Compuestos Férricos/metabolismo
3.
J Virol ; 97(7): e0066723, 2023 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-37310294

RESUMEN

Receptor-binding proteins (RBPs) allow phages to dock onto their host and initiate infection through the recognition of proteinaceous or saccharidic receptors located on the cell surface. FhuA is the ferrichrome hydroxamate transporter in Escherichia coli and serves as a receptor for the well-characterized phages T1, T5, and phi80. To further characterize how other FhuA-dependent phages attach to FhuA, we isolated and published the genomes of three new FhuA-dependent coliphages: JLBYU37, JLBYU41, and JLBYU60. We identified the egions of FhuA involved in phage attachment by testing the effect of mutant fhuA alleles containing single-loop deletions of extracellular loops (L3, L4, L5, L8, L10, and L11) on phage infectivity. Deletion of loop 8 resulted in complete resistance to SO1-like phages JLBYU37 and JLBYU60 and the previously isolated vB_EcoD_Teewinot phage, but no single-loop deletions significantly altered the infection of T1-like JLBYU41. Additionally, lipopolysaccharide (LPS) truncation coupled with the L5 mutant significantly impaired the infectivity of JLBYU37 and JLBYU60. Moreover, significant reductions in the infectivity of JLBYU41 were observed upon LPS truncation in the L8 mutant strain. Analysis of the evolutionary relationships among FhuA-dependent phage RBPs highlights the conservation of L8 dependence in JLBYU37, JLBYU60, Teewinot, T5, and phi80, but also showcases how positive selective pressure and/or homologous recombination also selected for L4 dependence in T1 and even the lack of complete loop dependence in JLBYU41. IMPORTANCE Phage attachment is the first step of phage infection and plays a role in governing host specificity. Characterizing the interactions taking place between phage tail fibers and bacterial receptors that better equip bacteria to survive within the human body may provide insights to aid the development of phage therapeutics.


Asunto(s)
Bacteriófagos , Proteínas de Escherichia coli , Humanos , Proteínas de Escherichia coli/química , Proteínas Bacterianas/metabolismo , Ferricromo/metabolismo , Ferricromo/farmacología , Proteínas de la Membrana Bacteriana Externa/metabolismo , Lipopolisacáridos/metabolismo , Receptores Virales/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Colifagos/genética , Colifagos/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Bacteriófagos/genética , Bacteriófagos/metabolismo
4.
J Bacteriol ; 205(12): e0032423, 2023 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-37971230

RESUMEN

IMPORTANCE: This study is the first example of C. difficile growing with siderophores as the sole iron source and describes the characterization of the ferric hydroxamate uptake ABC transporter (FhuDBGC). This transporter shows specificity to the siderophore ferrichrome. While not required for pathogenesis, this transporter highlights the redundancy in iron acquisition mechanisms that C. difficile uses to compete for iron during an infection.


Asunto(s)
Clostridioides difficile , Sideróforos , Hierro/metabolismo , Ferricromo/metabolismo , Clostridioides difficile/metabolismo , Clostridioides , Proteínas de Transporte de Membrana
5.
Mol Microbiol ; 118(4): 369-386, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35970762

RESUMEN

Salmonella enterica spp. produce siderophores to bind iron with high affinity and can also use three xenosiderophores secreted by other microorganisms, ferrichrome, coprogen, and ferrioxamine. Here we focused on FoxA, a TonB-dependent transporter of ferrioxamines. Adjacent to foxA is a gene annotated as a helix-turn-helix (HTH) domain-containing protein, SL0358 (foxR), in the Salmonella enterica serovar Typhimurium SL1344 genome. FoxR shares homology with transcriptional regulators belonging to the AraC/XylS family. foxR is syntenic with foxA in the Enterobacteriaceae family, suggesting their functional relatedness. Both foxA and foxR are repressed by the ferric uptake regulator (Fur) under iron-rich growth conditions. When iron is scarce, FoxR acts as a transcriptional activator of foxA by directly binding to its upstream regulatory region. A point mutation in the HTH domain of FoxR abolished this binding, as did mutation of a direct repeat motif in the foxA upstream regulatory region. Desferrioxamine (DFOE) enhanced FoxR protein stability and foxA transcription but did not affect the affinity of FoxR binding to the foxA regulatory region. In summary, we have identified FoxR as a new member of the AraC/XylS family that regulates xenosiderophore-mediated iron uptake by S. Typhimurium and likely other Enterobacteriaceae members.


Asunto(s)
Deferoxamina , Salmonella enterica , Deferoxamina/química , Deferoxamina/metabolismo , Sideróforos/genética , Sideróforos/metabolismo , Ferricromo/metabolismo , Salmonella enterica/genética , Salmonella enterica/metabolismo , Citarabina , Proteínas de la Membrana Bacteriana Externa/metabolismo , Hierro/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica/genética
6.
Environ Microbiol ; 25(4): 811-831, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36571575

RESUMEN

Pseudomonas aeruginosa is a ubiquitous bacterium found in many natural and man-made environments. It is also a pathogen for plants, animals, and humans. As for almost all living organisms, iron is an essential nutrient for the growth of P. aeruginosa. The bacterium has evolved complex systems to access iron and maintain its homeostasis to survive in diverse natural and dynamic host environments. To access ferric iron, P. aeruginosa is able to produce two siderophores (pyoverdine and pyochelin), as well as use a variety of siderophores produced by other bacteria (mycobactins, enterobactin, ferrioxamine, ferrichrome, vibriobactin, aerobactin, rhizobactin and schizokinen). Furthermore, it can also use citrate, in addition to catecholamine neuromediators and plant-derived mono catechols, as siderophores. The P. aeruginosa genome also encodes three heme-uptake pathways (heme being an iron source) and one ferrous iron acquisition pathway. This review aims to summarize current knowledge concerning the molecular mechanisms involved in all the iron and heme acquisition strategies used by P. aeruginosa.


Asunto(s)
Hierro , Sideróforos , Humanos , Hierro/metabolismo , Sideróforos/metabolismo , Pseudomonas aeruginosa/metabolismo , Ferricromo/metabolismo , Transporte Biológico
7.
Bioorg Med Chem ; 28(17): 115645, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32773091

RESUMEN

Despite of proven efficacy and well tolerability, albomycin is not used clinically due to scarcity of material. Several attempts have been made to increase the production of albomycin by chemical or biochemical methods. In the current study, we have synthesized the active moiety of albomycin δ1 and investigated its binding mode to its molecular target seryl-trna synthetase (SerRS). In addition, isoleucyl and aspartyl congeners were prepared to investigate whether the albomycin scaffold can be extrapolated to target other aminoacyl-tRNA synthetases (aaRSs) from both class I and class II aaRSs, respectively. The synthesized analogues were evaluated for their ability to inhibit the corresponding aaRSs by an in vitro aminoacylation experiment using purified enzymes. It was observed that the diastereomer having the 5'S, 6'R-configuration (nucleoside numbering) as observed in the crystal structure, exhibits excellent inhibitory activity in contrast to poor activity of its companion 5'R,6'S-diasteromer obtained as byproduct during synthesis. Moreover, the albomycin core scaffold seems well tolerated for class II aaRSs inhibition compared with class I aaRSs. To understand this bias, we studied X-ray crystal structures of SerRS in complex with the albomycin δ1 core structure 14a, and AspRS in complex with compound 16a. Structural analysis clearly showed that diastereomer selectivity is attributed to the steric restraints of the active site of SerRS and AspRS.


Asunto(s)
Inhibidores Enzimáticos/síntesis química , Ferricromo/análogos & derivados , Serina-ARNt Ligasa/metabolismo , Sitios de Unión , Cristalografía por Rayos X , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/metabolismo , Ferricromo/síntesis química , Ferricromo/química , Ferricromo/metabolismo , Ligandos , Simulación de Dinámica Molecular , Serina-ARNt Ligasa/antagonistas & inhibidores , Trypanosoma brucei brucei/enzimología
8.
Angew Chem Int Ed Engl ; 59(9): 3558-3562, 2020 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-31863717

RESUMEN

Albomycin δ2 is a sulfur-containing sideromycin natural product that shows potent antibacterial activity against clinically important pathogens. The l-serine-thioheptose dipeptide partial structure, known as SB-217452, has been found to be the active seryl-tRNA synthetase inhibitor component of albomycin δ2 . Herein, it is demonstrated that AbmF catalyzes condensation between the 6'-amino-4'-thionucleoside with the d-ribo configuration and seryl-adenylate supplied by the serine adenylation activity of AbmK. Formation of the dipeptide is followed by C3'-epimerization to produce SB-217452 with the d-xylo configuration, which is catalyzed by the radical S-adenosyl-l-methionine enzyme AbmJ. Gene deletion suggests that AbmC is involved in peptide assembly linking SB-217452 with the siderophore moiety. This study establishes how the albomycin biosynthetic machinery generates its antimicrobial component SB-217452.


Asunto(s)
Antibacterianos/biosíntesis , Ferricromo/análogos & derivados , Pirimidinonas/metabolismo , Serina-ARNt Ligasa/metabolismo , Tiofenos/metabolismo , Antibacterianos/química , Biocatálisis , Ferricromo/química , Ferricromo/metabolismo , Péptido Sintasas/metabolismo , Pirimidinonas/química , Serina-ARNt Ligasa/antagonistas & inhibidores , Serina-ARNt Ligasa/genética , Streptomyces/química , Streptomyces/metabolismo , Tiofenos/química
9.
J Am Chem Soc ; 141(6): 2211-2214, 2019 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-30673214

RESUMEN

Albomycins are peptidyl thionucleoside natural products that display antimicrobial activity against clinically important pathogens. Their structures are characterized by a thioheptose with atypical stereochemistry including a d-xylofuranose ring modified with a d-amino acid moiety. Herein it is demonstrated that AbmH is a pyridoxal 5'-phosphate (PLP)-dependent transaldolase that catalyzes a threo-selective aldol-type reaction to generate the thioheptose core with a d-ribofuranose ring and an l-amino acid moiety. The conversion of l-to d-amino acid configuration is catalyzed by the PLP-dependent epimerase AbmD. The d- ribo to d- xylo conversion of the thiofuranose ring appears according to gene deletion experiments to be mediated by AbmJ, which is annotated as a radical S-adenosyl-l-methionine (SAM) enzyme. These studies establish several key steps in the assembly of the thioheptose core during the biosynthesis of albomycins.


Asunto(s)
Antibacterianos/biosíntesis , Antibacterianos/química , Ferricromo/análogos & derivados , Heptosas/química , Nucleósidos/química , Biocatálisis , Ferricromo/química , Ferricromo/metabolismo , Estereoisomerismo , Transaldolasa/metabolismo
10.
Artículo en Inglés | MEDLINE | ID: mdl-31405865

RESUMEN

VL-2397 (previously termed ASP2397) is an antifungal, aluminum-chelating cyclic hexapeptide with a structure analogous to that of ferrichrome-type siderophores, whereby replacement of aluminum by iron was shown to decrease the antifungal activity of this compound. Here, we found that inactivation of an importer for ferrichrome-type siderophores, termed Sit1, renders Aspergillus fumigatus resistant to VL-2397. Moreover, expression of the endogenous sit1 gene under the control of a xylose-inducible promoter (to uncouple sit1 expression from iron repression) combined with C-terminal tagging with a fluorescent protein demonstrated localization of Sit1 in the plasma membrane and xylose-dependent VL-2397 susceptibility. This underlines that Sit1-mediated uptake is essential for VL-2397 susceptibility. Under xylose-induced sit1 expression, VL-2397 also retained antifungal activity after replacing aluminum with iron, which demonstrates that VL-2397 bears antifungal activity independent of cellular aluminum importation. Analysis of sit1 expression indicated that the reduced antifungal activity of the iron-chelated VL-2397 is caused by downregulation of sit1 expression by the imported iron. Furthermore, we demonstrate that defects in iron homeostatic mechanisms modulate the activity of VL-2397. In contrast to A. fumigatus and Candida glabrata, Saccharomyces cerevisiae displays intrinsic resistance to VL-2397 antifungal activity. However, expression of sit1 from A. fumigatus, or its homologue from C. glabrata, resulted in susceptibility to VL-2397, which suggests that the intrinsic resistance of S. cerevisiae is based on lack of uptake and that A. fumigatus, C. glabrata, and S. cerevisiae share an intracellular target for VL-2397.


Asunto(s)
Aspergillus fumigatus/efectos de los fármacos , Aspergillus fumigatus/metabolismo , Complejos de Coordinación/farmacología , Proteínas Fúngicas/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Péptidos Cíclicos/farmacología , Sideróforos/metabolismo , Antifúngicos/farmacología , Transporte Biológico/efectos de los fármacos , Candida glabrata/efectos de los fármacos , Candida glabrata/metabolismo , Compuestos Férricos/farmacología , Ferricromo/metabolismo , Hierro/metabolismo , Quelantes del Hierro/farmacología , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/metabolismo
11.
Funct Integr Genomics ; 19(1): 137-150, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30251029

RESUMEN

Aureobasidium melanogenum HN6.2 is a unique yeast strain who can produce the siderophore of fusigen under iron starvation to guarantee its survival. However, a comprehensive understanding of mechanisms involved in iron acquisition and homeostasis for it is still vacant. In this study, genome sequencing and mining revealed that A. melanogenum HN6.2 strain was the first yeast species that exclusively possessed all the four known mechanisms for the iron acquisition: (i) the siderophore-mediated iron uptake; (ii) reductive iron assimilation; (iii) low-affinity ferrous uptake; and (iv) heme utilization, which suggested its stronger adaptability than Aspergillus fumigatus and Saccharomyces cerevisiae. This HN6.2 strain also employed the vacuolar iron storage for immobilizing the excessive iron to avoid its cellular toxicity. Specially, genome mining indicated that A. melanogenum HN6.2 strain could also synthesize ferricrocin siderophore. Further HPLC and Q-Tof-MS analysis confirmed that the siderophores synthesized by this strain consisted of cyclic fusigen, linear fusigen, ferricrocin, and hydroxyferricrocin and they played parallel roles as both intracellular and extracellular siderophores. Also, the heme utilization for this strain was experimentally verified by the knock-out of heme oxygenase gene. For iron homeostasis, the transcriptome analysis revealed that this strain mainly employed two central regulators of SreA/HapX to tune iron uptake and storage at the transcriptional level. It was also noted that mitogen-activated protein kinase C gene (MpkC) exhibited a transcriptional up-regulation under iron sufficiency, suggesting that it may serve as another factor involved in the repression of siderophore biosynthesis. This is the first genetic blueprint of iron acquisition and homeostasis for A. melanogenum.


Asunto(s)
Proteínas Fúngicas/genética , Regulación Fúngica de la Expresión Génica , Genoma Fúngico , Hierro/metabolismo , Saccharomycetales/metabolismo , Sideróforos/metabolismo , Transcriptoma , Aspergillus fumigatus/genética , Aspergillus fumigatus/metabolismo , Minería de Datos , Compuestos Férricos/metabolismo , Ferricromo/análogos & derivados , Ferricromo/metabolismo , Compuestos Ferrosos/metabolismo , Proteínas Fúngicas/metabolismo , Ontología de Genes , Hemo/metabolismo , Hemo Oxigenasa (Desciclizante)/genética , Hemo Oxigenasa (Desciclizante)/metabolismo , Homeostasis/genética , Ácidos Hidroxámicos/metabolismo , Transporte Iónico , Proteínas Quinasas Activadas por Mitógenos/genética , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Anotación de Secuencia Molecular , Oxidación-Reducción , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Saccharomycetales/genética , Vacuolas/metabolismo
12.
Biochem Biophys Res Commun ; 505(2): 606-611, 2018 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-30278887

RESUMEN

Fungal siderophores are known to be involved in iron acquisition and storage, as well as pathogenicity of mammals and plants. As avirulent plant symbionts, Trichoderma spp. colonize roots and induce resistance responses both locally and systemically. To study the role of intracellular siderophore(s) in Trichoderma-plant interactions, we have obtained mutants in a non-ribosomal peptide synthetase, TvTex10, that was predicted to be involved in intracellular siderophore(s) biosynthesis. This gene has a detectable basal level of expression and is also upregulated under iron-deplete conditions. This is unlike two other siderophore-encoding genes, which are tightly regulated by iron. Disruption of tex10 gene using homologous recombination resulted in mutants with enhanced growth rate, reduced conidiation and hyper-sensitivity to oxidative stress as compared to wildtype strain. The mutants also produced reduced levels of gliotoxin and dimethyl gliotoxin but have enhanced ability to colonize maize seedling roots. The mutants were also impaired in induction of induced systemic resistance (ISR) in maize against the foliar pathogen Cochliobolus heterostrophus.


Asunto(s)
Ferricromo/análogos & derivados , Sideróforos/fisiología , Trichoderma/crecimiento & desarrollo , Trichoderma/genética , Zea mays/microbiología , Resistencia a la Enfermedad , Ferricromo/metabolismo , Gliotoxina/biosíntesis , Mutación , Sideróforos/biosíntesis , Esporas Fúngicas/crecimiento & desarrollo , Trichoderma/metabolismo
13.
BMC Genomics ; 18(1): 631, 2017 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-28818040

RESUMEN

BACKGROUND: Fungal pathogens of plants produce diverse repertoires of secondary metabolites, which have functions ranging from iron acquisition, defense against immune perturbation, to toxic assaults on the host. The wheat pathogen Zymoseptoria tritici causes Septoria tritici blotch, a foliar disease which is a significant threat to global food security. Currently, there is limited knowledge of the secondary metabolite arsenal produced by Z. tritici, which significantly restricts mechanistic understanding of infection. In this study, we analyzed the genome of Z. tritici isolate IP0323 to identify putative secondary metabolite biosynthetic gene clusters, and used comparative genomics to predict their encoded products. RESULTS: We identified 32 putative secondary metabolite clusters. These were physically enriched at subtelomeric regions, which may facilitate diversification of cognate products by rapid gene rearrangement or mutations. Comparative genomics revealed a four gene cluster with significant similarity to the ferrichrome-A biosynthetic locus of the maize pathogen Ustilago maydis, suggesting this siderophore is deployed by Z. tritici to acquire iron. The Z. tritici genome also contains several isoprenoid biosynthetic gene clusters, including one with high similarity to a carotenoid/opsin producing locus in several fungi. Furthermore, we identify putative phytotoxin biosynthetic clusters, suggesting Z. tritici can produce an epipolythiodioxopiperazine, and a polyketide and non-ribosomal peptide with predicted structural similarities to fumonisin and the Alternaria alternata AM-toxin, respectively. Interrogation of an existing transcriptional dataset suggests stage specific deployment of numerous predicted loci during infection, indicating an important role of these secondary metabolites in Z. tritici disease. CONCLUSIONS: We were able to assign putative biosynthetic products to numerous clusters based on conservation amongst other fungi. However, analysis of the majority of secondary metabolite loci did not enable prediction of a cluster product, and consequently the capacity of these loci to play as yet undetermined roles in disease or other stages of the Z. tritici lifecycle is significant. These data will drive future experimentation for determining the role of these clusters and cognate secondary metabolite products in Z. tritici virulence, and may lead to discovery of novel bioactive molecules.


Asunto(s)
Ascomicetos/genética , Ascomicetos/metabolismo , Simulación por Computador , Familia de Multigenes , Triticum/microbiología , Ascomicetos/fisiología , Ferricromo/análogos & derivados , Ferricromo/metabolismo , Sitios Genéticos/genética , Interacciones Huésped-Patógeno , Piperazina , Piperazinas/química , Piperazinas/metabolismo
14.
Biochem J ; 473(9): 1203-13, 2016 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-26929401

RESUMEN

Aspergillus fumigatus is an opportunistic fungal pathogen for immunocompromised patients, and genes involved in siderophore metabolism have been identified as virulence factors. Recently, we identified the membrane transporters sit1 and sit2, which are putative virulence factors of A. fumigatus; sit1 and sit2 are homologous to yeast Sit1, and sit1 and sit2 gene expression was up-regulated after iron depletion. When expressed heterologously in Saccharomyces cerevisiae, sit1 and sit2 were localized to the plasma membrane; sit1 efficiently complemented ferrichrome (FC) and ferrioxamine B (FOB) uptake in yeast cells, whereas sit2 complemented only FC uptake. Deletion of sit1 resulted in a decrease in FOB and FC uptake, and deletion of sit2 resulted in a decrease in FC uptake in A. fumigatus It is of interest that a sit1 and sit2 double-deletion mutant resulted in a synergistic decrease in FC uptake activity. Both sit1 and sit2 were localized to the plasma membrane in A. fumigatus The expression levels of the sit1 and sit2 genes were dependent on hapX under low-but not high-iron conditions. Furthermore, mirB, and sidA gene expression was up-regulated and sreA expression down-regulated when sit1 and sit2 were deleted. Although sit1 and sit2 failed to affect mouse survival rate, these genes affected conidial killing activity. Taken together, our results suggest that sit1 and sit2 are siderophore transporters and putative virulence factors localized to the plasma membrane.


Asunto(s)
Aspergillus fumigatus/metabolismo , Membrana Celular/metabolismo , Deferoxamina/metabolismo , Compuestos Férricos/metabolismo , Ferricromo/metabolismo , Hierro/metabolismo , Factores de Virulencia/metabolismo , Animales , Aspergillus fumigatus/genética , Aspergillus fumigatus/patogenicidad , Membrana Celular/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Ratones , Factores de Virulencia/genética
15.
Appl Environ Microbiol ; 82(2): 467-77, 2016 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-26519385

RESUMEN

Albomycin (ABM), also known as grisein, is a sulfur-containing metabolite produced by Streptomyces griseus ATCC 700974. Genes predicted to be involved in the biosynthesis of ABM and ABM-like molecules are found in the genomes of other actinomycetes. ABM has potent antibacterial activity, and as a result, many attempts have been made to develop ABM into a drug since the last century. Although the productivity of S. griseus can be increased with random mutagenesis methods, understanding of Streptomyces sulfur amino acid (SAA) metabolism, which supplies a precursor for ABM biosynthesis, could lead to improved and stable production. We previously characterized the gene cluster (abm) in the genome-sequenced S. griseus strain and proposed that the sulfur atom of ABM is derived from either cysteine (Cys) or homocysteine (Hcy). The gene product, AbmD, appears to be an important link between primary and secondary sulfur metabolic pathways. Here, we show that propargylglycine or iron supplementation in growth media increased ABM production by significantly changing the relative concentrations of intracellular Cys and Hcy. An SAA metabolic network of S. griseus was constructed. Pathways toward increasing Hcy were shown to positively impact ABM production. The abmD gene and five genes that increased the Hcy/Cys ratio were assembled downstream of hrdBp promoter sequences and integrated into the chromosome for overexpression. The ABM titer of one engineered strain, SCAK3, in a chemically defined medium was consistently improved to levels ∼400% of the wild type. Finally, we analyzed the production and growth of SCAK3 in shake flasks for further process development.


Asunto(s)
Aminoácidos Sulfúricos/metabolismo , Antibacterianos/biosíntesis , Ferricromo/análogos & derivados , Streptomyces griseus/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Ferricromo/metabolismo , Familia de Multigenes , Streptomyces griseus/genética , Streptomyces griseus/crecimiento & desarrollo
16.
J Bacteriol ; 197(13): 2217-2228, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25917903

RESUMEN

UNLABELLED: Analysis of the genome sequence of Pseudomonas aeruginosa PA14 revealed the presence of an operon encoding an ABC-type transporter (NppA1A2BCD) showing homology to the Yej transporter of Escherichia coli. The Yej transporter is involved in the uptake of the peptide-nucleotide antibiotic microcin C, a translation inhibitor that targets the enzyme aspartyl-tRNA synthetase. Furthermore, it was recently shown that the Opp transporter from P. aeruginosa PAO1, which is identical to Npp, is required for uptake of the uridyl peptide antibiotic pacidamycin, which targets the enzyme translocase I (MraY), which is involved in peptidoglycan synthesis. We used several approaches to further explore the substrate specificity of the Npp transporter. Assays of growth in defined minimal medium containing peptides of various lengths and amino acid compositions as sole nitrogen sources, as well as Biolog Phenotype MicroArrays, showed that the Npp transporter is not required for di-, tri-, and oligopeptide uptake. Overexpression of the npp operon increased susceptibility not just to pacidamycin but also to nickel chloride and the peptidyl nucleoside antibiotic blasticidin S. Furthermore, heterologous expression of the npp operon in a yej-deficient mutant of E. coli resulted in increased susceptibility to albomycin, a naturally occurring sideromycin with a peptidyl nucleoside antibiotic. Additionally, heterologous expression showed that microcin C is recognized by the P. aeruginosa Npp system. Overall, these results suggest that the NppA1A2BCD transporter is involved in the uptake of peptidyl nucleoside antibiotics by P. aeruginosa PA14. IMPORTANCE: One of the world's most serious health problems is the rise of antibiotic-resistant bacteria. There is a desperate need to find novel antibiotic therapeutics that either act on new biological targets or are able to bypass known resistance mechanisms. Bacterial ABC transporters play an important role in nutrient uptake from the environment. These uptake systems could also be exploited by a Trojan horse strategy to facilitate the transport of antibiotics into bacterial cells. Several natural antibiotics mimic substrates of peptide uptake routes. In this study, we analyzed an ABC transporter involved in the uptake of nucleoside peptidyl antibiotics. Our data might help to design drug conjugates that may hijack this uptake system to gain access to cells.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/metabolismo , Antibacterianos/metabolismo , Proteínas Bacterianas/metabolismo , Pseudomonas aeruginosa/metabolismo , Transportadoras de Casetes de Unión a ATP/genética , Proteínas Bacterianas/genética , Bacteriocinas/metabolismo , Transporte Biológico , Ferricromo/análogos & derivados , Ferricromo/metabolismo , Regulación Bacteriana de la Expresión Génica/fisiología , Proteínas de Transporte de Membrana/metabolismo , Nucleósidos/metabolismo , Pseudomonas aeruginosa/genética
17.
Biometals ; 27(1): 143-53, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24362930

RESUMEN

The features that govern the interaction of ligand binding proteins with membrane permeases of cognate ABC transporters are largely unknown. Using sequence alignments and structural modeling based on the structure of the Escherichia coli BtuCD vitamin B12 transporter, we identified six conserved basic residues in the permease, comprised of FhuB and FhuG proteins, in the ferrichrome transporter of Staphylococcus aureus. Using alanine-scanning mutagenesis we demonstrate that two of these residues, FhuB Arg-71 and FhuG Arg-61, play a more dominant role in transporter function than FhuB Arg-74 and Arg-311, and FhuG Arg-64 and Lys-306. Moreover, we show that at positions 71 and 61 in FhuB and FhuG, respectively, arginine cannot be substituted for lysine without loss of transporter function. Previously, our laboratory demonstrated the importance of conserved acidic residues in the ferrichrome binding protein, FhuD2. Taken together, these results support the hypothesis that Glu-Arg salt bridges are critical for the interaction of the ligand binding protein with the transmembrane domains FhuB and FhuG. This hypothesis was further studied by "charge swapping" experiments whereby we constructed a S. aureus strain expressing FhuD2 with conserved residues Glu-97 and Glu-231 replaced by Arg and FhuB and FhuG with conserved basic residues Arg-71 and Arg-61, respectively, replaced by Glu. A strain containing this combination of substitutions restored partial function to the ferrichrome transporter. The results provide a direct demonstration of the functional importance of conserved basic residues on the extracellular surface of the ferrichrome permease in the Gram-positive bacterium S. aureus.


Asunto(s)
Dipéptidos/metabolismo , Ferricromo/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Staphylococcus aureus/metabolismo , Transporte Biológico , Modelos Moleculares , Staphylococcus aureus/crecimiento & desarrollo
18.
Biochem J ; 449(3): 683-93, 2013 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-23113737

RESUMEN

Staphylococcus aureus is a human pathogen causing globally significant morbidity and mortality. The development of antibiotic resistance in S. aureus highlights the need for a preventive vaccine. In the present paper we explore the structure and function of FhuD2 (ferric-hydroxamate uptake D2), a staphylococcal surface lipoprotein mediating iron uptake during invasive infection, recently described as a promising vaccine candidate. Differential scanning fluorimetry and calorimetry studies revealed that FhuD2 is stabilized by hydroxamate siderophores. The FhuD2-ferrichrome interaction was of nanomolar affinity in surface plasmon resonance experiments and fully iron(III)-dependent. We determined the X-ray crystallographic structure of ligand-bound FhuD2 at 1.9 Å (1 Å=0.1 nm) resolution, revealing the bilobate fold of class III SBPs (solute-binding proteins). The ligand, ferrichrome, occupies a cleft between the FhuD2 N- and C-terminal lobes. Many FhuD2-siderophore interactions enable the specific recognition of ferrichrome. Biochemical data suggest that FhuD2 does not undergo significant conformational changes upon siderophore binding, supporting the hypothesis that the ligand-bound complex is essential for receptor engagement and uptake. Finally, immunizations with FhuD2 alone or FhuD2 formulated with hydroxamate siderophores were equally protective in a murine staphylococcal infection model, confirming the suitability and efficacy of apo-FhuD2 as a protective antigen, and suggesting that other class III SBPs might also be exploited as vaccine candidates.


Asunto(s)
Proteínas Bacterianas/química , Proteínas de Transporte de Membrana/química , Proteínas de Unión Periplasmáticas/química , Staphylococcus aureus/metabolismo , Factores de Virulencia/química , Animales , Antígenos Bacterianos/química , Antígenos Bacterianos/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/inmunología , Proteínas Bacterianas/metabolismo , Cristalografía por Rayos X , Compuestos Férricos/metabolismo , Ferricromo/metabolismo , Genes Bacterianos , Humanos , Ácidos Hidroxámicos/metabolismo , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/inmunología , Proteínas de Transporte de Membrana/metabolismo , Ratones , Modelos Moleculares , Proteínas de Unión Periplasmáticas/genética , Proteínas de Unión Periplasmáticas/inmunología , Proteínas de Unión Periplasmáticas/metabolismo , Estabilidad Proteica , Sideróforos/metabolismo , Vacunas Estafilocócicas/química , Staphylococcus aureus/genética , Staphylococcus aureus/inmunología , Staphylococcus aureus/patogenicidad , Electricidad Estática , Transferrina/metabolismo , Virulencia , Factores de Virulencia/genética , Factores de Virulencia/inmunología , Factores de Virulencia/metabolismo
19.
Chembiochem ; 14(3): 388-94, 2013 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-23307607

RESUMEN

FSN1, a gene isolated from the sugar-cane pathogen Fusarium sacchari, encodes a 4707-residue nonribosomal peptide synthetase consisting of three complete adenylation, thiolation and condensation modules followed by two additional thiolation and condensation domain repeats. This structure is similar to that of ferricrocin synthetase, which makes a siderophore that is involved in intracellular iron storage in other filamentous fungi. Heterologous expression of FSN1 in Aspergillus oryzae resulted in the accumulation of a secreted metabolite that was identified as ferrirhodin. This siderophore was found to be present in both mycelium and culture filtrates of F. sacchari, whereas ferricrocin is found only in the mycelium, thus suggesting that ferricrocin is an intracellular storage siderophore in F. sacchari, whereas ferrirhodin is used for iron acquisition. To our knowledge, this is the first report to characterise a ferrirhodin synthetase gene functionally.


Asunto(s)
Proteínas Fúngicas/metabolismo , Fusarium/enzimología , Péptido Sintasas/metabolismo , Saccharum/microbiología , Aspergillus oryzae/metabolismo , Biocatálisis , Clonación Molecular , Ferricromo/análogos & derivados , Ferricromo/química , Ferricromo/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Péptido Sintasas/química , Péptido Sintasas/genética , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Sideróforos/biosíntesis , Sideróforos/química
20.
Biometals ; 26(6): 969-79, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24057327

RESUMEN

A screening for siderophores produced by the ectomycorrhizal fungi Laccaria laccata and Laccaria bicolor in synthetic low iron medium revealed the release of several different hydroxamate siderophores of which four major siderophores could be identified by high resolution mass spectrometry. While ferricrocin, coprogen and triacetylfusarinine C were assigned as well as other known fungal siderophores, a major peak of the siderophore mixture revealed an average molecular mass of 797 for the iron-loaded compound. High resolution mass spectrometry indicated an absolute mass of m/z = 798.30973 ([M + H](+)). With a relative error of Δ = 0.56 ppm this corresponds to linear fusigen (C33H52N6O13Fe; MW = 797.3). The production of large amounts of linear fusigen by these basidiomycetous mycorrhizal fungi may possibly explain the observed suppression of plant pathogenic Fusarium species. For comparative purposes Fusarium roseum was included in this study as a well known producer of cyclic and linear fusigen.


Asunto(s)
Compuestos Férricos/metabolismo , Ácidos Hidroxámicos/metabolismo , Hierro/metabolismo , Laccaria/metabolismo , Sideróforos/metabolismo , Antibiosis , Cromatografía Líquida de Alta Presión , Medios de Cultivo , Compuestos Férricos/aislamiento & purificación , Ferricromo/análogos & derivados , Ferricromo/aislamiento & purificación , Ferricromo/metabolismo , Fusarium/crecimiento & desarrollo , Ácidos Hidroxámicos/aislamiento & purificación , Laccaria/crecimiento & desarrollo , Espectrometría de Masas , Peso Molecular , Raíces de Plantas/microbiología , Sideróforos/aislamiento & purificación , Tracheophyta/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA