Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.529
Filtrar
Más filtros

Intervalo de año de publicación
1.
BMC Cancer ; 24(1): 837, 2024 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-39003464

RESUMEN

BACKGROUND: This study aimed to compare the survival outcome and side effects in patients with primary high-grade glioma (HGG) who received carbon ion radiotherapy (CIRT) alone or as a boost strategy after photon radiation (photon + CIRTboost). PATIENTS AND METHODS: Thirty-four (34) patients with histologically confirmed HGG and received CIRT alone or Photon + CIRTboost, with concurrent temozolomide between 2020.03-2023.08 in Wuwei Cancer Hospital & Institute, China were retrospectively reviewed. Overall survival (OS), progression-free survival (PFS), and acute and late toxicities were analyzed and compared. RESULTS: Eight WHO grade 3 and 26 grade 4 patients were included in the analysis. The median PFS in the CIRT alone and Photon + CIRTboost groups were 15 and 19 months respectively for all HGG cases, and 15 and 17.5 months respectively for grade 4 cases. The median OS in the CIRT alone and Photon + CIRTboost groups were 28 and 31 months respectively for all HGG cases, and 21 and 19 months respectively for grade 4 cases. No significant difference in these survival outcomes was observed between the CIRT alone and Photon + CIRTboost groups. Only grade 1 acute toxicities were observed in CIRT alone and Photon + CIRTboost groups. CIRT alone group had a significantly lower ratio of acute toxicities compared to Photon + CIRTboost (3/18 vs. 9/16, p = 0.03). No significant difference in late toxicities was observed. CONCLUSION: Both CIRT alone and Photon + CIRTboost with concurrent temozolomide are safe, without significant differences in PFS and OS in HGG patients. It is meaningful to explore whether dose escalation of CIRTboost might improve survival outcomes of HGG patients in future randomized trials.


Asunto(s)
Glioma , Radioterapia de Iones Pesados , Fotones , Humanos , Persona de Mediana Edad , Estudios Retrospectivos , Radioterapia de Iones Pesados/efectos adversos , Radioterapia de Iones Pesados/métodos , Femenino , Masculino , Glioma/radioterapia , Glioma/mortalidad , Glioma/patología , Fotones/uso terapéutico , Fotones/efectos adversos , Adulto , Anciano , Neoplasias Encefálicas/radioterapia , Neoplasias Encefálicas/mortalidad , Temozolomida/uso terapéutico , Clasificación del Tumor , Adulto Joven , Supervivencia sin Progresión , Resultado del Tratamiento
2.
BMC Cancer ; 24(1): 1230, 2024 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-39369231

RESUMEN

BACKGROUND: Radiotherapy has both immunostimulant and immunosuppressive effects, particularly in radiation-induced lymphopenia. Proton therapy has demonstrated potential in mitigating this lymphopenia, yet the mechanisms by which different types of radiation affect the immune system function are not fully characterized. The Circulating Immunes Cells, Cytokines and Brain Radiotherapy (CYRAD) trial aims to compare the effects of postoperative X-ray and proton radiotherapy on circulating leukocyte subpopulations and cytokine levels in patients with head and neck (CNS and ear nose throat) cancer. METHODS: CYRAD is a prospective, non-randomized, single-center non interventional study assessing changes in the circulating leukocyte subpopulations and cytokine levels in head and neck cancer patients receiving X-ray or proton radiotherapy following tumor resection. Dosimetry parameters, including dose deposited to organs-at-risk such as the blood and cervical lymph nodes, are computed. Participants undergo 29 to 35 radiotherapy sessions over 40 to 50 days, followed by a 3-month follow-up. Blood samples are collected before starting radiotherapy (baseline), before the 11th (D15) and 30th sessions (D40), and three months after completing radiotherapy. The study will be conducted with 40 patients, in 2 groups of 20 patients per modality of radiotherapy (proton therapy and photon therapy). Statistical analyses will assess the absolute and relative relationship between variations (depletion, recovery) in immune cells, biomarkers, dosimetry parameters and early outcomes. DISCUSSION: Previous research has primarily focused on radiation-induced lymphopenia, paying less attention to the specific impacts of radiation on different lymphoid and myeloid cell types. Early studies indicate that X-ray and proton irradiation may lead to divergent outcomes in leukocyte subpopulations within the bloodstream. Based on these preliminary findings, this study aims to refine our understanding of how proton therapy can better preserve immune function in postoperative (macroscopic tumor-free) head and neck cancer patients, potentially improving treatment outcomes. PROTOCOL VERSION: Version 2.1 dated from January 18, 2023. TRIAL REGISTRATION: The CYRAD trial is registered from October 19, 2021, at the US National Library of Medicine, ClinicalTrials.gov ID NCT05082961.


Asunto(s)
Citocinas , Neoplasias de Cabeza y Cuello , Leucocitos , Fotones , Terapia de Protones , Humanos , Neoplasias de Cabeza y Cuello/radioterapia , Neoplasias de Cabeza y Cuello/inmunología , Neoplasias de Cabeza y Cuello/sangre , Neoplasias de Cabeza y Cuello/cirugía , Terapia de Protones/métodos , Citocinas/sangre , Citocinas/metabolismo , Estudios Prospectivos , Leucocitos/efectos de la radiación , Leucocitos/metabolismo , Leucocitos/inmunología , Fotones/uso terapéutico , Masculino , Femenino , Persona de Mediana Edad , Linfopenia/etiología , Adulto , Anciano
3.
Acta Oncol ; 63: 448-455, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38899392

RESUMEN

BACKGROUND: Robust optimization has been suggested as an approach to reduce the irradiated volume in lung Stereotactic Body Radiation Therapy (SBRT). We performed a retrospective planning study to investigate the potential benefits over Planning Target Volume (PTV)-based planning. MATERIAL AND METHODS: Thirty-nine patients had additional plans using robust optimization with 5-mm isocenter shifts of the Gross Tumor Volume (GTV) created in addition to the PTV-based plan used for treatment. The optimization included the mid-position phase and the extreme breathing phases of the 4D-CT planning scan. The plans were compared for tumor coverage, isodose volumes, and doses to Organs At Risk (OAR). Additionally, we evaluated both plans with respect to observed tumor motion using the peak tumor motion seen on the planning scan and cone-beam CTs. RESULTS: Statistically significant reductions in irradiated isodose volumes and doses to OAR were achieved with robust optimization, while preserving tumor dose. The reductions were largest for the low-dose volumes and reductions up to 188 ccm was observed. The robust evaluation based on observed peak tumor motion showed comparable target doses between the two planning methods. Accumulated mean GTV-dose was increased by a median of 4.46 Gy and a non-significant increase of 100 Monitor Units (MU) was seen in the robust optimized plans. INTERPRETATION: The robust plans required more time to prepare, and while it might not be a feasible planning strategy for all lung SBRT patients, we suggest it might be useful for selected patients.


Asunto(s)
Tomografía Computarizada Cuatridimensional , Neoplasias Pulmonares , Órganos en Riesgo , Radiocirugia , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador , Carga Tumoral , Humanos , Radiocirugia/métodos , Neoplasias Pulmonares/radioterapia , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/cirugía , Neoplasias Pulmonares/diagnóstico por imagen , Planificación de la Radioterapia Asistida por Computador/métodos , Estudios Retrospectivos , Órganos en Riesgo/efectos de la radiación , Tomografía Computarizada Cuatridimensional/métodos , Tomografía Computarizada de Haz Cónico , Masculino , Fotones/uso terapéutico , Femenino , Anciano
4.
Neurosurg Focus ; 56(5): E9, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38691864

RESUMEN

OBJECTIVE: Chordomas are rare tumors of the skull base and spine believed to arise from the vestiges of the embryonic notochord. These tumors are locally aggressive and frequently recur following resection and adjuvant radiotherapy. Proton therapy has been introduced as a tissue-sparing option because of the higher level of precision that proton-beam techniques offer compared with traditional photon radiotherapy. This study aimed to compare recurrence in patients with chordomas receiving proton versus photon radiotherapy following resection by applying tree-based machine learning models. METHODS: The clinical records of all patients treated with resection followed by adjuvant proton or photon radiotherapy for chordoma at Mayo Clinic were reviewed. Patient demographics, type of surgery and radiotherapy, tumor recurrence, and other variables were extracted. Decision tree classifiers were trained and tested to predict long-term recurrence based on unseen data using an 80/20 split. RESULTS: Fifty-three patients with a mean ± SD age of 55.2 ± 13.4 years receiving surgery and adjuvant proton or photon therapy to treat chordoma were identified; most patients were male. Gross-total resection was achieved in 54.7% of cases. Proton therapy was the most common adjuvant radiotherapy (84.9%), followed by conventional or external-beam radiation therapy (9.4%) and stereotactic radiosurgery (5.7%). Patients receiving proton therapy exhibited a 40% likelihood of having recurrence, significantly lower than the 88% likelihood observed in those treated with nonproton therapy. This was confirmed on logistic regression analysis adjusted for extent of tumor resection and tumor location, which revealed that proton adjuvant radiotherapy was associated with a decreased risk of recurrence (OR 0.1, 95% CI 0.01-0.71; p = 0.047) compared with photon therapy. The decision tree algorithm predicted recurrence with an accuracy of 90% (95% CI 55.5%-99.8%), with the lowest risk of recurrence observed in patients receiving gross-total resection with adjuvant proton therapy (23%). CONCLUSIONS: Following resection, adjuvant proton therapy was associated with a lower risk of chordoma recurrence compared with photon therapy. The described machine learning models were able to predict tumor progression based on the extent of tumor resection and adjuvant radiotherapy modality used.


Asunto(s)
Cordoma , Recurrencia Local de Neoplasia , Fotones , Terapia de Protones , Neoplasias de la Columna Vertebral , Humanos , Cordoma/radioterapia , Cordoma/cirugía , Masculino , Femenino , Persona de Mediana Edad , Recurrencia Local de Neoplasia/radioterapia , Terapia de Protones/métodos , Radioterapia Adyuvante/métodos , Adulto , Anciano , Neoplasias de la Columna Vertebral/radioterapia , Neoplasias de la Columna Vertebral/cirugía , Fotones/uso terapéutico , Estudios Retrospectivos , Resultado del Tratamiento
5.
J Appl Clin Med Phys ; 25(2): e14240, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38150580

RESUMEN

BACKGROUND: Monte Carlo (MC) simulations or measurements in anthropomorphic phantoms are recommended for estimating fetal dose in pregnant patients in radiotherapy. Among the many existing phantoms, there is no commercially available physical phantom representing the entire pregnant woman. PURPOSE: In this study, the development of a low-cost, physical pregnant female phantom was demonstrated using commercially available materials. This phantom is based on the previously published computational phantom. METHODS: Three tissue substitution materials (soft tissue, lung and bone tissue substitution) were developed. To verify Tena's substitution tissue materials, their radiation properties were assessed and compared to ICRP and ICRU materials using MC simulations in MV radiotherapy beams. Validation of the physical phantom was performed by comparing fetal doses obtained by measurements in the phantom with fetal doses obtained by MC simulations in computational phantom, during an MV photon breast radiotherapy treatment. RESULTS: Materials used for building Tena phantom are matched to ICRU materials using physical density, radiation absorption properties and effective atomic number. MC simulations showed that percentage depth doses of Tena and ICRU material comply within 5% for soft and lung tissue, up to 25 cm depth. In the bone tissue, the discrepancy is higher, but again within 5% up to the depth of 5 cm. When the phantom was used for fetal dose measurements in MV photon breast radiotherapy, measured fetal doses complied with fetal doses calculated using MC simulation within 15%. CONCLUSIONS: Physical anthropomorphic phantom of pregnant patient can be manufactured using commercial materials and with low expenses. The files needed for 3D printing are now freely available. This enables further studies and comparison of numerical and physical experiments in diagnostic radiology or radiotherapy.


Asunto(s)
Mujeres Embarazadas , Radiometría , Embarazo , Humanos , Femenino , Fotones/uso terapéutico , Planificación de la Radioterapia Asistida por Computador , Simulación por Computador , Fantasmas de Imagen , Método de Montecarlo , Dosificación Radioterapéutica
6.
J Appl Clin Med Phys ; 25(10): e14485, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39190567

RESUMEN

PURPOSE: A single treatment planning system (TPS) model for matched linacs provides flexible clinical workflows from patient treatment to intensity-modulated radiation therapy (IMRT) quality assurance (QA) measurement. Since general guidelines for building a single TPS model and its validation for matched linacs are not well established, we present our RayStation photon TPS modeling strategy for matched Elekta VersaHD linacs. METHOD: The four linacs installed from 2013 to 2020 were matched in terms of Percent Depth Dose (PDD), profile, output factor and wedge factors for 6-MV, 10-MV, 15-MV, and 6-MV-FFF, and maintained following TG-142 recommendations until RayStation commissioning. The RayStation single model was built to represent all four linacs within the tolerance limits recommended by MPPG-5.a. The comprehensive validation tests were performed for one linac following MPPG-5.a and TG-119 guidelines, and spot checks for the other three. Our TPS modeling/validation method was evaluated by re-analyzing the previous 103 patient-specific IMRT/volumetric modulated arc therapy (VMAT) QA measurements with the calculated planar doses by the single model in comparison with the analysis results using four individual Pinnacle TPS models. RESULTS: For all energies, our single model PDDs were within 1% agreement of the four-linac commissioning measurements. The MPPG-5.a validation tests from 5.1 through 7.5 and all TG-119 measurements passed within the recommended tolerance limits. The IMRT QA results (mean ± standard deviation) for RayStation single model versus Pinnacle individual models were 98.9% ± 1.3% and 98.0% ± 1.4% for 6-MV, 99.9% ± 0.1% and 99.1% ± 1.9% for 10-MV, and 98.2% ± 1.3% and 97.9% ± 1.8% for 6-MV-FFF, respectively. CONCLUSION: We successfully built and validated a single photon beam model in RayStation for four Elekta Linacs. The proposed new validation methods were proven to be both efficient and effective.


Asunto(s)
Aceleradores de Partículas , Fotones , Garantía de la Calidad de Atención de Salud , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador , Radioterapia de Intensidad Modulada , Radioterapia de Intensidad Modulada/métodos , Humanos , Planificación de la Radioterapia Asistida por Computador/métodos , Fotones/uso terapéutico , Aceleradores de Partículas/instrumentación , Garantía de la Calidad de Atención de Salud/normas , Neoplasias/radioterapia , Fantasmas de Imagen
7.
Zhongguo Yi Liao Qi Xie Za Zhi ; 48(2): 156-159, 2024 Mar 30.
Artículo en Zh | MEDLINE | ID: mdl-38605614

RESUMEN

Objective: The distribution of the photon energy spectrum in isocenter plane of the medical linear accelerator and the influence of secondary collimator on the photon energy spectrum are studied. Methods Use the BEAMnrc program to simulate the transmission of the 6 MeV electrons and photons in 5 cm×5 cm,10 cm×10 cm,15 cm×15 cm and 20 cm×20 cm fields in treatment head of the medical linear accelerator, where a phase space file was set up at the isocenter plane to record the particle information passing through this plane. The BEAMdp program is used to analyze the phase space file, in order to obtain the distribution of the photon energy spectrum in isocenter plane and the influence of secondary collimator on the photon energy spectrum. Results: By analyzing the photon energy spectrum of a medical linear accelerator with a nominal energy of 6 MV, it is found that the secondary collimator has little effect on the photon energy spectrum; different fields have different photon energy spectrum distributions; the photon energy spectrum in different central regions of the same field have the same normalized distribution. Conclusion: In the dose calculation of radiation therapy, the influence of photon energy spectrum should be carefully considered.


Asunto(s)
Fotones , Planificación de la Radioterapia Asistida por Computador , Método de Montecarlo , Fotones/uso terapéutico , Aceleradores de Partículas , Fantasmas de Imagen , Dosificación Radioterapéutica
8.
Br J Cancer ; 128(8): 1429-1438, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36639527

RESUMEN

Numerous studies have demonstrated the higher biological efficacy of carbon-ion irradiation (C-ions) and their ballistic precision compared with photons. At the nanometre scale, the reactive oxygen species (ROS) produced by radiation and responsible for the indirect effects are differentially distributed according to the type of radiation. Photon irradiation induces a homogeneous ROS distribution, whereas ROS remain condensed in clusters in the C-ions tracks. Based on this linear energy transfer-dependent differential nanometric ROS distribution, we propose that the higher biological efficacy and specificities of the molecular response to C-ions rely on a 'stealth-bomber' effect. When biological targets are on the trajectories of the particles, the clustered radicals in the tracks are responsible for a 'bomber' effect. Furthermore, the low proportion of ROS outside the tracks is not able to trigger the cellular mechanisms of defence and proliferation. The ability of C-ions to deceive the cellular defence of the cancer cells is then categorised as a 'stealth' effect. This review aims to classify the biological arguments supporting the paradigm of the 'stealth-bomber' as responsible for the biological superiority of C-ions compared with photons. It also explains how and why C-ions will always be more efficient for treating patients with radioresistant cancers than conventional radiotherapy.


Asunto(s)
Neoplasias , Humanos , Especies Reactivas de Oxígeno , Neoplasias/radioterapia , Fotones/uso terapéutico , Iones , Carbono
9.
BMC Cancer ; 23(1): 577, 2023 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-37349697

RESUMEN

BACKGROUND: Despite their heterogeneity, the current standard preoperative radiotherapy regimen for localized high-grade soft tissue sarcoma (STS) follows a one fits all approach for all STS subtypes. Sarcoma patient-derived three-dimensional cell culture models represent an innovative tool to overcome challenges in clinical research enabling reproducible subtype-specific research on STS. In this pilot study, we present our methodology and preliminary results using STS patient-derived 3D cell cultures that were exposed to different doses of photon and proton radiation. Our aim was: (i) to establish a reproducible method for irradiation of STS patient-derived 3D cell cultures and (ii) to explore the differences in tumor cell viability of two different STS subtypes exposed to increasing doses of photon and proton radiation at different time points. METHODS: Two patient-derived cell cultures of untreated localized high-grade STS (an undifferentiated pleomorphic sarcoma (UPS) and a pleomorphic liposarcoma (PLS)) were exposed to a single fraction of photon or proton irradiation using doses of 0 Gy (sham irradiation), 2 Gy, 4 Gy, 8 Gy and 16 Gy. Cell viability was measured and compared to sham irradiation at two different time points (four and eight days after irradiation). RESULTS: The proportion of viable tumor cells four days after photon irradiation for UPS vs. PLS were significantly different with 85% vs. 65% (4 Gy), 80% vs. 50% (8 Gy) and 70% vs. 35% (16 Gy). Proton irradiation led to similar diverging viability curves between UPS vs. PLS four days after irradiation with 90% vs. 75% (4 Gy), 85% vs. 45% (8 Gy) and 80% vs. 35% (16 Gy). Photon and proton radiation displayed only minor differences in cell-killing properties within each cell culture (UPS and PLS). The cell-killing effect of radiation sustained at eight days after irradiation in both cell cultures. CONCLUSIONS: Pronounced differences in radiosensitivity are evident among UPS and PLS 3D patient-derived sarcoma cell cultures which may reflect the clinical heterogeneity. Photon and proton radiation showed similar dose-dependent cell-killing effectiveness in both 3D cell cultures. Patient-derived 3D STS cell cultures may represent a valuable tool to enable translational studies towards individualized subtype-specific radiotherapy in patients with STS.


Asunto(s)
Sarcoma , Neoplasias de los Tejidos Blandos , Humanos , Protones , Proyectos Piloto , Sarcoma/radioterapia , Sarcoma/cirugía , Fotones/uso terapéutico
10.
Acta Oncol ; 62(11): 1412-1417, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37815913

RESUMEN

BACKGROUND: Patients with head and neck squamous cell carcinoma of unknown primary (HNCUP) are often treated with extensive radiotherapy (RT). Frequently, the bilateral nodal clinical target volume (nCTV) and the volumes of suspected mucosal primary sites (mCTV) of the pharynx and larynx is irradiated. This treatment is effective but toxic. New data suggest that omission of the contralateral nCTV and mCTV, results in few recurrences. The present study explores photon versus proton therapy, in the primary and recurrent setting. MATERIAL AND METHODS: An analysis of twelve patients previously treated for HNCUP was performed. A fictitious recurrence was defined in patients treated for unilateral disease. Independently a volumetric arc photon plan and an intensity-modulated proton plan was made for all cases and scenarios. RESULTS: Compared to the standard bilateral treatment this study shows that limiting the target to unilateral nCTV leads to a significant decrease in dysphagia of 18% and 17% and xerostomia of 4.0% and 5% for photon and protons, respectively. Comparing photon RT directly to proton RT shows a small and often insignificant gain, using protons for both bilateral and unilateral targets. Focusing on re-irradiation, benefits from using protons in both the primary setting and at re-irradiation were limited. However, using protons for re-irradiation only leads to a decrease in the tissue volume receiving a specific dose outside the target overlapping region, e.g., V90Gymean was 31, 25, and 22 cm3 for photons-photons, photons-protons, and protons-protons, respectively. For V100Gy of the ipsilateral carotid artery, no differences were observed. CONCLUSION: Omitting contralateral nCTV irradiation and mCTV irradiation will significantly reduce toxicity. The accumulated high dose volumes can be minimised using protons for re-irradiation. However, the use of protons for primary treatment provides limited benefit in most patients.


Asunto(s)
Neoplasias de Cabeza y Cuello , Neoplasias Primarias Desconocidas , Terapia de Protones , Radioterapia de Intensidad Modulada , Humanos , Protones , Carcinoma de Células Escamosas de Cabeza y Cuello/radioterapia , Dosificación Radioterapéutica , Terapia de Protones/efectos adversos , Terapia de Protones/métodos , Planificación de la Radioterapia Asistida por Computador/métodos , Radioterapia de Intensidad Modulada/efectos adversos , Radioterapia de Intensidad Modulada/métodos , Fotones/uso terapéutico , Neoplasias de Cabeza y Cuello/radioterapia
11.
Curr Treat Options Oncol ; 24(11): 1524-1549, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37728819

RESUMEN

OPINION STATEMENT: Central nervous system (CNS) radiotoxicity remains a challenge in neuro-oncology. Dose distribution advantages of protons over photons have prompted increased use of brain-directed proton therapy. While well-recognized among pediatric populations, the benefit of proton therapy among adults with CNS malignancies remains controversial. We herein discuss the role of protons in mitigating late CNS radiotoxicities in adult patients. Despite limited clinical trials, evidence suggests toxicity profile advantages of protons over conventional radiotherapy, including retention of neurocognitive function and brain volume. Modelling studies predict superior dose conformality of protons versus state-of-the-art photon techniques reduces late radiogenic vasculopathies, endocrinopathies, and malignancies. Conversely, potentially higher brain tissue necrosis rates following proton therapy highlight a need to resolve uncertainties surrounding the impact of variable biological effectiveness of protons on dose distribution. Clinical trials comparing best photon and particle-based therapy are underway to establish whether protons substantially improve long-term treatment-related outcomes in adults with CNS malignancies.


Asunto(s)
Neoplasias del Sistema Nervioso Central , Terapia de Protones , Niño , Adulto , Humanos , Terapia de Protones/efectos adversos , Protones , Neoplasias del Sistema Nervioso Central/radioterapia , Fotones/uso terapéutico , Sistema Nervioso Central , Dosificación Radioterapéutica
12.
J Appl Clin Med Phys ; 24(6): e13945, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36848039

RESUMEN

Over the past several decades, a medical physics service group covering 35 clinical sites has provided routine monthly output and energy quality assurance for over 75 linear accelerators. Based on the geographical spread of these clinics and the large number of physicists involved in data acquisition, a systematic calibration procedure was established to ensure uniformity. A consistent measurement geometry and data collection technique is used across all machines for every calendar month, using a standardized set of acrylic slabs. Charge readings in acrylic phantoms are linked to AAPM's TG-51 formalism via a parameter denoted kacrylic , used to convert raw charge readings to machine output values. Statistical analyses of energy ratios and kacrylic values are presented. Employing the kacrylic concept with a uniform measurement geometry of similar acrylic blocks was found to be a reproducible and simple way of referencing a calibration completed in water under reference conditions and comparing to other machines, with the ability to alert physicists of outliers.


Asunto(s)
Aceleradores de Partículas , Radiometría , Humanos , Radiometría/métodos , Fotones/uso terapéutico , Dosificación Radioterapéutica , Fantasmas de Imagen , Calibración
13.
Int J Mol Sci ; 24(9)2023 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-37176123

RESUMEN

The Health Effects of Cardiac Fluoroscopy and Modern Radiotherapy (photon and proton) in Pediatrics (HARMONIC) is a five-year project funded by the European Commission that aimed to improve the understanding of the long-term ionizing radiation (IR) risks for pediatric patients. In this paper, we provide a detailed overview of the rationale, design, and methods for the biological aspect of the project with objectives to provide a mechanistic understanding of the molecular pathways involved in the IR response and to identify potential predictive biomarkers of individual response involved in long-term health risks. Biological samples will be collected at three time points: before the first exposure, at the end of the exposure, and one year after the exposure. The average whole-body dose, the dose to the target organ, and the dose to some important out-of-field organs will be estimated. State-of-the-art analytical methods will be used to assess the levels of a set of known biomarkers and also explore high-resolution approaches of proteomics and miRNA transcriptomes to provide an integrated assessment. By using bioinformatics and systems biology, biological pathways and novel pathways involved in the response to IR exposure will be deciphered.


Asunto(s)
Cardiología , Protones , Niño , Humanos , Estudios Longitudinales , Dosis de Radiación , Fotones/uso terapéutico
14.
Pediatr Blood Cancer ; 69(9): e29697, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35373903

RESUMEN

PURPOSE: To determine if proton therapy reduces doses to cranial organs at risk (OARs) as compared to photon therapy in children with non-germinomatous germ cell tumors (NGGCT) receiving whole ventricular radiotherapy (WVRT). METHODS AND MATERIALS: Dosimetric data for patients with NGGCT prospectively enrolled in stratum 1 of the Children's Oncology Group study ACNS1123 who received 30.6 Gy WVRT were compared. Target segmentation was standardized using a contouring atlas. Doses to cranial OARs were compared between proton and photon treatments. Clinically relevant dose-volume parameters that were analyzed included mean dose and dose to 40% of the OAR volume (D40). RESULTS: Mean and D40 doses to the supratentorial brain, cerebellum, and bilateral temporal, parietal, and frontal lobes were statistically significantly lower amongst proton-treated patients, as compared to photon-treated patients. In a subgroup analysis of patients uniformly treated with a 3-mm planning target volume, patients who received proton therapy continued to have statistically significantly lower doses to brain OARs. CONCLUSIONS: Children treated with proton therapy for WVRT had lower doses to normal brain structures, when compared to those treated with photon therapy. Proton therapy should be considered for patients receiving WVRT for NGGCT.


Asunto(s)
Neoplasias de Células Germinales y Embrionarias , Terapia de Protones , Radioterapia de Intensidad Modulada , Niño , Humanos , Masculino , Neoplasias de Células Germinales y Embrionarias/etiología , Neoplasias de Células Germinales y Embrionarias/radioterapia , Órganos en Riesgo , Fotones/uso terapéutico , Terapia de Protones/métodos , Protones , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador/métodos , Radioterapia de Intensidad Modulada/efectos adversos , Neoplasias Testiculares
15.
Lasers Med Sci ; 37(5): 2537-2544, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35233704

RESUMEN

PURPOSE: The aim of the present study was to visualize and compare the cavitation effect and fluid dynamics induced by photon-induced photoacoustic streaming (PIPS) using sodium hypochlorite (NaOCl) with different concentrations as irrigant. METHODS: Forty artificial root canals were prepared using MTWO Niti file up to size #25/.06. The canals were randomly divided into four groups (n = 10/group). High-speed camera was used to visualize and compare the cavitation effect induced by PIPS in the artificial root canals containing saline or NaOCl. Fluid velocity and Reynolds number of saline, 1%-, 2.5%- and 5.25% NaOCl irrigants induced by PIPS in the apical region were calculated using TEMA 2D software while the fluid motions were recorded. RESULTS: Visualization profile revealed that NaOCl presented a stronger cavitation effect and fluid dynamics than saline during PIPS activation. In the apical region, 1% NaOCl group presented the highest average velocity of 3.868 m/s, followed by 2.5% NaOCl group (3.685 m/s), 5.25% NaOCl group (2.353 m/s) and saline group (1.268 m/s), corresponding to Reynolds number of 1653.173, 1572.196, 995.503 and 477.692. Statistically higher fluid velocity was calculated in 1% and 2.5% NaOCl groups compared to saline group, respectively (p < 0.05). CONCLUSIONS: The application of NaOCl and its concentration significantly influence the cavitation effect and fluid dynamics during PIPS activation. 1% and 2.5% NaOCl groups presented a more violent fluid motion in the apical region when activated by PIPS.


Asunto(s)
Irrigantes del Conducto Radicular , Hipoclorito de Sodio , Cavidad Pulpar , Hidrodinámica , Fotones/uso terapéutico , Irrigantes del Conducto Radicular/farmacología , Preparación del Conducto Radicular , Hipoclorito de Sodio/farmacología
16.
J Appl Clin Med Phys ; 23(12): e13811, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36300870

RESUMEN

PURPOSE: The shallow depth of maximum dose and higher dose fall-off gradient of a 2.5 MV beam along the central axis that is available for imaging on linear accelerators is investigated for treatment of shallow tumors and sparing the organs at risk (OARs) beyond it. In addition, the 2.5 MV beam has an energy bridging the gap between kilo-voltage (kV) and mega-voltage (MV) beams for applications of dose enhancement with high atomic number (Z) nanoparticles. METHODS: We have commissioned and utilized a MATLAB-based, open-source treatment planning software (TPS), matRad, for intensity-modulated radiation therapy (IMRT) dose calculations. Treatment plans for prostate, liver, and head and neck (H&N), nasal cavity, two orbit cases, and glioblastoma multiforme (GBM) were performed and compared to a conventional 6 MV beam. Additional Monte Carlo calculations were also used for benchmarking the central axis dose. RESULTS: Both beams had similar planning target volume (PTV) dose coverage for all cases. However, the 2.5 MV beam deposited 6%-19% less integral doses to the nasal cavity, orbit, and GBM cases than 6 MV photons. The mean dose to the heart in the liver plan was 10.5% lower for 2.5 MV beam. The difference between the doses to OARs of H&N for two beams was under 3%. Brain mean dose, brainstem, and optic chiasm max doses were, respectively, 7.5%-14.9%, 2.2%-8.1%, and 2.5%-19.0% lower for the 2.5 MV beam in the nasal cavity, orbit, and GBM plans. CONCLUSIONS: This study demonstrates that the 2.5 MV beam can produce clinically relevant treatment plans, motivating future efforts for design of single-energy LINACs. Such a machine will be capable of producing beams at this energy beneficial for low- and middle-income countries, and investigations on dose enhancement from high-Z nanoparticles.


Asunto(s)
Planificación de la Radioterapia Asistida por Computador , Radioterapia de Intensidad Modulada , Masculino , Humanos , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador/métodos , Radioterapia de Intensidad Modulada/métodos , Programas Informáticos , Fotones/uso terapéutico , Método de Montecarlo
17.
J Cell Physiol ; 236(3): 1695-1711, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-32691425

RESUMEN

Radiotherapy is one of the major modalities for malignancy treatment. High linear energy transfer (LET) charged-particle beams, like proton and carbon ions, exhibit favourable depth-dose distributions and radiobiological enhancement over conventional low-LET photon irradiation, thereby marking a new era in high precision medicine. Tumour cells have developed multicomponent signal transduction networks known as DNA damage responses (DDRs), which initiate cell-cycle checkpoints and induce double-strand break (DSB) repairs in the nucleus by nonhomologous end joining or homologous recombination pathways, to manage ionising radiation (IR)-induced DNA lesions. DNA damage induction and DSB repair pathways are reportedly dependent on the quality of radiation delivered. In this review, we summarise various types of DNA lesion and DSB repair mechanisms, upon irradiation with low and high-LET radiation, respectively. We also analyse factors influencing DNA repair efficiency. Inhibition of DNA damage repair pathways and dysfunctional cell-cycle checkpoint sensitises tumour cells to IR. Radio-sensitising agents, including DNA-PK inhibitors, Rad51 inhibitors, PARP inhibitors, ATM/ATR inhibitors, chk1 inhibitors, wee1 kinase inhibitors, Hsp90 inhibitors, and PI3K/AKT/mTOR inhibitors have been found to enhance cell killing by IR through interference with DDRs, cell-cycle arrest, or other cellular processes. The cotreatment of these inhibitors with IR may represent a promising therapeutic strategy for cancer.


Asunto(s)
Neoplasias/radioterapia , Fotones/uso terapéutico , Daño del ADN , Reparación del ADN , Humanos , Tolerancia a Radiación/efectos de la radiación , Radiación Ionizante
18.
Chemistry ; 27(1): 362-370, 2021 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-32716591

RESUMEN

During the last decades, photodynamic therapy (PDT), an approved medical technique, has received increasing attention to treat certain types of cancer. Despite recent improvements, the treatment of large tumors remains a major clinical challenge due to the low ability of the photosensitizer (PS) to penetrate a 3D cellular architecture and the low oxygen concentrations present in the tumor center. To mimic the conditions found in clinical tumors, exceptionally large 3D multicellular tumor spheroids (MCTSs) with a diameter of 800 µm were used in this work to test a series of new RuII polypyridine complexes as one-photon and two-photon PSs. These metal complexes were found to fully penetrate the 3D cellular architecture and to generate singlet oxygen in the hypoxic center upon light irradiation. While having no observed dark toxicity, the lead compound of this study showed an impressive phototoxicity upon clinically relevant one-photon (595 nm) or two-photon (800 nm) excitation with a full eradication of the hypoxic center of the MCTSs. Importantly, this efficacy was also demonstrated on mice bearing an adenocarcinomic human alveolar basal epithelial tumor.


Asunto(s)
Compuestos Organometálicos , Fotoquimioterapia , Fármacos Fotosensibilizantes , Rutenio , Adenocarcinoma Bronquioloalveolar/tratamiento farmacológico , Adenocarcinoma Bronquioloalveolar/metabolismo , Animales , Células HeLa , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/metabolismo , Ratones , Neoplasias Basocelulares/tratamiento farmacológico , Neoplasias Basocelulares/metabolismo , Compuestos Organometálicos/química , Compuestos Organometálicos/farmacología , Fotones/uso terapéutico , Fármacos Fotosensibilizantes/farmacología , Piridinas/química , Piridinas/farmacología , Rutenio/química , Rutenio/farmacología , Oxígeno Singlete/metabolismo , Esferoides Celulares , Hipoxia Tumoral , Ensayos Antitumor por Modelo de Xenoinjerto
19.
Cochrane Database Syst Rev ; 7: CD013224, 2021 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-34196007

RESUMEN

BACKGROUND: Chordoma is a rare primary bone tumour with a high propensity for local recurrence. Surgical resection is the mainstay of treatment, but complete resection is often morbid due to tumour location. Similarly, the dose of radiotherapy (RT) that surrounding healthy organs can tolerate is frequently below that required to provide effective tumour control. Therefore, clinicians have investigated different radiation delivery techniques, often in combination with surgery, aimed to improve the therapeutic ratio. OBJECTIVES: To assess the effects and toxicity of proton and photon adjuvant radiotherapy (RT) in people with biopsy-confirmed chordoma. SEARCH METHODS: We searched CENTRAL (2021, Issue 4); MEDLINE Ovid (1946 to April 2021); Embase Ovid (1980 to April 2021) and online registers of clinical trials, and abstracts of scientific meetings up until April 2021. SELECTION CRITERIA: We included adults with pathologically confirmed primary chordoma, who were irradiated with curative intent, with protons or photons in the form of fractionated RT, SRS (stereotactic radiosurgery), SBRT (stereotactic body radiotherapy), or IMRT (intensity modulated radiation therapy). We limited analysis to studies that included outcomes of participants treated with both protons and photons. DATA COLLECTION AND ANALYSIS: The primary outcomes were local control, mortality, recurrence, and treatment-related toxicity. We followed current standard Cochrane methodological procedures for data extraction, management, and analysis. We used the ROBINS-I tool to assess risk of bias, and GRADE to assess the certainty of the evidence. MAIN RESULTS: We included six observational studies with 187 adult participants. We judged all studies to be at high risk of bias. Four studies were included in meta-analysis. We are uncertain if proton compared to photon therapy worsens or has no effect on local control (hazard ratio (HR) 5.34, 95% confidence interval (CI) 0.66 to 43.43; 2 observational studies, 39 participants; very low-certainty evidence). Median survival time ranged between 45.5 months and 66 months. We are uncertain if proton compared to photon therapy reduces or has no effect on mortality (HR 0.44, 95% CI 0.13 to 1.57; 4 observational studies, 65 participants; very low-certainty evidence). Median recurrence-free survival ranged between 3 and 10 years. We are uncertain whether proton compared to photon therapy reduces or has no effect on recurrence (HR 0.34, 95% CI 0.10 to 1.17; 4 observational studies, 94 participants; very low-certainty evidence). One study assessed treatment-related toxicity and reported that four participants on proton therapy developed radiation-induced necrosis in the temporal bone, radiation-induced damage to the brainstem, and chronic mastoiditis; one participant on photon therapy developed hearing loss, worsening of the seventh cranial nerve paresis, and ulcerative keratitis (risk ratio (RR) 1.28, 95% CI 0.17 to 9.86; 1 observational study, 33 participants; very low-certainty evidence). There is no evidence that protons led to reduced toxicity. There is very low-certainty evidence to show an advantage for proton therapy in comparison to photon therapy with respect to local control, mortality, recurrence, and treatment related toxicity. AUTHORS' CONCLUSIONS: There is a lack of published evidence to confirm a clinical difference in effect with either proton or photon therapy for the treatment of chordoma. As radiation techniques evolve, multi-institutional data should be collected prospectively and published, to help identify persons that would most benefit from the available radiation treatment techniques.


Asunto(s)
Neoplasias Óseas/radioterapia , Cordoma/radioterapia , Fotones/uso terapéutico , Terapia de Protones/métodos , Adulto , Sesgo , Neoplasias Óseas/mortalidad , Cordoma/mortalidad , Supervivencia sin Enfermedad , Femenino , Humanos , Masculino , Persona de Mediana Edad , Recurrencia Local de Neoplasia/prevención & control , Estudios Observacionales como Asunto , Fotones/efectos adversos , Supervivencia sin Progresión , Terapia de Protones/efectos adversos , Radiocirugia/métodos , Radioterapia Adyuvante , Radioterapia de Intensidad Modulada/métodos , Factores de Tiempo
20.
Radiat Environ Biophys ; 60(2): 299-308, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33660011

RESUMEN

This study aims at the estimation of skin doses during small field radiotherapy with 6 MV photons and analysis of beam spectra at skin surface. The EGSnrc Monte Carlo code was used for spectral analysis and dose scoring in a water phantom. Percent skin dose (PSD) was calculated at a depth of 70 µm (relative to 10 cm depth), and the effects of field size, collimation, source-to-surface distance, and tissue inhomogeneity (bone/air) below the skin were evaluated. Low-energy photons and contaminant electrons from the machine head or back-scattered from underlying tissue were found to be the major contributors to skin dose. As the field size was reduced, the beam hardened, while the photon and electron fluences at the skin decreased compared to those at the reference depth of 10 cm. This resulted in a PSD reduction for fields smaller than the reference field size. Multi leaf collimators increased the PSD (up to 4%) while variation in source-to-skin dose showed a negligible effect. A substantial increase in PSD has been observed (up to 6%) when high Z material like bone was placed below the skin. In contrast, air as underlying material decreased the skin dose. The skin dose varied considerably with various clinical and geometric parameters. It is concluded that, although the skin doses were low for small fields compared to those for the reference field, skin doses may become substantial when escalated target doses are delivered with multi leaf collimators. Moreover, the presence of high Z materials such as bones or metallic implants below the skin can result in significant enhancement of the skin dose.


Asunto(s)
Fotones/uso terapéutico , Piel/metabolismo , Huesos , Simulación por Computador , Electrones , Humanos , Método de Montecarlo , Dosificación Radioterapéutica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA