Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 961
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(16)2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39201446

RESUMEN

The skin of amphibians is a rich source of peptides with a wide range of biological activities. They are stored in secretory granules in an inactive form. Upon stimulation, they are secreted together with proteases into the skin. Once activated, they rapidly exert their biological effects, including fighting microorganisms and predators, while their excess is immediately destroyed by the released proteases. To keep bioactive peptides in their initial form, it is necessary to inhibit these enzymes. Several inhibitors for this purpose have previously been mentioned; however, there has not been any reliable comparison of their efficiency so far. Here, we studied the efficiency of methanol and hydrochloric and formic acids, as well as phenylmethylsulfonyl fluoride, in the inhibition of nine frog peptides with the known sequence, belonging to five families in the secretion of Pelophylax esculentus. The results demonstrated that methanol had the highest inhibitory efficiency, while phenylmethylsulfonyl fluoride was the least efficient, probably due to its instability in aqueous media. Possible cleavages between certain amino acid residues in the sequence were established for each of the inhibitors. These results may be helpful for future studies on the nature of proteases and on prediction of the possible cleavage sites in novel peptides.


Asunto(s)
Péptido Hidrolasas , Péptidos , Piel , Animales , Piel/metabolismo , Piel/efectos de los fármacos , Péptidos/química , Péptidos/farmacología , Péptido Hidrolasas/metabolismo , Péptido Hidrolasas/química , Inhibidores de Proteasas/farmacología , Inhibidores de Proteasas/química , Proteínas Anfibias/química , Proteínas Anfibias/farmacología , Proteínas Anfibias/metabolismo , Secuencia de Aminoácidos , Anfibios/metabolismo , Metanol/química , Fluoruro de Fenilmetilsulfonilo/farmacología
2.
World J Microbiol Biotechnol ; 40(11): 340, 2024 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-39358625

RESUMEN

Extracellular proteases from haloarchaea, also referred to as halolysins, are in increasing demand and are studied for their various applications in condiments and leather industries. In this study, an extracellular protease encoding gene from the haloarchaeon Halorubellus sp. PRR65, hly65, was cloned and heterologously expressed in E. coli. The novel halolysin Hly65 from the genus Halorubellus was characterized by complete inhibition of phenylmethanesulfonyl fluoride (PMSF) on its enzyme activity. Experimental determination revealed a triad catalytic active center consisting of Asp154-His193-Ser348. Deletion of the C-terminal extension (CTE) resulted in loss of enzyme activity, while dithiothreitol (DTT) did not inhibit the enzyme activity, suggesting that Hly65 may function as a monomer. The Km, Vmax and Kcat for the Hly65 were determined to be 2.91 mM, 1230.47 U·mg-1 and 1538.09 S-1, respectively, under 60 °C, pH 8.0 and 4.0 M NaCl using azocasecin as a substrate. Furthermore, a three-dimensional structure prediction based on functional domains was obtained in this study which will facilitate modification and reorganization of halolysins to generate mutants with new physiological activities.


Asunto(s)
Clonación Molecular , Escherichia coli , Concentración de Iones de Hidrógeno , Escherichia coli/genética , Cinética , Dominio Catalítico , Halobacteriaceae/genética , Halobacteriaceae/enzimología , Halobacteriaceae/metabolismo , Secuencia de Aminoácidos , Estabilidad de Enzimas , Especificidad por Sustrato , Temperatura , Calor , Proteínas Arqueales/genética , Proteínas Arqueales/metabolismo , Proteínas Arqueales/química , Modelos Moleculares , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/química , Cloruro de Sodio/metabolismo , Fluoruro de Fenilmetilsulfonilo/farmacología , Caseínas
3.
Biochem Biophys Res Commun ; 630: 57-63, 2022 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-36148729

RESUMEN

The 2.6 Å crystal structure of the apo form of Hip1 (hydrolase important for pathogenesis) has been previously reported. However, very little is known about the active site architecture of this M. tuberculosis (Mtb), serine hydrolase drug target. To begin mapping the active site of Hip1, we cocrystallized Hip1 with the irreversible serine protease inhibitor, 4-(2-aminoethyl)-benzenesulfonylfluoride (AEBSF). We chose AEBSF for cocrystallization with Hip1 since the similar inhibitor, phenylmethylsulfonyl fluoride (PMSF), interestingly exhibited no activity against Hip1. We obtained crystals that diffracted to 2.1 Å but to our bewilderment, we did not observe any electron density for the inhibitor in the omit map for the Hip1-AEBSF complex. Rather, in the active site, dehydroalanine (dAla) was found to occupy the expected position of the catalytic Ser228, thus yielding anhydrohip1. Here we present a comparative analysis of the crystal structures of anhydrohip1 and Hip1 and provide a mechanism for the conversion of the enzyme to the anhydro-form through reaction with AEBSF. With the aid of molecular docking, we propose an explanation for the differential inhibition of Hip1 by AEBSF and PMSF. We also present a preliminary definition of the S1 and S2 pockets of the protease's active site and propose a mechanism for a ligand-induced conformational change within the S2 pocket. Finally, we expand upon the previous demarcation of the putative lipid binding pocket in the α-domain of the enzyme. We believe that this detailed analysis of the structures of anhydrohip1 and Hip1 provides valuable information useful for the structure-based drug design of novel Hip1-directed Mtb therapeutics.


Asunto(s)
Mycobacterium tuberculosis , Cristalografía por Rayos X , Ligandos , Lípidos , Simulación del Acoplamiento Molecular , Fluoruro de Fenilmetilsulfonilo , Serina , Serina Proteasas/metabolismo , Inhibidores de Serina Proteinasa , Sulfonas
4.
Prep Biochem Biotechnol ; 52(9): 1008-1018, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35000560

RESUMEN

A novel thrombolytic enzyme was produced by food grade microorganism Neurospora crassa using agro-industrial by-products as substrates. Process parameters were optimized using Plackett-Berman and Box-Benhken design. Under the optimized fermentation conditions, high fibrinolytic activity of 403.59 U/mL was obtained. It was purified with a specific activity of 3572.4 U/mg by ammonium sulfate precipitation and SP Sepharose chromatography. The molecular weight of the enzyme was approximately 32 kDa. It exhibited maximum activity at 40 °C and pH 7.4. Its activity was enhanced by Cu2+, Na+, Zn2+, and completely inhibited by phenylmethanesulfonyl fluoride, soybean trypsin inhibitor, aprotinin, which indicates it could be a serine protease. The enzyme could degrade fibrin clot directly without the need of plasminogen activator, and effectively cleaved Aα, Bß, γ chains of fibrinogen. It could inhibit the formation of blood clots in vitro and acts as an anticoagulant. Compared to heparin the purified enzyme showed extended anticoagulant activity. Blood clots were dissolved effectively and dissolution rate was increased with time. Based on these results, this novel enzyme has the potential to be developed as a thrombolytic agent.


Asunto(s)
Neurospora crassa , Trombosis , Sulfato de Amonio , Anticoagulantes/farmacología , Aprotinina , Fibrina , Fibrinógeno/metabolismo , Fibrinolíticos/química , Heparina , Concentración de Iones de Hidrógeno , Peso Molecular , Neurospora crassa/metabolismo , Fluoruro de Fenilmetilsulfonilo , Activadores Plasminogénicos , Serina Endopeptidasas , Serina Proteasas , Temperatura , Inhibidores de Tripsina
5.
World J Microbiol Biotechnol ; 38(12): 241, 2022 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-36271946

RESUMEN

Vibrio mimicus is a bacterium that causes gastroenteritis in humans. This pathogen produces an enterotoxic hemolysin called V. mimicus hemolysin (VMH), which is secreted extracellularly as an inactive 80-kDa protoxin and converted to a 66-kDa mature toxin through cleavage between Arg151 and Ser152. The 56-kDa serine protease termed V. mimicus trypsin-like protease (VmtA) is known to mediate this maturating process. However, some strains including strain ES-20 does not possess the vmtA gene. In the present study, the vmtA-negative strains were found to have a replaced gene that encodes a 43-kDa (403 aa) precursor of a serine protease designated by VmtX (V. mimicus trypsin-like protease X). To examine whether VmtX is also involved in the maturation of VMH, VmtX was isolated from the culture supernatant of V. mimicus strain NRE-20, a metalloprotease-negative mutant constructed from strain ES-20. Concretely, the culture supernatant was fractionated with 70% saturated ammonium sulfate and subjected to affinity column chromatography using a HiTrap Benzamidine FF column. The analysis of the N-terminal amino acid sequences of the proteins in the obtained VmtX preparation indicated that the 39-kDa protein was active VmtX consisting of 371 aa (Ile33-Ser403). The VmtX preparation was found to activate pro-VMH through generation of the 66-kDa protein. Additionally, treatment of the VmtX preparation with serine protease inhibitors, such as leupeptin and phenylmethylsulfonyl fluoride, significantly suppressed the activities to hydrolyze the specific peptide substrate and to synthesize the 66-kDa toxin. These findings indicate that VmtX is the second protease that mediats the maturation of VMH.


Asunto(s)
Proteínas Hemolisinas , Vibrio , Humanos , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/metabolismo , Péptido Hidrolasas/genética , Leupeptinas , Sulfato de Amonio , Tripsina , Fluoruro de Fenilmetilsulfonilo , Metaloproteasas , Inhibidores de Serina Proteinasa , Benzamidinas , Vibrio/metabolismo
6.
Appl Environ Microbiol ; 86(12)2020 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-32303545

RESUMEN

Carboxylesterase PytH, isolated from the pyrethroid-degrading bacterium Sphingobium faniae JZ-2, could rapidly hydrolyze the ester bond of a wide range of pyrethroid pesticides, including permethrin, fenpropathrin, cypermethrin, fenvalerate, deltamethrin, cyhalothrin, and bifenthrin. To elucidate the catalytic mechanism of PytH, we report here the crystal structures of PytH with bifenthrin (BIF) and phenylmethylsulfonyl fluoride (PMSF) and two PytH mutants. Though PytH shares low sequence identity with reported α/ß-hydrolase fold proteins, the typical triad catalytic center with Ser-His-Asp triad (Ser78, His230, and Asp202) is present and vital for the hydrolase activity. However, no contact was found between Ser78 and His230 in the structures we solved, which may be due to the fact that the PytH structures we determined are in their inactive or low-activity forms. The structure of PytH is composed of a core domain and a lid domain; some hydrophobic amino acid residues surrounding the substrate from both domains form a deeper and wider hydrophobic pocket than its homologous structures. This indicates that the larger hydrophobic pocket makes PytH fit for its larger substrate binding; both lid and core domains are involved in substrate binding, and the lid domain-induced core domain movement may make the active center correctly positioned with substrates.IMPORTANCE Pyrethroid pesticides are widely applied in agriculture and household; however, extensive use of these pesticides also causes serious environmental and health problems. The hydrolysis of pyrethroids by carboxylesterases is the major pathway of microbial degradation of pyrethroids, but the structure of carboxylesterases and its catalytic mechanism are still unknown. Carboxylesterase PytH from Sphingobium faniae JZ-2 could effectively hydrolyze a wide range of pyrethroid pesticides. The crystal structures of PytH are solved in this study. This showed that PytH belongs to the α/ß-hydrolase fold proteins with typical catalytic Ser-His-Asp triad, though PytH has a low sequence identity (about 20%) with them. The special large hydrophobic binding pocket enabled PytH to bind bigger pyrethroid family substrates. Our structures shed light on the substrate selectivity and the future application of PytH and deepen our understanding of α/ß-hydrolase members.


Asunto(s)
Proteínas Bacterianas/genética , Hidrolasas de Éster Carboxílico/genética , Insecticidas/metabolismo , Fluoruro de Fenilmetilsulfonilo/metabolismo , Piretrinas/metabolismo , Sphingomonadaceae/genética , Proteínas Bacterianas/metabolismo , Hidrolasas de Éster Carboxílico/metabolismo , Análisis de Secuencia de ADN , Sphingomonadaceae/metabolismo
7.
Bioelectromagnetics ; 41(2): 113-120, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31872912

RESUMEN

Ultrasound has been applied for varied purposes as it provides additional mechanical energy to a system, and is still profitable and straightforward, which are advantages for industrial applications. In this work, ultrasonic treatments were applied to purified collagenase fractions from a fermented extract by Aspergillus terreus UCP 1276 aiming to evaluate the potential effect on collagen hydrolysis. The physical agent was evaluated as an inductor of collagen degradation and consequently as a producer of peptides with anticoagulant activity. The sodium dodecyl sulphate-polyacrylamide gel electrophoresis analyses were also carried out to compare the hydrolysis techniques. The ultrasound (40 kHz, 47.4 W/L) processing was conducted under the same conditions of pH and temperature at different times. The ultrasound-assisted reaction was accelerated in relation to conventional processing. Collagenolytic activity was enhanced and tested in the presence of phenylmethanesulfonyl fluoride inhibitor. Underexposure, the activity was enhanced, reaching more than 72.0% of improvement in relation to the non-exposed enzyme. A period of 30 min of incubation under ultrasound exposure was enough to efficiently produce peptides with biological activity, including anticoagulation and effect on prothrombin time at about 60%. The results indicate that low-frequency ultrasound is an enzymatic inducer with likely commercial applicability accelerating the enzymatic reaction. Bioelectromagnetics. 2020;41:113-120. © 2019 Bioelectromagnetics Society.


Asunto(s)
Anticoagulantes/farmacología , Aspergillus/enzimología , Colágeno/química , Colagenasas/metabolismo , Péptidos/química , Anticoagulantes/química , Catálisis , Colágeno/metabolismo , Colagenasas/química , Colagenasas/aislamiento & purificación , Electroforesis en Gel de Poliacrilamida , Fermentación , Humanos , Hidrólisis , Péptidos/farmacología , Fluoruro de Fenilmetilsulfonilo/química , Fluoruro de Fenilmetilsulfonilo/farmacología , Inhibidores de Proteasas/química , Inhibidores de Proteasas/farmacología , Hidrolisados de Proteína/química , Ultrasonido/métodos
8.
Biochemistry ; 58(7): 930-939, 2019 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-30676743

RESUMEN

Binding of small inhibitory compounds to human cytochrome P450 3A4 (CYP3A4) could interfere with drug metabolism and lead to drug-drug interactions, the underlying mechanism of which is not fully understood due to insufficient structural information. This study investigated the interaction of recombinant CYP3A4 with a nonspecific inhibitor metyrapone, antifungal drug fluconazole, and protease inhibitor phenylmethanesulfonyl fluoride (PMSF). Metyrapone and fluconazole are classic type II ligands that inhibit CYP3A4 with medium strength by ligating to the heme iron, whereas PMSF, lacking the heme-ligating moiety, acts as a weak type I ligand and inhibitor of CYP3A4. High-resolution crystal structures revealed that the orientation of metyrapone is similar but not identical to that in the previously reported 1W0G model, whereas the flexible fluconazole adapts a conformer markedly different from that observed in the target CYP51 enzymes, which could explain its high potential for cross-reactivity. Besides hydrophobic and aromatic interactions with the heme and active site residues, both drugs establish water-mediated contacts that stabilize the inhibitory complexes. PMSF also binds near the catalytic center, with the phenyl group parallel to the heme. However, it does not displace the water ligand and is held in place via strong H-bonds formed by the sulfofluoride moiety with Ser119 and Arg212. Collectively, our data suggest that PMSF might have multiple binding sites and likely occupies the high-affinity site in the crystal structure. Moreover, its hydrolysis product, phenylmethanesulfonic acid, can also access and be retained in the CYP3A4 active site. Therefore, to avoid experimental artifacts, PMSF should be excluded from purification and assay solutions.


Asunto(s)
Inhibidores del Citocromo P-450 CYP3A/química , Inhibidores del Citocromo P-450 CYP3A/metabolismo , Citocromo P-450 CYP3A/química , Citocromo P-450 CYP3A/metabolismo , Sitios de Unión , Cristalografía por Rayos X , Inhibidores del Citocromo P-450 CYP3A/farmacología , Fluconazol/química , Fluconazol/metabolismo , Fluconazol/farmacología , Humanos , Hidrólisis , Interacciones Hidrofóbicas e Hidrofílicas , Inactivación Metabólica , Metirapona/química , Metirapona/metabolismo , Metirapona/farmacología , Fluoruro de Fenilmetilsulfonilo/química , Fluoruro de Fenilmetilsulfonilo/metabolismo , Fluoruro de Fenilmetilsulfonilo/farmacología , Serina/química , Serina/metabolismo
9.
Mol Reprod Dev ; 86(7): 751-761, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31074040

RESUMEN

Regulation of protein tyrosine phosphorylation is required for sperm capacitation and oocyte fertilization. The objective of the present work was to study the role of the calcium-sensing receptor (CaSR) on protein tyrosine phosphorylation in boar spermatozoa under capacitating conditions. To do this, boar spermatozoa were incubated in Tyrode's complete medium for 4 hr and the specific inhibitor of the CaSR, NPS2143, was used. Also, to study the possible mechanism(s) by which this receptor exerts its function, spermatozoa were incubated in the presence of specific inhibitors of the 3-phosphoinositide dependent protein kinase 1 (PDK1) and protein kinase A (PKA). Treatment with NPS2143, GSK2334470, an inhibitor of PDK1 and H-89, an inhibitor of PKA separately induced an increase in tyrosine phosphorylation of 18 and 32 kDa proteins, a decrease in the serine/threonine phosphorylation of the PKA substrates together with a drop in sperm motility and viability. The present work proposes a new signalling pathway of the CaSR, mediated by PDK1 and PKA in boar spermatozoa under capacitating conditions. Our results show that the inhibition of the CaSR induces the inhibition of PDK1 that blocks PKA activity resulting in a rise in tyrosine phosphorylation of p18 and p32 proteins. This novel signalling pathway has not been described before and could be crucial to understand boar sperm capacitation within the female reproductive tract.


Asunto(s)
Piruvato Deshidrogenasa Quinasa Acetil-Transferidora/metabolismo , Receptores Sensibles al Calcio/metabolismo , Capacitación Espermática/fisiología , Espermatozoides/metabolismo , Sus scrofa/metabolismo , Tirosina/metabolismo , Animales , Proteínas Quinasas Dependientes de AMP Cíclico/antagonistas & inhibidores , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Indazoles/farmacología , Isoquinolinas/farmacología , Masculino , Naftalenos/farmacología , Fluoruro de Fenilmetilsulfonilo/farmacología , Fosforilación/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología , Pirimidinas/farmacología , Piruvato Deshidrogenasa Quinasa Acetil-Transferidora/antagonistas & inhibidores , Receptores Sensibles al Calcio/antagonistas & inhibidores , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Motilidad Espermática/efectos de los fármacos , Sulfonamidas/farmacología
10.
J Appl Microbiol ; 127(3): 670-682, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31165532

RESUMEN

AIMS: Experiments were designed to determine the effects of different chemical inhibitors of lysozyme and peptidases on rumen protozoa and the associated prokaryotes, and in vitro fermentation using Entodinium caudatum as a model protozoan species. METHODS AND RESULTS: Imidazole (a lysozyme inhibitor), phenylmethylsulphonyl fluoride (PMSF, a serine peptidase inhibitor) and iodoacetamide (IOD, a cysteine peptidase inhibitor) were evaluated in vitro both individually and in two- and three-way combinations using E. caudatum monocultures with respect to their ability to inhibit the protozoan and their effect on feed digestion, fermentation and the microbiota. All the three inhibitors, both individually and in combination, decreased E. caudatum counts (P < 0·001), and IOD and its combinations with the other inhibitors significantly (P < 0·01) decreased ammonia concentration, with the two- and three-way combinations showing additive effective. Feed digestion was not affected, but fermentation and microbial diversity were affected mostly by PMSF, IOD and their combinatorial treatments potentially due to the overgrowth of Streptococcus luteciae accompanying with the disappearance of host ciliates. CONCLUSIONS: Entodinium caudatum depends on lysozyme and peptidase for digestion and utilization of the engulfed microbes and specific inhibition of these enzymes can inhibition E. caudatum without adversely affecting feed digestion or fermentation even though they changed the microbiota composition in the cultures. SIGNIFICANCE AND IMPACT OF THE STUDY: The peptidase inhibitors may have the potential to be used in controlling rumen protozoa to improve ruminal nitrogen utilization efficiency.


Asunto(s)
Cilióforos/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Muramidasa/antagonistas & inhibidores , Inhibidores de Proteasas/farmacología , Amoníaco/metabolismo , Animales , Cilióforos/enzimología , Cilióforos/crecimiento & desarrollo , Cilióforos/microbiología , Digestión/efectos de los fármacos , Fermentación/efectos de los fármacos , Imidazoles/farmacología , Yodoacetamida/farmacología , Microbiota/efectos de los fármacos , Fluoruro de Fenilmetilsulfonilo/farmacología , Rumen/parasitología
11.
J Basic Microbiol ; 58(2): 131-143, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29193163

RESUMEN

Esterases hydrolyze water soluble short chain fatty acids esters and are biotechnologically important. A strain of Aspergillus westerdijkiae isolated from cooking oil for recycling was found to secrete an esterase. The best enzyme production (19-24 U/ml of filtrate) culture conditions were stablished. The protein was purified using ammonium sulphate precipitation, dialysis, and a chromatographic step in Sephacryl S-200 HR. The 32 kDa purified protein presented an optimal temperature of 40°C, with a T50 of 48.95°C, and an optimal pH of 8.0. KM and Vmax were 638.11 µM for p-NPB and 5.47 µmol of released p-NP · min-1 · µg-1 of protein, respectively. The purified enzyme was partially active in the presence of 25% acetone. PMSF inhibited the enzyme, indicating that it is a serine hydrolase. MS enzyme peptides sequences were used to find the protein in the A. westerdijkiae sequenced genome. A structure model demonstrated that the protein is a member of the a/ß -hydrolase fold superfamily.


Asunto(s)
Aspergillus/enzimología , Esterasas/aislamiento & purificación , Esterasas/metabolismo , Aspergillus/genética , Aspergillus/aislamiento & purificación , Fraccionamiento Químico , Cromatografía , Inhibidores Enzimáticos/metabolismo , Esterasas/química , Esterasas/genética , Microbiología de Alimentos , Concentración de Iones de Hidrógeno , Cinética , Modelos Moleculares , Peso Molecular , Fluoruro de Fenilmetilsulfonilo/metabolismo , Conformación Proteica , Análisis de Secuencia de Proteína , Temperatura
12.
Arch Toxicol ; 91(10): 3295-3305, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28299395

RESUMEN

Phenyl valerate is used for detecting and measuring neuropathy target esterase (NTE) and has been used for discriminating esterases as potential target in hen model of organophosphorus delayed neuropathy. In previous studies we observed that phenyl valerate esterase (PVase) activity of an enzymatic fraction in chicken brain might be due to a butyrylcholinesterase protein (BuChE), and it was suggested that this enzymatic fraction could be related to the potentiation/promotion phenomenon of the organophosphate-induced delayed neuropathy (OPIDN). In this work, PVase activity of purified human butyrylcholinesterase (hBuChE) is demonstrated and confirms the novel observation that a relationship of BuChE with PVase activities is also relevant for humans, as is, therefore the potential role in toxicity for humans. The KM and catalytic constant (kcat) were estimated as 0.52/0.72 µM and 45,900/49,200 min-1 respectively. Furthermore, this work studies the inhibition by preincubation of PVase and cholinesterase activities of hBuChE with irreversible inhibitors (mipafox, iso-OMPA or PMSF), showing that these inhibitors interact similarly in both activities with similar second-order inhibition constants. Acethylthiocholine and phenyl valerate partly inhibit PVase and cholinesterase activities, respectively. All these observations suggest that both activities occur in the same active center. The interaction with a reversible inhibitor (ethopropazine) showed that the cholinesterase activity was more sensitive than the PVase activity, showing that the sensitivity for this reversible inhibitor is affected by the nature of the substrate. The present work definitively establishes the capacity of BuChE to hydrolyze the carboxylester phenyl valerate using a purified enzyme (hBuChE). Therefore, BuChE should be considered in the research of organophosphorus targets of toxicity related with PVase proteins.


Asunto(s)
Butirilcolinesterasa/metabolismo , Inhibidores de la Colinesterasa/farmacología , Valeratos/metabolismo , Acetilcolina/metabolismo , Hidrolasas de Éster Carboxílico/metabolismo , Humanos , Hidrólisis , Isoflurofato/análogos & derivados , Isoflurofato/farmacología , Fenotiazinas/farmacología , Fluoruro de Fenilmetilsulfonilo/farmacología , Tetraisopropilpirofosfamida/farmacología
13.
J Basic Microbiol ; 57(2): 104-113, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27862101

RESUMEN

About 110 newly isolated halophilic and halotolerant bacteria were screened for protease production. A moderately halophilic strain (CJ4), isolated from Chott Eldjerid Hypersaline lake in Tunisia, showed the highest activity on agar plate and was then selected. The biochemical and physiological characterization of the isolate along with the 16S rRNA sequence analysis placed it in the genus Halobacillus. Protease production was maximal at 120 g/L NaCl (2 M) and it started from the post-exponential phase reaching a maximum level at the early decline phase of bacterial growth. Protease activity was optimal at 0.4 M NaCl, pH 9 and 45 °C. It showed an excellent stability over wide ranges of temperatures (30-60 °C), NaCl concentrations (0-5 M), and pH values (5-10), which make it a good candidate for industrial applications at harsh conditions. Crude protease was strongly inhibited by PMSF revealing the dominance of serine proteases. Protease activity exhibited high stability in the presence of several organic solvents and detergent additives. These findings make Halobacillus sp. CJ4 protease with a great interest for many biotechnological applications at high salt or low water content such as peptide synthesis and detergent formulation.


Asunto(s)
Halobacillus/enzimología , Serina Proteasas/aislamiento & purificación , Serina Proteasas/metabolismo , Técnicas de Tipificación Bacteriana , Análisis por Conglomerados , ADN Bacteriano/química , ADN Bacteriano/genética , ADN Ribosómico/química , ADN Ribosómico/genética , Detergentes/metabolismo , Inhibidores Enzimáticos/metabolismo , Estabilidad de Enzimas , Halobacillus/clasificación , Halobacillus/genética , Halobacillus/fisiología , Concentración de Iones de Hidrógeno , Lagos/microbiología , Fluoruro de Fenilmetilsulfonilo/metabolismo , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Serina Proteasas/química , Cloruro de Sodio/metabolismo , Solventes/metabolismo , Temperatura , Túnez
14.
Antimicrob Agents Chemother ; 60(6): 3445-54, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27001810

RESUMEN

Although the use of probiotics based on Bacillus strains to fight off intestinal pathogens and antibiotic-associated diarrhea is widespread, the mechanisms involved in producing their beneficial effects remain unclear. Here, we studied the ability of compounds secreted by the probiotic Bacillus clausii strain O/C to counteract the cytotoxic effects induced by toxins of two pathogens, Clostridium difficile and Bacillus cereus, by evaluating eukaryotic cell viability and expression of selected genes. Coincubation of C. difficile and B. cereus toxic culture supernatants with the B. clausii supernatant completely prevented the damage induced by toxins in Vero and Caco-2 cells. The hemolytic effect of B. cereus was also avoided by the probiotic supernatant. Moreover, in these cells, the expression of rhoB, encoding a Rho GTPase target for C. difficile toxins, was normalized when C. difficile supernatant was pretreated using the B. clausii supernatant. All of the beneficial effects observed with the probiotic were abolished by the serine protease inhibitor phenylmethylsulfonyl fluoride (PMSF). Suspecting the involvement of a secreted protease in this protective effect, a protease was purified from the B. clausii supernatant and identified as a serine protease (M-protease; GenBank accession number Q99405). Experiments on Vero cells demonstrated the antitoxic activity of the purified protease against pathogen supernatants. This is the first report showing the capacity of a protease secreted by probiotic bacteria to inhibit the cytotoxic effects of toxinogenic C. difficile and B. cereus strains. This extracellular compound could be responsible, at least in part, for the protective effects observed for this human probiotic in antibiotic-associated diarrhea.


Asunto(s)
Bacillus cereus/patogenicidad , Bacillus clausii/metabolismo , Toxinas Bacterianas/toxicidad , Clostridioides difficile/patogenicidad , Probióticos/farmacología , Subtilisinas/metabolismo , Animales , Células CACO-2 , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Chlorocebus aethiops , Medios de Cultivo Condicionados/farmacología , Humanos , Mucosa Intestinal/microbiología , Mucosa Intestinal/patología , Fluoruro de Fenilmetilsulfonilo/farmacología , Inhibidores de Proteasas/farmacología , Subtilisinas/antagonistas & inhibidores , Células Vero , Proteína de Unión al GTP rhoB/metabolismo
15.
Microb Pathog ; 100: 37-42, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27594668

RESUMEN

Tannerella forsythia is a bacteria associated with severe periodontal disease. This study reports identification and characterization of a membrane-associated serine protease from T. forsythia. The protease was isolated from T. forsythia membrane fractions and shown to cleave both gelatin and type I collagen. The protease was able to cleave both substrates over a wide range of pH values, however optimal cleavage occurred at pH 7.5 for gelatin and 8.0 for type I collagen. The protease was also shown to cleave both gelatin and type I collagen at the average reported temperature for the gingival sulcus however it showed a lack of thermal stability with a complete loss of activity by 60 °C. When treated with protease inhibitors the enzyme's activity could only be completely inhibited by serine protease inhibitors antipain and phenylmethanesulfonyl fluoride (PMSF). Further characterization of the protease utilized serine protease synthetic peptides. The protease cleaved N-succinyl-Ala-Ala-Pro-Phe p-nitroanilide but not Nα-benzoyl-dl-arginine p-nitroanilide (BAPNA) or N-methoxysuccinyl-Ala-Ala-Pro-Val p-nitroanilide indicating that the protease is a chymotrypsin-like serine protease. Since type I collagen is a major component in the gingival tissues and periodontal ligament, identification and characterization of this enzyme provides important information regarding the role of T. forsythia in periodontal disease.


Asunto(s)
Serina Proteasas/aislamiento & purificación , Serina Proteasas/metabolismo , Tannerella forsythia/enzimología , Antipaína/metabolismo , Colágeno Tipo I/metabolismo , Inhibidores Enzimáticos/análisis , Estabilidad de Enzimas , Gelatina/metabolismo , Concentración de Iones de Hidrógeno , Hidrólisis , Proteínas de la Membrana/química , Proteínas de la Membrana/aislamiento & purificación , Proteínas de la Membrana/metabolismo , Fluoruro de Fenilmetilsulfonilo/metabolismo , Serina Proteasas/química , Especificidad por Sustrato , Temperatura
16.
Microb Pathog ; 94: 104-11, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26806000

RESUMEN

Host cell invasion is important for periodontal pathogens in evading host defenses and spreading into deeper areas of the periodontal tissue. Treponema denticola has been implicated in a number of potentially pathogenic processes, including periodontal tissue penetration. Here we tested the ability of T. denticola strains to invade human gingival epithelial cells (HGEC). After 2 h infection, intracellular location of T. denticola cells was confirmed by confocal laser scanning microscopy (CLSM). Results from an antibiotic protection assay following [(3)H]uridine labeling indicated that invasion efficiency reached a maximum at 2 h after infection. Internalized T. denticola cells were still observed in HGEC at 24 h by CLSM. A dentilisin deficient mutant exhibited significantly decreased invasion (p < 0.05) compared with the wild-type strain. In inhibition assays, phenylmethylsulfonyl fluoride and metabolic inhibitors such as methyl-ß-cyclodextrin and staurosporine significantly reduced T. denticola invasion. Under CLSM, T. denticola colocalized with GM-1 ganglioside-containing membrane microdomains in a cholesterol-dependent manner. These results indicated that T. denticola has the ability to invade into and survive within HGECs. Dentilisin activity of T. denticola and lipid rafts on HGEC appear to play important roles in this process.


Asunto(s)
Células Epiteliales/microbiología , Encía/microbiología , Encía/patología , Infecciones por Spirochaetales/microbiología , Treponema denticola/patogenicidad , Antibacterianos/farmacología , Proteínas Bacterianas/metabolismo , Línea Celular , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Células Epiteliales/patología , Interacciones Huésped-Parásitos , Humanos , Microdominios de Membrana/metabolismo , Pruebas de Sensibilidad Microbiana , Péptido Hidrolasas/deficiencia , Péptido Hidrolasas/metabolismo , Periodontitis/microbiología , Fluoruro de Fenilmetilsulfonilo/farmacología , Estaurosporina/farmacología , Treponema denticola/efectos de los fármacos , Treponema denticola/enzimología , beta-Ciclodextrinas/farmacología
17.
Int Immunol ; 27(12): 633-45, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26174315

RESUMEN

Polyclonal antibodies hydrolyzing myelin basic protein (MBP) can play an important role in the pathogenesis of multiple sclerosis and systemic lupus erythematosus (SLE). An immunoglobulin light chain phagemid library derived from peripheral blood lymphocytes of patients with SLE was used. The small pools of phage particles displaying light chains with different affinity for MBP were isolated by affinity chromatography on MBP-Sepharose. The fraction eluted with 0.5M NaCl was used for preparation of individual monoclonal light chains (MLChs, 26-27kDa). The clones were expressed in Escherichia coli in a soluble form; MLChs were purified by metal-chelating chromatography followed by gel filtration. In mammalians, there are serine proteases and metalloproteases. These and many other enzymes usually have only one active site and catalyze only one chemical reaction. In contrast to canonical proteases, one MLCh (NGTA2-Me-pro-ChTr) efficiently hydrolyzed MBP (but not other proteins) and four different oligopeptides corresponding to four immunodominant sequences containing cleavage sites of MBP. The proteolytic activity of MLCh was efficiently inhibited only by specific inhibitors of serine-like (phenylmethanesulfonylfluoride, PMSF) and metalloproteases (EDTA). It was shown that MLCh possess independent serine-like and metal-dependent activities. The principal existence of monoclonal antibodies with two different proteolytic activities is unexpected but very important for the further understanding of at present unknown biological functions of human antibodies.


Asunto(s)
Anticuerpos Catalíticos/metabolismo , Escherichia coli/genética , Epítopos Inmunodominantes/metabolismo , Cadenas kappa de Inmunoglobulina/metabolismo , Lupus Eritematoso Sistémico/inmunología , Metaloproteasas/metabolismo , Serina Proteasas/metabolismo , Anticuerpos Catalíticos/química , Anticuerpos Catalíticos/genética , Clonación Molecular , Ácido Edético/química , Humanos , Epítopos Inmunodominantes/inmunología , Cadenas kappa de Inmunoglobulina/química , Cadenas kappa de Inmunoglobulina/genética , Lupus Eritematoso Sistémico/enzimología , Metaloproteasas/química , Proteína Básica de Mielina/química , Proteína Básica de Mielina/inmunología , Proteína Básica de Mielina/metabolismo , Fragmentos de Péptidos/química , Fragmentos de Péptidos/inmunología , Fragmentos de Péptidos/metabolismo , Biblioteca de Péptidos , Fluoruro de Fenilmetilsulfonilo/química , Serina Proteasas/química , Especificidad por Sustrato
18.
Protein Expr Purif ; 121: 125-32, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26849962

RESUMEN

An extracellular alkaline protease produced by the alkali-tolerant Cellulomonas bogoriensis was purified by a combination of ammonium sulfate precipitation and cation exchange chromatography. The purity of the protease was detected by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and its molecular weight was confirmed to be 18.3 kDa. The enzyme showed optimum activity at 60 °C and pH 11. The stability of the protease was maintained at a wide temperature range of 4-60 °C and pH range of 3-12. Irreversible inhibition of the enzyme activity by phenylmethylsulfonyl fluoride and tosyl-l-phenylalanine chloromethyl ketone demonstrated that the purified enzyme is a chymotrypsin of the serine protease family. The Km and Vmax of the protease activity on casein were 19.2 mg/mL and 25000 µg/min/mg, respectively. The broad substrate specificity and remarkable stability in the presence of organic solvents, salt, and commercial detergents, as well as its excellent stain removal and dehairing capability, make the purified alkaline protease a promising candidate for industrial applications.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/aislamiento & purificación , Cellulomonas/enzimología , Endopeptidasas/química , Endopeptidasas/aislamiento & purificación , Sulfato de Amonio/química , Proteínas Bacterianas/antagonistas & inhibidores , Estabilidad de Enzimas , Cinética , Fluoruro de Fenilmetilsulfonilo/farmacología , Solventes/química
19.
Anal Biochem ; 486: 24-34, 2015 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-26119333

RESUMEN

Isothermal titration calorimetry (ITC) was applied to determine enzymatic activity and inhibition. We measured the Michaelis-Menten kinetics for trypsin-catalyzed hydrolysis of two substrates, casein (an insoluble macromolecule substrate) and Nα-benzoyl-dl-arginine ß-naphthylamide (a small substrate), and estimated the thermodynamic parameters in the temperature range from 20 to 37°C. The inhibitory activities of reversible (small molecule benzamidine) and irreversible (small molecule phenylmethanesulfonyl fluoride and macromolecule α1-antitrypsin) inhibitors of trypsin were also determined. We showed the usefulness of ITC for fast and direct measurement of inhibition constants and half-maximal inhibitory concentrations and for predictions of the mechanism of inhibition. ITC kinetic assays could be an easy and straightforward way to estimate Michaelis-Menten constants and the effectiveness of inhibitors as well as to predict the inhibition mechanism. ITC efficiency was found to be similar to that of classical spectrophotometric enzymatic assays.


Asunto(s)
Biocatálisis , Calorimetría/métodos , Tripsina/metabolismo , Animales , Benzamidinas/farmacología , Bovinos , Hidrólisis , Cinética , Modelos Moleculares , Fluoruro de Fenilmetilsulfonilo/farmacología , Conformación Proteica , Termodinámica , Tripsina/química , Inhibidores de Tripsina/farmacología , alfa 1-Antitripsina/farmacología
20.
Cell Mol Biol (Noisy-le-grand) ; 61(4): 113-20, 2015 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-26429301

RESUMEN

In this study, an extracellular novel alkaline protease (EC 3.4.21-24, 99) from a thermophilic and aerobic strain of Anoxybacillus sp. KP1 has been studied. Maximum protease activity was obtained at 50 degC at pH 9.0 after 24 hours of incubation. Among the carbon and nitrogen sources used; the optimum protease production was with soluble starch, maltose, urea and casamino acid. The enzyme was purified by ammonium sulphate precipitation and Sephadex G-75 gel chromatography. Molecular weight of purified enzyme was determined as 106 kDa by SDS-PAGE. Purified protease was stable at 50-60 °C and at pH 9.0 for 1 h. The enzyme activity was increased in the presence of Ca2+, Cu2+, Tween 80 and Triton X-100, however the enzyme activity was inhibited in the presence of Hg2+, ethylene diamine tetra acetic acid (EDTA) and H2O2. Proteolytic activity was completely inhibited by phenyl methyl sulfonyl fluoride (PMSF). The enzyme seems to be a serine alkaline protease. In the presence of detergents, the protease was clearly stable and residual activity was between 73-82%.


Asunto(s)
Anoxybacillus/enzimología , Proteínas Bacterianas , Endopeptidasas , Aminoácidos/metabolismo , Proteínas Bacterianas/antagonistas & inhibidores , Proteínas Bacterianas/biosíntesis , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Cromatografía en Gel , Ácido Edético/química , Endopeptidasas/biosíntesis , Endopeptidasas/química , Endopeptidasas/metabolismo , Peróxido de Hidrógeno/química , Maltosa/metabolismo , Fluoruro de Fenilmetilsulfonilo/metabolismo , Almidón/metabolismo , Urea/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA