Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.783
Filtrar
Más filtros

Intervalo de año de publicación
1.
Development ; 149(11)2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35588250

RESUMEN

Although lengthening of the cell cycle and G1 phase is a generic feature of tissue maturation during development, the underlying mechanism remains poorly understood. Here, we develop a time-lapse imaging strategy to measure the four cell cycle phases in single chick neural progenitor cells in their endogenous environment. We show that neural progenitors are widely heterogeneous with respect to cell cycle length. This variability in duration is distributed over all phases of the cell cycle, with the G1 phase contributing the most. Within one cell cycle, each phase duration appears stochastic and independent except for a correlation between S and M phase duration. Lineage analysis indicates that the majority of daughter cells may have a longer G1 phase than mother cells, suggesting that, at each cell cycle, a mechanism lengthens the G1 phase. We identify that the CDC25B phosphatase known to regulate the G2/M transition indirectly increases the duration of the G1 phase, partly through delaying passage through the restriction point. We propose that CDC25B increases the heterogeneity of G1 phase length, revealing a previously undescribed mechanism of G1 lengthening that is associated with tissue development.


Asunto(s)
Células-Madre Neurales , Ciclo Celular/fisiología , División Celular , Fase G1/fisiología , Fosfatasas cdc25/genética , Fosfatasas cdc25/metabolismo
2.
Genes Dev ; 31(6): 553-566, 2017 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-28404630

RESUMEN

The female mammary gland is a very dynamic organ that undergoes continuous tissue remodeling during adulthood. Although it is well established that the number of menstrual cycles and pregnancy (in this case transiently) increase the risk of breast cancer, the reasons are unclear. Growing clinical and experimental evidence indicates that improper involution plays a role in the development of this malignancy. Recently, we described the miR-424(322)/503 cluster as an important regulator of mammary epithelial involution after pregnancy. Here, through the analysis of ∼3000 primary tumors, we show that miR-424(322)/503 is commonly lost in a subset of aggressive breast cancers and describe the genetic aberrations that inactivate its expression. Furthermore, through the use of a knockout mouse model, we demonstrate for the first time that loss of miR-424(322)/503 promotes breast tumorigenesis in vivo. Remarkably, we found that loss of miR-424(322)/503 promotes chemoresistance due to the up-regulation of two of its targets: BCL-2 and insulin-like growth factor-1 receptor (IGF1R). Importantly, targeted therapies blocking the aberrant activity of these targets restore sensitivity to chemotherapy. Overall, our studies reveal miR-424(322)/503 as a tumor suppressor in breast cancer and provide a link between mammary epithelial involution, tumorigenesis, and the phenomenon of chemoresistance.


Asunto(s)
Neoplasias de la Mama/genética , MicroARNs/genética , Animales , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/mortalidad , Línea Celular Tumoral , Resistencia a Antineoplásicos , Femenino , Eliminación de Gen , Genes Supresores de Tumor , Humanos , Neoplasias Mamarias Experimentales/genética , Ratones , Embarazo , Complicaciones Neoplásicas del Embarazo/genética , Proteínas Proto-Oncogénicas c-bcl-2/genética , Receptor IGF Tipo 1 , Receptores de Somatomedina/genética , Fosfatasas cdc25/genética
3.
J Neurosci ; 43(7): 1154-1165, 2023 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-36596698

RESUMEN

During development, cortical neurons are produced in a temporally regulated sequence from apical progenitors, directly or indirectly, through the production of intermediate basal progenitors. The balance between these major progenitor types is critical for the production of the proper number and types of neurons, and it is thus important to decipher the cellular and molecular cues controlling this equilibrium. Here we address the role of a cell cycle regulator, the CDC25B phosphatase, in this process. We show that, in the developing mouse neocortex of both sex, deleting CDC25B in apical progenitors leads to a transient increase in the production of TBR1+ neurons at the expense of TBR2+ basal progenitors. This phenotype is associated with lengthening of the G2 phase of the cell cycle, the total cell cycle length being unaffected. Using in utero electroporation and cortical slice cultures, we demonstrate that the defect in TBR2+ basal progenitor production requires interaction with CDK1 and is because of the G2 phase lengthening in CDC25B mutants. Together, this study identifies a new role for CDC25B and G2 phase length in direct versus indirect neurogenesis at early stages of cortical development.SIGNIFICANCE STATEMENT This study is the first analysis of the function of CDC25B, a G2/M regulator, in the developing neocortex. We show that removing CDC25B function leads to a transient increase in neuronal differentiation at early stages, occurring simultaneously with a decrease in basal intermediate progenitors (bIPs). Conversely, a CDC25B gain of function promotes production of bIPs, and this is directly related to CDC25B's ability to regulate CDK1 activity. This imbalance of neuron/progenitor production is linked to a G2 phase lengthening in apical progenitors; and using pharmacological treatments on cortical slice cultures, we show that shortening the G2 phase is sufficient to enhance bIP production. Our results reveal the importance of G2 phase length regulation for neural progenitor fate determination.


Asunto(s)
Neocórtex , Células-Madre Neurales , Neurogénesis , Animales , Ratones , Fosfatasas cdc25/genética , Fosfatasas cdc25/metabolismo , Células-Madre Neurales/metabolismo , Neurogénesis/genética , Neuronas/metabolismo
4.
J Biol Chem ; 299(3): 102957, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36717077

RESUMEN

Cyclin A and CDC25A are both activators of cyclin-dependent kinases (CDKs): cyclin A acts as an activating subunit of CDKs and CDC25A a phosphatase of the inhibitory phosphorylation sites of the CDKs. In this study, we uncovered an inverse relationship between the two CDK activators. As cyclin A is an essential gene, we generated a conditional silencing cell line using a combination of CRISPR-Cas9 and degron-tagged cyclin A. Destruction of cyclin A promoted an acute accumulation of CDC25A. The increase of CDC25A after cyclin A depletion occurred throughout the cell cycle and was independent on cell cycle delay caused by cyclin A deficiency. Moreover, we determined that the inverse relationship with cyclin A was specific for CDC25A and not for other CDC25 family members or kinases that regulate the same sites in CDKs. Unexpectedly, the upregulation of CDC25A was mainly caused by an increase in transcriptional activity instead of a change in the stability of the protein. Reversing the accumulation of CDC25A severely delayed G2-M in cyclin A-depleted cells. Taken together, these data provide evidence of a compensatory mechanism involving CDC25A that ensures timely mitotic entry at different levels of cyclin A.


Asunto(s)
Ciclina A , Quinasas Ciclina-Dependientes , Fosfatasas cdc25 , Fosfatasas cdc25/genética , Fosfatasas cdc25/metabolismo , Ciclo Celular , División Celular , Ciclina A/metabolismo , Quinasas Ciclina-Dependientes/metabolismo , Fosforilación
5.
J Cell Sci ; 135(6)2022 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-35237831

RESUMEN

Mammalian oocytes are arrested at meiotic prophase I. The dual-specificity phosphatase CDC25B is essential for cyclin-dependent kinase 1 (CDK1) activation that drives resumption of meiosis. CDC25B reverses the inhibitory effect of the protein kinases WEE1 and MYT1 on CDK1 activation. Cdc25b-/- female mice are infertile because oocytes cannot activate CDK1. To identify a role for CDC25B following resumption of meiosis, we restored CDK1 activation in Cdc25b-/- oocytes by inhibiting WEE1 and MYT1, or expressing EGFP-CDC25A or constitutively active EGFP-CDK1 from microinjected complementary RNAs. Forced CDK1 activation in Cdc25b-/- oocytes allowed resumption of meiosis, but oocytes mostly arrested at metaphase I (MI) with intact spindles. Similarly, approximately a third of Cdc25b+/- oocytes with a reduced amount of CDC25B arrested in MI. MI-arrested Cdc25b-/- oocytes also displayed a transient decrease in CDK1 activity similar to Cdc25b+/+ oocytes during the MI-MII transition, whereas Cdc25b+/- oocytes exhibited only a partial anaphase-promoting complex/cyclosome activation and anaphase I entry. Thus, CDC25B is necessary for the resumption of meiosis and the MI-MII transition.


Asunto(s)
Meiosis , Oocitos , Anafase , Ciclosoma-Complejo Promotor de la Anafase/metabolismo , Animales , Femenino , Mamíferos , Metafase , Ratones , Oocitos/metabolismo , Fosfatasas cdc25
6.
Mol Biol Rep ; 51(1): 90, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38194158

RESUMEN

BACKGROUND: CDC25B, as a member of the cell cycle regulating protein family, is located in the cytoplasm and is involved in the transition of the cell cycle and mitosis. CDC25B is highly expressed in various tumors and is a newly discovered oncogene. This study aimed to investigate the impact of CDC25B on mitoxantrone resistance in stomach adenocarcinoma (STAD) and its possible mechanisms. METHODS: This study analyzed the expression of CDC25B and its potential transcription factor E2F3 in STAD, as well as the IC50 values of tumor tissues by bioinformatics analysis. Expression levels of CDC25B and E2F3 in STAD cells were measured by qRT-PCR. MTT was utilized to evaluate cell viability and IC50 values of STAD cells, and comet assay was utilized to analyze the level of DNA damage in STAD cells. Western blot was used to analyze the expression of DNA damage-related proteins. The targeting relationship between E2F3 and CDC25B was validated by dual-luciferase and ChIP assays. RESULTS: Bioinformatics analysis and molecular experiments showed that CDC25B and E2F3 were highly expressed in STAD, and CDC25B was enriched in the mismatch repair and nucleotide excision repair pathways. The IC50 values of tumor tissues with high expression of CDC25B were relatively high. Dual-luciferase and ChIP assays confirmed that CDC25B could be transcriptionally activated by E2F3. Cell experiments revealed that CDC25B promoted mitoxantrone resistance in STAD cells by regulating DNA damage. Further research found that low expression of E2F3 inhibited mitoxantrone resistance in STAD cells by DNA damage, but overexpression of CDC25B reversed the impact of E2F3 knockdown on mitoxantrone resistance in STAD cells. CONCLUSION: This study confirmed a novel mechanism by which E2F3/CDC25B mediated DNA damage to promote mitoxantrone resistance in STAD cells, providing a new therapeutic target for STAD treatment.


Asunto(s)
Adenocarcinoma , Neoplasias Gástricas , Humanos , Mitoxantrona/farmacología , Neoplasias Gástricas/tratamiento farmacológico , Neoplasias Gástricas/genética , Adenocarcinoma/tratamiento farmacológico , Adenocarcinoma/genética , Daño del ADN , Mitosis , Luciferasas , Factor de Transcripción E2F3 , Fosfatasas cdc25/genética
7.
Bioorg Chem ; 142: 106952, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37952486

RESUMEN

PARP1 is a multifaceted component of DNA repair and chromatin remodeling, making it an effective therapeutic target for cancer therapy. The recently reported proteolytic targeting chimera (PROTAC) could effectively degrade PARP1 through the ubiquitin-proteasome pathway, expanding the therapeutic application of PARP1 blocking. In this study, a series of nitrogen heterocyclic PROTACs were designed and synthesized through ternary complex simulation analysis based on our previous work. Our efforts have resulted in a potent PARP1 degrader D6 (DC50 = 25.23 nM) with high selectivity due to nitrogen heterocyclic linker generating multiple interactions with the PARP1-CRBN PPI surface, specifically. Moreover, D6 exhibited strong cytotoxicity to triple negative breast cancer cell line MDA-MB-231 (IC50 = 1.04 µM). And the proteomic results showed that the antitumor mechanism of D6 was found that intensifies DNA damage by intercepting the CDC25C-CDK1 axis to halt cell cycle transition in triple-negative breast cancer cells. Furthermore, in vivo study, D6 showed a promising PK property with moderate oral absorption activity. And D6 could effectively inhibit tumor growth (TGI rate = 71.4 % at 40 mg/kg) without other signs of toxicity in MDA-MB-321 tumor-bearing mice. In summary, we have identified an original scaffold and potent PARP1 PROTAC that provided a novel intervention strategy for the treatment of triple-negative breast cancer.


Asunto(s)
Neoplasias de la Mama Triple Negativas , Humanos , Ratones , Animales , Neoplasias de la Mama Triple Negativas/patología , Proteómica , Proliferación Celular , Puntos de Control del Ciclo Celular , Nitrógeno , Línea Celular Tumoral , Fosfatasas cdc25 , Poli(ADP-Ribosa) Polimerasa-1 , Proteína Quinasa CDC2
8.
Mol Cell ; 62(2): 307-313, 2016 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-27067599

RESUMEN

One recurring theme in drug development is to exploit synthetic lethal properties as means to preferentially damage the DNA of cancer cells. We and others have previously developed inhibitors of the ATR kinase, shown to be particularly genotoxic for cells expressing certain oncogenes. In contrast, the mechanisms of resistance to ATR inhibitors remain unexplored. We report here on a genome-wide CRISPR-Cas9 screen that identified CDC25A as a major determinant of sensitivity to ATR inhibition. CDC25A-deficient cells resist high doses of ATR inhibitors, which we show is due to their failure to prematurely enter mitosis in response to the drugs. Forcing mitotic entry with WEE1 inhibitors restores the toxicity of ATR inhibitors in CDC25A-deficient cells. With ATR inhibitors now entering the clinic, our work provides a better understanding of the mechanisms by which these compounds kill cells and reveals genetic interactions that could be used for their rational use.


Asunto(s)
Antineoplásicos/farmacología , Sistemas CRISPR-Cas , Resistencia a Antineoplásicos/genética , Células Madre Embrionarias/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología , Fosfatasas cdc25/metabolismo , Proteínas de la Ataxia Telangiectasia Mutada/antagonistas & inhibidores , Proteínas de la Ataxia Telangiectasia Mutada/genética , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Proteínas de Ciclo Celular/antagonistas & inhibidores , Proteínas de Ciclo Celular/metabolismo , Línea Celular , Relación Dosis-Respuesta a Droga , Células Madre Embrionarias/enzimología , Células Madre Embrionarias/patología , Estudio de Asociación del Genoma Completo , Humanos , Mitosis/efectos de los fármacos , Terapia Molecular Dirigida , Proteínas Nucleares/antagonistas & inhibidores , Proteínas Nucleares/metabolismo , Proteínas Tirosina Quinasas/antagonistas & inhibidores , Proteínas Tirosina Quinasas/metabolismo , Interferencia de ARN , Transducción de Señal/efectos de los fármacos , Transfección , Fosfatasas cdc25/genética
9.
Environ Toxicol ; 39(5): 3225-3237, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38357781

RESUMEN

Lung cancer (LC) is the most prevalent cancer type, with a high mortality rate worldwide. The current treatment options for LC have not been particularly successful in improving patient outcomes. Yifei Sanjie (YFSJ), a well-applicated traditional Chinese medicine formula, is widely used to treat pulmonary diseases, especially LC, yet little is known about its molecular mechanisms. This study was conducted to explore the molecular mechanism by which YFSJ ameliorated LC progression. The A549, NCI-H1975, and Calu-3 cells were treated with the YFSJ formula and observed for colony number, apoptosis, migration, and invasion properties recorded via corresponding assays. The PRMT6-YBX1-CDC25A axis was tested and verified through luciferase reporter, RNA immunoprecipitation, and chromatin immunoprecipitation assays and rescue experiments. Our results demonstrated that YFSJ ameliorated LC cell malignant behaviors by increasing apoptosis and suppressing proliferation, migration, and invasion processes. We also noticed that the xenograft mouse model treated with YFSJ significantly reduced tumor growth compared with the control untreated group in vivo. Mechanistically, it was found that YFSJ suppressed the expression of PRMT6, YBX1, and CDC25A, while the knockdown of these proteins significantly inhibited colony growth, migration, and invasion, and boosted apoptosis in LC cells. In summary, our results suggest that YFSJ alleviates LC progression via the PRMT6-YBX1-CDC25A axis, confirming its efficacy in clinical use. The findings of our study provide a new regulatory network for LC growth and metastasis, which could shed new insights into pulmonary medical research.


Asunto(s)
Neoplasias Pulmonares , MicroARNs , Humanos , Animales , Ratones , Neoplasias Pulmonares/patología , Proliferación Celular/genética , Movimiento Celular/genética , Pulmón/patología , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , MicroARNs/genética , Proteína 1 de Unión a la Caja Y/genética , Proteína 1 de Unión a la Caja Y/metabolismo , Proteínas Nucleares/genética , Proteína-Arginina N-Metiltransferasas/genética , Proteína-Arginina N-Metiltransferasas/metabolismo , Proteína-Arginina N-Metiltransferasas/uso terapéutico , Fosfatasas cdc25/genética , Fosfatasas cdc25/metabolismo
10.
Int J Mol Sci ; 25(9)2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38732131

RESUMEN

Overexpression of the 14-3-3ε protein is associated with suppression of apoptosis in cutaneous squamous cell carcinoma (cSCC). This antiapoptotic activity of 14-3-3ε is dependent on its binding to CDC25A; thus, inhibiting 14-3-3ε - CDC25A interaction is an attractive therapeutic approach to promote apoptosis in cSCC. In this regard, designing peptide inhibitors of 14-3-3ε - CDC25A interactions is of great interest. This work reports the rational design of peptide analogs of pS, a CDC25A-derived peptide that has been shown to inhibit 14-3-3ε-CDC25A interaction and promote apoptosis in cSCC with micromolar IC50. We designed new peptide analogs in silico by shortening the parent pS peptide from 14 to 9 amino acid residues; then, based on binding motifs of 14-3-3 proteins, we introduced modifications in the pS(174-182) peptide. We studied the binding of the peptides using conventional molecular dynamics (MD) and steered MD simulations, as well as biophysical methods. Our results showed that shortening the pS peptide from 14 to 9 amino acids reduced the affinity of the peptide. However, substituting Gln176 with either Phe or Tyr amino acids rescued the binding of the peptide. The optimized peptides obtained in this work can be candidates for inhibition of 14-3-3ε - CDC25A interactions in cSCC.


Asunto(s)
Proteínas 14-3-3 , Simulación de Dinámica Molecular , Unión Proteica , Fosfatasas cdc25 , Fosfatasas cdc25/metabolismo , Fosfatasas cdc25/química , Fosfatasas cdc25/antagonistas & inhibidores , Proteínas 14-3-3/metabolismo , Proteínas 14-3-3/química , Humanos , Péptidos/química , Péptidos/metabolismo , Secuencia de Aminoácidos
11.
Biochem Biophys Res Commun ; 665: 98-106, 2023 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-37149988

RESUMEN

Zebrafish have the ability to fully regenerate their hearts after injury since cardiomyocytes subsequently dedifferentiate, re-enter cell cycle, and proliferate to replace damaged myocardial tissue. Recent research identified the reactivation of dormant developmental pathways during cardiac regeneration in adult zebrafish, suggesting pro-proliferative pathways important for developmental heart growth to be also critical for regenerative heart growth after injury. Histone deacetylase 1 (Hdac1) was recently shown to control both, embryonic as well as adult regenerative cardiomyocyte proliferation in the zebrafish model. Nevertheless, regulatory pathways controlled by Hdac1 are not defined yet. By analyzing RNA-seq-derived transcriptional profiles of the Hdac1-deficient zebrafish mutant baldrian, we here identified DNA damage response (DDR) pathways activated in baldrian mutant embryos. Surprisingly, although the DDR signaling pathway was transcriptionally activated, we found the complete loss of protein expression of the known DDR effector and cell cycle inhibitor p21. Consequently, we observed an upregulation of the p21-downstream target Cdk2, implying elevated G1/S phase transition in Hdac1-deficient zebrafish hearts. Remarkably, Cdk1, another p21-but also Cdc25-downstream target was downregulated. Here, we found the significant downregulation of Cdc25 protein expression, explaining reduced Cdk1 levels and suggesting impaired G2/M phase progression in Hdac1-deficient zebrafish embryos. To finally prove defective cell cycle progression due to Hdac1 loss, we conducted Cytometer-based cell cycle analyses in HDAC1-deficient murine HL-1 cardiomyocytes and indeed found impaired G2/M phase transition resulting in defective cardiomyocyte proliferation. In conclusion, our results suggest a critical role of Hdac1 in maintaining both, regular G1/S and G2/M phase transition in cardiomyocytes by controlling the expression of essential cell cycle regulators such as p21 and Cdc25.


Asunto(s)
Miocitos Cardíacos , Pez Cebra , Animales , Ratones , Ciclo Celular/genética , División Celular , Proliferación Celular , Histona Desacetilasa 1/genética , Histona Desacetilasa 1/metabolismo , Miocitos Cardíacos/metabolismo , Pez Cebra/metabolismo , Fosfatasas cdc25/metabolismo , Proteína Quinasa CDC2/metabolismo
12.
Cell Biol Toxicol ; 39(5): 1-18, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-35567596

RESUMEN

Circular RNAs (circRNAs) have been extensively studied in tumor development and treatment. CircZNF609 (hsa_circ_0000615) has been shown to serve as an oncogene in all kinds of solid tumors and may act as the novel biomarker in tumor diagnosis and therapy in tumor early diagnosis and therapy. However, the underlying character and mechanism of circZNF609 in cisplatin chemosensitivity and bladder cancer (BCa) development were unknown. The expression level of cell division cycle 25B (CDC25B), microRNA 1200 (miR-1200), and circZNF609 in BCa cells and tissues depended on quantitative real-time PCR (qRT-PCR). CDC25B protein level was assayed with Western blot. Functional assays in vitro and in vivo had been conducted to inspect the important role of circZNF609 on BCa progression and cisplatin chemosensitivity in BCa. RNA sequencing and online databases were used to predict the interactions among circZNF609, miR-1200, and CDC25B. Mechanistic exploration was confirmed by RNA pull-down assay, RNA fluorescence in situ hybridization (FISH) and Dual luciferase reporter assay. CircZNF609 expression was increased significantly in BCa cell lines and tissues. For BCa patients, increased expression of circZNF609 was correlated with a worse survival. In vitro and in vivo, enforced expression of circZNF609 enhanced BCa cells proliferation, migration, and cisplatin chemoresistance. Mechanistically, circZNF609 alleviated the inhibition effect on target CDC25B expression by sponging miR-1200. CircZNF609 promoted tumor growth through novel circZNF609/miR-1200/CDC25B axis, implying that circZNF609 has significant potential to act as a new diagnostic biomarker and therapeutic target in BCa. Enhancing cisplatin sensitivity is an important direction for bladder cancer management. 1. This research reveals that circZNF609 improves bladder cancer progression and inhibits cisplatin sensitivity by inducing G1/S cell cycle arrest via a novel miR-1200/CDC25B cascades. 2. CircZNF609 was confirmed associated with worse survival of bladder cancer patients. 3. CircZNF609 act as a prognostic biomarker for bladder cancer treatment.


Asunto(s)
MicroARNs , Neoplasias de la Vejiga Urinaria , Humanos , Cisplatino/farmacología , Cisplatino/uso terapéutico , MicroARNs/genética , MicroARNs/metabolismo , Hibridación Fluorescente in Situ , Neoplasias de la Vejiga Urinaria/tratamiento farmacológico , Neoplasias de la Vejiga Urinaria/genética , Neoplasias de la Vejiga Urinaria/metabolismo , ARN Circular/genética , ARN Circular/metabolismo , Proliferación Celular/genética , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Fosfatasas cdc25/genética , Fosfatasas cdc25/metabolismo
13.
Int J Mol Sci ; 24(2)2023 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-36675024

RESUMEN

Cell division regulators play a vital role in neural progenitor cell (NPC) proliferation and differentiation. Cell division cycle 25C (CDC25C) is a member of the CDC25 family of phosphatases which positively regulate cell division by activating cyclin-dependent protein kinases (CDKs). However, mice with the Cdc25c gene knocked out were shown to be viable and lacked the apparent phenotype due to genetic compensation by Cdc25a and/or Cdc25b. Here, we investigate the function of Cdc25c in developing rat brains by knocking down Cdc25c in NPCs using in utero electroporation. Our results indicate that Cdc25c plays an essential role in maintaining the proliferative state of NPCs during cortical development. The knockdown of Cdc25c causes early cell cycle exit and the premature differentiation of NPCs. Our study uncovers a novel role of CDC25C in NPC division and cell fate determination. In addition, our study presents a functional approach to studying the role of genes, which elicit genetic compensation with knockout, in cortical neurogenesis by knocking down in vivo.


Asunto(s)
Proteínas de Ciclo Celular , Células-Madre Neurales , Neurogénesis , Fosfatasas cdc25 , Animales , Ratas , Fosfatasas cdc25/genética , Fosfatasas cdc25/metabolismo , Ciclo Celular , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Diferenciación Celular/genética , Quinasas Ciclina-Dependientes/metabolismo , Regulación hacia Abajo/genética , Neurogénesis/genética , Neurogénesis/fisiología , Células-Madre Neurales/metabolismo
14.
Cancer ; 128(9): 1775-1786, 2022 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-35143052

RESUMEN

BACKGROUND: The objective of this study was to investigate the role and molecular mechanism of cyclin-dependent kinase 5 (CDK5) in regulating the growth of tongue squamous cell carcinoma (TSCC). METHODS: The authors used multiple methods to detect the levels of CDK5 expression in samples of TSCC and to explore the relation between CDK5 expression and various clinicopathologic factors. In vivo and in vitro cell experiments were performed to detect the proliferation, invasion, and migration of TSCC cells with CDK5 knockdown or overexpression. These studies verified that CDK5 regulates the occurrence and development of TSCC cells through the microRNA 513c-5p/cell division cycle 25B pathway. RESULTS: An elevated level of CDK5 expression in TSCC tissues was identified as an independent risk factor affecting TSCC growth and patient prognosis. Patients who had TSCC with low levels of CDK5 expression had a higher survival rate than those with high levels. Knockdown of CDK5 reduced the proliferation, migration, and invasion of TSCC cells both in vitro and in vivo. In addition, the authors observed that CDK5 regulated the growth of TSCC through the microRNA 513c-5p/cell division cycle C25B pathway. CONCLUSIONS: CDK5 functions as an oncogene in TSCC and might serve as a molecular marker for use in the diagnosis and treatment of TSCC. LAY SUMMARY: Tongue squamous cell carcinoma (TSCC) is 1 of the most common malignant tumors of the head and neck, and the survival rate of patients with tongue cancer has been very low. Therefore, it is important to study the molecular mechanism of TSCC progression to identify biomarkers that can be used to improve its clinical diagnosis and treatment. Cyclin-dependent kinase 5 (CDK5) is an atypical member of the cyclin-dependent kinase family and is involved in regulating the cell cycle. Changes in the cell cycle are of great significance for the occurrence and development of tumor cells; and, in recent years, increasing evidence has suggested that CDK5 exists in a disordered state in cancer cells. In this study, the authors demonstrate that CDK5 functions as an oncogene in TSCC and might serve as a molecular marker for use in the diagnosis and treatment of TSCC.


Asunto(s)
Quinasa 5 Dependiente de la Ciclina , MicroARNs , Carcinoma de Células Escamosas de Cabeza y Cuello , Neoplasias de la Lengua , Fosfatasas cdc25 , Ciclo Celular , Línea Celular Tumoral , Proliferación Celular/genética , Quinasa 5 Dependiente de la Ciclina/genética , Quinasa 5 Dependiente de la Ciclina/metabolismo , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Pronóstico , Carcinoma de Células Escamosas de Cabeza y Cuello/genética , Carcinoma de Células Escamosas de Cabeza y Cuello/metabolismo , Carcinoma de Células Escamosas de Cabeza y Cuello/patología , Neoplasias de la Lengua/genética , Neoplasias de la Lengua/metabolismo , Neoplasias de la Lengua/patología , Fosfatasas cdc25/genética , Fosfatasas cdc25/metabolismo
15.
Anticancer Drugs ; 33(1): e349-e361, 2022 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-34407051

RESUMEN

Circular RNAs (circRNAs) play critical roles in regulating the radiosensitivity of various cancers, including esophageal squamous cell carcinoma (ESCC). This research aimed to explore the role and potential mechanism of hsa_circ_0014879 in regulating ESCC radioresistance. The levels of hsa_circ_0014879, microRNA-519-3p (miR-519-3p) and cell division cycle 25A (CDC25A) were measured using quantitative real-time PCR or western blot. Cell proliferation was evaluated by colony formation assay. Cell migration and invasion were assessed by transwell and scratch assays. The levels of epithelial-mesenchymal transition (EMT)-related proteins were detected by western blot. Xenograft assay was used to analyze the effect of hsa_circ_0014879 on radiosensitivity in vivo. The binding relationship among hsa_circ_0014879, miR-519-3p and CDC25A was confirmed by dual-luciferase reporter assay. Hsa_circ_0014879 and CDC25A were upregulated, whereas miR-519-3p was downregulated in radio-resistant ESCC tissues and cells. Depletion of hsa_circ_0014879 suppressed the proliferation, migration and invasion of radio-resistant ESCC cells. Hsa_circ_0014879 knockdown elevated radiosensitivity of radio-resistant cells by modulating miR-519-3p. Moreover, miR-519-3p enhanced the radiosensitivity of radio-resistant cells by targeting CDC25A. Also, hsa_circ_0014879 upregulated CDC25A via sponging miR-519-3p. Hsa_circ_0014879 silencing enhanced the radiosensitivity of ESCC via regulating the miR-519-3p/CDC25A pathway.


Asunto(s)
Neoplasias Esofágicas/patología , Carcinoma de Células Escamosas de Esófago/patología , MicroARNs/metabolismo , ARN Circular/genética , Tolerancia a Radiación/genética , Fosfatasas cdc25/metabolismo , Animales , Movimiento Celular/fisiología , Proliferación Celular/fisiología , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Ensayos Antitumor por Modelo de Xenoinjerto
16.
Pharmacol Res ; 175: 106040, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34954029

RESUMEN

Inducing homologous recombination (HR) deficiency is a promising strategy to broaden the indication of PARP1/2 inhibitors in pancreatic cancer treatment. In addition to inhibition kinases, repression of the transcriptional function of FOXM1 has been reported to inhibit HR-mediated DNA repair. We found that FOXM1 inhibitor FDI-6 and PARP1/2 inhibitor Olaparib synergistically inhibited the malignant growth of pancreatic cancer cells in vitro and in vivo. The results of bioinformatic analysis and mechanistic study showed that FOXM1 directly interacted with PARP1. Olaparib induced the feedback overexpression of PARP1/2, FOXM1, CDC25A, CCND1, CDK1, CCNA2, CCNB1, CDC25B, BRCA1/2 and Rad51 to promote the acceleration of cell mitosis and recovery of DNA repair, which caused the generation of adaptive resistance. FDI-6 reversed Olaparib-induced adaptive resistance and inhibited cell cycle progression and DNA damage repair by repressing the expression of FOXM1, PARP1/2, BUB1, CDC25A, BRCA1 and other genes-involved in cell cycle control and DNA damage repair. We believe that targeting FOXM1 and PARP1/2 is a promising combination therapy for pancreatic cancer without HR deficiency.


Asunto(s)
Proteína Forkhead Box M1/antagonistas & inhibidores , Neoplasias Pancreáticas/tratamiento farmacológico , Ftalazinas/uso terapéutico , Piperazinas/uso terapéutico , Inhibidores de Poli(ADP-Ribosa) Polimerasas/uso terapéutico , Piridinas/uso terapéutico , Tiofenos/uso terapéutico , Animales , Apoptosis/efectos de los fármacos , Proteína BRCA1/genética , Puntos de Control del Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Ensayo Cometa , Femenino , Proteína Forkhead Box M1/genética , Proteína Forkhead Box M1/metabolismo , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Ratones Endogámicos BALB C , Ratones Desnudos , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Ftalazinas/farmacología , Piperazinas/farmacología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Proteínas Serina-Treonina Quinasas/genética , Piridinas/farmacología , Transducción de Señal/efectos de los fármacos , Tiofenos/farmacología , Fosfatasas cdc25/genética
17.
Clin Exp Pharmacol Physiol ; 49(11): 1209-1220, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36184488

RESUMEN

Circular RNA (circRNAs) Fibronectin Type III Domain Containing 3B (FNDC3B) (circFNDC3B) has been revealed to be involved in the progression of oesophageal squamous cell carcinoma (ESCC). Hence, the potential regulatory network of circFNDC3B in ESCC was further investigated. Levels of genes and proteins were examined by qRT-PCR and Western blot. In vitro assays were performed using colony formation assay, 5-Ethynyl-2'-deoxyuridine (EdU) assay, flow cytometry, wound healing assay, and transwell assay. The target relationship between miR-214-3p and circFNDC3B or cell division cycle 25 homologue A (CDC25A) was verified by dual-luciferase reporter and RIP assays. In vivo assay was carried out using the xenograft nude mice model. CircFNDC3B was highly expressed in ESCC, and high circFNDC3B expression was tightly associated with poor prognosis in ESCC patients. Functionally, circFNDC3B knockdown not only suppressed ESCC cell growth, migration and invasion in vitro, but hindered ESCC tumour growth in vivo. Mechanistically, circFNDC3B acted as a sponge for miR-214-3p to up-regulate the expression of its target CDC25A. Rescue experiments showed that miR-214-3p inhibitor reversed the anticancer effects of circFNDC3B knockdown. Moreover, forced expression of miR-214-3p suppressed the malignant phenotypes mentioned above, while this condition was abolished by CDC25A overexpression. CircFNDC3B silencing restrains the tumorigenesis of oesophageal squamous cell carcinoma through miR-214-3p/CDC25A axis, which opens a new window to the development of novel therapeutic strategy for ESCC patients.


Asunto(s)
Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , MicroARNs , Animales , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Neoplasias Esofágicas/metabolismo , Carcinoma de Células Escamosas de Esófago/patología , Regulación Neoplásica de la Expresión Génica , Humanos , Ratones , Ratones Desnudos , MicroARNs/genética , MicroARNs/metabolismo , ARN Circular/genética , Fosfatasas cdc25/genética , Fosfatasas cdc25/metabolismo
18.
Genomics ; 113(1 Pt 1): 142-150, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33276007

RESUMEN

To select candidate genes for goat prolificacy, we managed six multi- and six single-kid female goats at the same feeding level and in the same management mode over a 4-year period. These goats showed stable differences in litter size over five continuous parturition records. Whole-genome re-sequencing was used in all 12 to select candidate genes, namely, AURKA, ENDOG, SOX2, RORA, GJA10, RXFP2, CDC25C, and NANOS3, by the strength of their differentiation signals. Most of the selected genes were enriched in the coiled coil process and ovarian development, which suggests that the coiled coil process has a potential regulatory effect on fecundity. Detection of the distribution of variants and association analyses with litter size in 400 goats showed that NANOS3 exon mutations may lead to a transformation of the protein structure. The variation in CDC25C, ENDOG, and NANOS3 showed a significant association with litter size. These results can contribute to the improvement of reproduction traits in the artificial breeding of goats.


Asunto(s)
Cabras/genética , Tamaño de la Camada/genética , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , Animales , Aurora Quinasa A/genética , Endodesoxirribonucleasas/genética , Femenino , Cabras/fisiología , Miembro 1 del Grupo F de la Subfamilia 1 de Receptores Nucleares/genética , Ovario/crecimiento & desarrollo , Ovario/metabolismo , Factores de Transcripción SOX/genética , Proteínas Smad/genética , Secuenciación Completa del Genoma , Fosfatasas cdc25/genética
19.
Genes Dev ; 28(4): 384-95, 2014 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-24478331

RESUMEN

The vertebrate body forms from a multipotent stem cell-like progenitor population that progressively contributes newly differentiated cells to the most posterior end of the embryo. How the progenitor population balances proliferation and other cellular functions is unknown due to the difficulty of analyzing cell division in vivo. Here, we show that proliferation is compartmentalized at the posterior end of the embryo during early zebrafish development by the regulated expression of cdc25a, a key controller of mitotic entry. Through the use of a transgenic line that misexpresses cdc25a, we show that this compartmentalization is critical for the formation of the posterior body. Upon misexpression of cdc25a, several essential T-box transcription factors are abnormally expressed, including Spadetail/Tbx16, which specifically prevents the normal onset of myoD transcription, leading to aberrant muscle formation. Our results demonstrate that compartmentalization of proliferation during early embryogenesis is critical for both extension of the vertebrate body and differentiation of the multipotent posterior progenitor cells to the muscle cell fate.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Células Madre/citología , Pez Cebra/embriología , Pez Cebra/genética , Fosfatasas cdc25/genética , Fosfatasas cdc25/metabolismo , Animales , Diferenciación Celular , División Celular , Proliferación Celular , Células Musculares/citología , Fosforilación , Células Madre/enzimología , Proteínas de Dominio T Box/genética , Proteínas de Pez Cebra/genética
20.
Molecules ; 27(8)2022 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-35458583

RESUMEN

Cdc25 phosphatases have been considered promising targets for anticancer development due to the correlation of their overexpression with a wide variety of cancers. In the last two decades, the interest in this subject has considerably increased and many publications have been launched concerning this issue. An overview is constructed based on data analysis of the results of the previous publications covering the years from 1992 to 2021. Thus, the main objective of the current review is to report the chemical structures of Cdc25s inhibitors and answer the question, how to design an inhibitor with better efficacy and lower toxicity?


Asunto(s)
Neoplasias , Fosfatasas cdc25 , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Humanos , Neoplasias/tratamiento farmacológico , Fosfatasas cdc25/antagonistas & inhibidores , Fosfatasas cdc25/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA