Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.101
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Cell ; 174(5): 1229-1246.e17, 2018 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-30078709

RESUMEN

In the auditory system, type I spiral ganglion neurons (SGNs) convey complex acoustic information from inner hair cells (IHCs) to the brainstem. Although SGNs exhibit variation in physiological and anatomical properties, it is unclear which features are endogenous and which reflect input from synaptic partners. Using single-cell RNA sequencing, we derived a molecular classification of mouse type I SGNs comprising three subtypes that express unique combinations of Ca2+ binding proteins, ion channel regulators, guidance molecules, and transcription factors. Based on connectivity and susceptibility to age-related loss, these subtypes correspond to those defined physiologically. Additional intrinsic differences among subtypes and across the tonotopic axis highlight an unexpectedly active role for SGNs in auditory processing. SGN identities emerge postnatally and are disrupted in a mouse model of deafness that lacks IHC-driven activity. These results elucidate the range, nature, and origins of SGN diversity, with implications for treatment of congenital deafness.


Asunto(s)
Oído Interno/fisiología , Células Ciliadas Auditivas Internas/fisiología , Células Receptoras Sensoriales/fisiología , Sistemas de Transporte de Aminoácidos Acídicos/genética , Animales , Calbindina 2/genética , Cóclea/fisiología , Sordera/genética , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Análisis de Secuencia de ARN , Ganglio Espiral de la Cóclea/fisiología , Transmisión Sináptica , Transgenes
2.
Cell ; 174(5): 1247-1263.e15, 2018 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-30078710

RESUMEN

Type I spiral ganglion neurons (SGNs) transmit sound information from cochlear hair cells to the CNS. Using transcriptome analysis of thousands of single neurons, we demonstrate that murine type I SGNs consist of subclasses that are defined by the expression of subsets of transcription factors, cell adhesion molecules, ion channels, and neurotransmitter receptors. Subtype specification is initiated prior to the onset of hearing during the time period when auditory circuits mature. Gene mutations linked to deafness that disrupt hair cell mechanotransduction or glutamatergic signaling perturb the firing behavior of SGNs prior to hearing onset and disrupt SGN subtype specification. We thus conclude that an intact hair cell mechanotransduction machinery is critical during the pre-hearing period to regulate the firing behavior of SGNs and their segregation into subtypes. Because deafness is frequently caused by defects in hair cells, our findings have significant ramifications for the etiology of hearing loss and its treatment.


Asunto(s)
Células Ciliadas Auditivas/fisiología , Audición/fisiología , Mecanotransducción Celular , Neuronas/fisiología , Transducción de Señal , Ganglio Espiral de la Cóclea/fisiología , Animales , Análisis por Conglomerados , Marcadores Genéticos , Masculino , Ratones , Ratones Endogámicos CBA , Ratones Noqueados , Mutación , Neuroglía/fisiología , Análisis de Secuencia de ARN
3.
Cell ; 163(6): 1348-59, 2015 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-26627734

RESUMEN

Spontaneous electrical activity of neurons in developing sensory systems promotes their maturation and proper connectivity. In the auditory system, spontaneous activity of cochlear inner hair cells (IHCs) is initiated by the release of ATP from glia-like inner supporting cells (ISCs), facilitating maturation of central pathways before hearing onset. Here, we find that ATP stimulates purinergic autoreceptors in ISCs, triggering Cl(-) efflux and osmotic cell shrinkage by opening TMEM16A Ca(2+)-activated Cl(-) channels. Release of Cl(-) from ISCs also forces K(+) efflux, causing transient depolarization of IHCs near ATP release sites. Genetic deletion of TMEM16A markedly reduces the spontaneous activity of IHCs and spiral ganglion neurons in the developing cochlea and prevents ATP-dependent shrinkage of supporting cells. These results indicate that supporting cells in the developing cochlea have adapted a pathway used for fluid secretion in other organs to induce periodic excitation of hair cells.


Asunto(s)
Oído Interno/crecimiento & desarrollo , Células Ciliadas Auditivas/citología , Adenosina Trifosfato/metabolismo , Animales , Anoctamina-1 , Canales de Cloruro/genética , Canales de Cloruro/metabolismo , Oído Interno/citología , Oído Interno/metabolismo , Células Ciliadas Auditivas/metabolismo , Células Laberínticas de Soporte/citología , Células Laberínticas de Soporte/metabolismo , Ratones , Ratones Noqueados , Potasio/metabolismo , Ratas , Ratas Sprague-Dawley , Ganglio Espiral de la Cóclea/citología , Ganglio Espiral de la Cóclea/metabolismo
4.
Nature ; 602(7897): 449-454, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35082447

RESUMEN

Phylogenomics of bats suggests that their echolocation either evolved separately in the bat suborders Yinpterochiroptera and Yangochiroptera, or had a single origin in bat ancestors and was later lost in some yinpterochiropterans1-6. Hearing for echolocation behaviour depends on the inner ear, of which the spiral ganglion is an essential structure. Here we report the observation of highly derived structures of the spiral ganglion in yangochiropteran bats: a trans-otic ganglion with a wall-less Rosenthal's canal. This neuroanatomical arrangement permits a larger ganglion with more neurons, higher innervation density of neurons and denser clustering of cochlear nerve fascicles7-13. This differs from the plesiomorphic neuroanatomy of Yinpterochiroptera and non-chiropteran mammals. The osteological correlates of these derived ganglion features can now be traced into bat phylogeny, providing direct evidence of how Yangochiroptera differentiated from Yinpterochiroptera in spiral ganglion neuroanatomy. These features are highly variable across major clades and between species of Yangochiroptera, and in morphospace, exhibit much greater disparity in Yangochiroptera than Yinpterochiroptera. These highly variable ganglion features may be a neuroanatomical evolutionary driver for their diverse echolocating strategies4,14-17 and are associated with the explosive diversification of yangochiropterans, which include most bat families, genera and species.


Asunto(s)
Evolución Biológica , Quirópteros , Oído Interno , Ecolocación , Ganglio Espiral de la Cóclea , Animales , Quirópteros/anatomía & histología , Quirópteros/clasificación , Quirópteros/fisiología , Oído Interno/anatomía & histología , Oído Interno/inervación , Oído Interno/fisiología , Ecolocación/fisiología , Filogenia , Ganglio Espiral de la Cóclea/anatomía & histología , Ganglio Espiral de la Cóclea/fisiología
5.
EMBO J ; 42(23): e114587, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37800695

RESUMEN

Our sense of hearing enables the processing of stimuli that differ in sound pressure by more than six orders of magnitude. How to process a wide range of stimulus intensities with temporal precision is an enigmatic phenomenon of the auditory system. Downstream of dynamic range compression by active cochlear micromechanics, the inner hair cells (IHCs) cover the full intensity range of sound input. Yet, the firing rate in each of their postsynaptic spiral ganglion neurons (SGNs) encodes only a fraction of it. As a population, spiral ganglion neurons with their respective individual coding fractions cover the entire audible range. How such "dynamic range fractionation" arises is a topic of current research and the focus of this review. Here, we discuss mechanisms for generating the diverse functional properties of SGNs and formulate testable hypotheses. We postulate that an interplay of synaptic heterogeneity, molecularly distinct subtypes of SGNs, and efferent modulation serves the neural decomposition of sound information and thus contributes to a population code for sound intensity.


Asunto(s)
Cóclea , Células Ciliadas Auditivas Internas , Células Ciliadas Auditivas Internas/fisiología , Sonido , Sinapsis/fisiología , Ganglio Espiral de la Cóclea
6.
PLoS Biol ; 22(6): e3002665, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38935589

RESUMEN

Loss of synapses between spiral ganglion neurons and inner hair cells (IHC synaptopathy) leads to an auditory neuropathy called hidden hearing loss (HHL) characterized by normal auditory thresholds but reduced amplitude of sound-evoked auditory potentials. It has been proposed that synaptopathy and HHL result in poor performance in challenging hearing tasks despite a normal audiogram. However, this has only been tested in animals after exposure to noise or ototoxic drugs, which can cause deficits beyond synaptopathy. Furthermore, the impact of supernumerary synapses on auditory processing has not been evaluated. Here, we studied mice in which IHC synapse counts were increased or decreased by altering neurotrophin 3 (Ntf3) expression in IHC supporting cells. As we previously showed, postnatal Ntf3 knockdown or overexpression reduces or increases, respectively, IHC synapse density and suprathreshold amplitude of sound-evoked auditory potentials without changing cochlear thresholds. We now show that IHC synapse density does not influence the magnitude of the acoustic startle reflex or its prepulse inhibition. In contrast, gap-prepulse inhibition, a behavioral test for auditory temporal processing, is reduced or enhanced according to Ntf3 expression levels. These results indicate that IHC synaptopathy causes temporal processing deficits predicted in HHL. Furthermore, the improvement in temporal acuity achieved by increasing Ntf3 expression and synapse density suggests a therapeutic strategy for improving hearing in noise for individuals with synaptopathy of various etiologies.


Asunto(s)
Células Ciliadas Auditivas Internas , Neurotrofina 3 , Sinapsis , Animales , Células Ciliadas Auditivas Internas/metabolismo , Células Ciliadas Auditivas Internas/patología , Sinapsis/metabolismo , Sinapsis/fisiología , Neurotrofina 3/metabolismo , Neurotrofina 3/genética , Ratones , Umbral Auditivo , Potenciales Evocados Auditivos/fisiología , Reflejo de Sobresalto/fisiología , Percepción Auditiva/fisiología , Ganglio Espiral de la Cóclea/metabolismo , Femenino , Masculino , Pérdida de Audición Oculta
7.
Proc Natl Acad Sci U S A ; 121(31): e2315599121, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39058581

RESUMEN

Ribbon synapses between inner hair cells (IHCs) and type I spiral ganglion neurons (SGNs) in the inner ear are damaged by noise trauma and with aging, causing "synaptopathy" and hearing loss. Cocultures of neonatal denervated organs of Corti and newly introduced SGNs have been developed to find strategies for improving IHC synapse regeneration, but evidence of the physiological normality of regenerated synapses is missing. This study utilizes IHC optogenetic stimulation and SGN recordings, showing that, when P3-5 denervated organs of Corti are cocultured with SGNs, newly formed IHC/SGN synapses are indeed functional, exhibiting glutamatergic excitatory postsynaptic currents. When using older organs of Corti at P10-11, synaptic activity probed by deconvolution showed more mature release properties, closer to the specialized mode of IHC synaptic transmission crucial for coding the sound signal. This functional assessment of newly formed IHC synapses developed here, provides a powerful tool for testing approaches to improve synapse regeneration.


Asunto(s)
Ganglio Espiral de la Cóclea , Sinapsis , Animales , Ganglio Espiral de la Cóclea/citología , Ganglio Espiral de la Cóclea/fisiología , Sinapsis/fisiología , Ratones , Células Ciliadas Auditivas Internas/fisiología , Células Ciliadas Auditivas Internas/metabolismo , Transmisión Sináptica/fisiología , Neuronas/fisiología , Neuronas/metabolismo , Regeneración/fisiología , Células Ciliadas Auditivas/fisiología , Técnicas de Cocultivo/métodos , Optogenética/métodos , Regeneración Nerviosa/fisiología , Potenciales Postsinápticos Excitadores/fisiología , Órgano Espiral/fisiología , Órgano Espiral/citología , Órgano Espiral/metabolismo
8.
Hum Mol Genet ; 33(10): 905-918, 2024 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-38449065

RESUMEN

Mutations in AIFM1, encoding for apoptosis-inducing factor (AIF), cause AUNX1, an X-linked neurologic disorder with late-onset auditory neuropathy (AN) and peripheral neuropathy. Despite significant research on AIF, there are limited animal models with the disrupted AIFM1 representing the corresponding phenotype of human AUNX1, characterized by late-onset hearing loss and impaired auditory pathways. Here, we generated an Aifm1 p.R450Q knock-in mouse model (KI) based on the human AIFM1 p.R451Q mutation. Hemizygote KI male mice exhibited progressive hearing loss from P30 onward, with greater severity at P60 and stabilization until P210. Additionally, muscle atrophy was observed at P210. These phenotypic changes were accompanied by a gradual reduction in the number of spiral ganglion neuron cells (SGNs) at P30 and ribbons at P60, which coincided with the translocation of AIF into the nucleus starting from P21 and P30, respectively. The SGNs of KI mice at P210 displayed loss of cytomembrane integrity, abnormal nuclear morphology, and dendritic and axonal demyelination. Furthermore, the inner hair cells and myelin sheath displayed abnormal mitochondrial morphology, while fibroblasts from KI mice showed impaired mitochondrial function. In conclusion, we successfully generated a mouse model recapitulating AUNX1. Our findings indicate that disruption of Aifm1 induced the nuclear translocation of AIF, resulting in the impairment in the auditory pathway.


Asunto(s)
Factor Inductor de la Apoptosis , Modelos Animales de Enfermedad , Pérdida Auditiva , Animales , Humanos , Masculino , Ratones , Factor Inductor de la Apoptosis/genética , Factor Inductor de la Apoptosis/metabolismo , Núcleo Celular/metabolismo , Núcleo Celular/genética , Técnicas de Sustitución del Gen , Células Ciliadas Auditivas Internas/metabolismo , Células Ciliadas Auditivas Internas/patología , Pérdida Auditiva/genética , Pérdida Auditiva/patología , Pérdida Auditiva/metabolismo , Atrofia Muscular/genética , Atrofia Muscular/patología , Atrofia Muscular/metabolismo , Mutación , Transporte de Proteínas , Ganglio Espiral de la Cóclea/metabolismo , Ganglio Espiral de la Cóclea/patología
9.
Proc Natl Acad Sci U S A ; 120(24): e2220867120, 2023 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-37279265

RESUMEN

The mammalian cochlear epithelium undergoes substantial remodeling and maturation before the onset of hearing. However, very little is known about the transcriptional network governing cochlear late-stage maturation and particularly the differentiation of its lateral nonsensory region. Here, we establish ZBTB20 as an essential transcription factor required for cochlear terminal differentiation and maturation and hearing. ZBTB20 is abundantly expressed in the developing and mature cochlear nonsensory epithelial cells, with transient expression in immature hair cells and spiral ganglion neurons. Otocyst-specific deletion of Zbtb20 causes profound deafness with reduced endolymph potential in mice. The subtypes of cochlear epithelial cells are normally generated, but their postnatal development is arrested in the absence of ZBTB20, as manifested by an immature appearance of the organ of Corti, malformation of tectorial membrane (TM), a flattened spiral prominence (SP), and a lack of identifiable Boettcher cells. Furthermore, these defects are related with a failure in the terminal differentiation of the nonsensory epithelium covering the outer border Claudius cells, outer sulcus root cells, and SP epithelial cells. Transcriptome analysis shows that ZBTB20 regulates genes encoding for TM proteins in the greater epithelial ridge, and those preferentially expressed in root cells and SP epithelium. Our results point to ZBTB20 as an essential regulator for postnatal cochlear maturation and particularly for the terminal differentiation of cochlear lateral nonsensory domain.


Asunto(s)
Cóclea , Células Ciliadas Auditivas , Animales , Ratones , Cóclea/metabolismo , Células Ciliadas Auditivas/fisiología , Audición/fisiología , Mamíferos , Ganglio Espiral de la Cóclea , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
10.
J Neurosci ; 44(7)2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38176908

RESUMEN

Early B-cell factor 1 (EBF1) is a basic helix-loop-helix transcription factor essential for the differentiation of various tissues. Our single-cell RNA sequencing data suggest that Ebf1 is expressed in the sensory epithelium of the mouse inner ear. Here, we found that the murine Ebf1 gene and its protein are expressed in the prosensory domain of the inner ear, medial region of the cochlear duct floor, otic mesenchyme, and cochleovestibular ganglion. Ebf1 deletion in mice results in incomplete formation of the spiral limbus and scala tympani, increased number of cells in the organ of Corti and Kölliker's organ, and aberrant course of the spiral ganglion axons. Ebf1 deletion in the mouse cochlear epithelia caused the proliferation of SOX2-positive cochlear cells at E13.5, indicating that EBF1 suppresses the proliferation of the prosensory domain and cells of Kölliker's organ to facilitate the development of appropriate numbers of hair and supporting cells. Furthermore, mice with deletion of cochlear epithelium-specific Ebf1 showed poor postnatal hearing function. Our results suggest that Ebf1 is essential for normal auditory function in mammals.


Asunto(s)
Oído Interno , Rampa Timpánica , Animales , Ratones , Cóclea/metabolismo , Conducto Coclear , Mamíferos , Ganglio Espiral de la Cóclea , Factores de Transcripción/metabolismo
11.
EMBO Rep ; 24(9): e56702, 2023 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-37477166

RESUMEN

Cochlear inner hair cells (IHCs) form specialized ribbon synapses with spiral ganglion neurons that tirelessly transmit sound information at high rates over long time periods with extreme temporal precision. This functional specialization is essential for sound encoding and is attributed to a distinct molecular machinery with unique players or splice variants compared to conventional neuronal synapses. Among these is the active zone (AZ) scaffold protein piccolo/aczonin, which is represented by its short splice variant piccolino at cochlear and retinal ribbon synapses. While the function of piccolo at synapses of the central nervous system has been intensively investigated, the role of piccolino at IHC synapses remains unclear. In this study, we characterize the structure and function of IHC synapses in piccolo gene-trap mutant rats (Pclogt/gt ). We find a mild hearing deficit with elevated thresholds and reduced amplitudes of auditory brainstem responses. Ca2+ channel distribution and ribbon morphology are altered in apical IHCs, while their presynaptic function seems to be unchanged. We conclude that piccolino contributes to the AZ organization in IHCs and is essential for normal hearing.


Asunto(s)
Células Ciliadas Auditivas Internas , Neuropéptidos , Ratas , Animales , Audición/fisiología , Sinapsis/fisiología , Cóclea , Ganglio Espiral de la Cóclea/metabolismo , Proteínas del Citoesqueleto/metabolismo
12.
Proc Natl Acad Sci U S A ; 119(48): e2203935119, 2022 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-36409884

RESUMEN

The afferent innervation of the cochlea is comprised of spiral ganglion neurons (SGNs), which are characterized into four subtypes (Type 1A, B, and C and Type 2). However, little is known about the factors and/or processes that determine each subtype. Here, we present a transcriptional analysis of approximately 5,500 single murine SGNs collected across four developmental time points. All four subtypes are transcriptionally identifiable prior to the onset of coordinated spontaneous activity, indicating that the initial specification process is under genetic control. Trajectory analysis indicates that SGNs initially split into two precursor types (Type 1A/2 and Type 1B/C), followed by subsequent splits to give rise to four transcriptionally distinct subtypes. Differential gene expression, pseudotime, and regulon analyses were used to identify candidate transcription factors which may regulate the subtypes specification process. These results provide insights into SGN development and comprise a transcriptional atlas of SGN maturation across the prenatal period.


Asunto(s)
Neuronas , Ganglio Espiral de la Cóclea , Embarazo , Femenino , Ratones , Animales , Ganglio Espiral de la Cóclea/metabolismo , Neuronas/metabolismo , Cóclea/metabolismo
13.
Proc Natl Acad Sci U S A ; 119(37): e2207433119, 2022 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-36074819

RESUMEN

A cardinal feature of the auditory pathway is frequency selectivity, represented in a tonotopic map from the cochlea to the cortex. The molecular determinants of the auditory frequency map are unknown. Here, we discovered that the transcription factor ISL1 regulates the molecular and cellular features of auditory neurons, including the formation of the spiral ganglion and peripheral and central processes that shape the tonotopic representation of the auditory map. We selectively knocked out Isl1 in auditory neurons using Neurod1Cre strategies. In the absence of Isl1, spiral ganglion neurons migrate into the central cochlea and beyond, and the cochlear wiring is profoundly reduced and disrupted. The central axons of Isl1 mutants lose their topographic projections and segregation at the cochlear nucleus. Transcriptome analysis of spiral ganglion neurons shows that Isl1 regulates neurogenesis, axonogenesis, migration, neurotransmission-related machinery, and synaptic communication patterns. We show that peripheral disorganization in the cochlea affects the physiological properties of hearing in the midbrain and auditory behavior. Surprisingly, auditory processing features are preserved despite the significant hearing impairment, revealing central auditory pathway resilience and plasticity in Isl1 mutant mice. Mutant mice have a reduced acoustic startle reflex, altered prepulse inhibition, and characteristics of compensatory neural hyperactivity centrally. Our findings show that ISL1 is one of the obligatory factors required to sculpt auditory structural and functional tonotopic maps. Still, upon Isl1 deletion, the ensuing central plasticity of the auditory pathway does not suffice to overcome developmentally induced peripheral dysfunction of the cochlea.


Asunto(s)
Vías Auditivas , Núcleo Coclear , Células Ciliadas Auditivas , Proteínas con Homeodominio LIM , Neurogénesis , Ganglio Espiral de la Cóclea , Factores de Transcripción , Animales , Vías Auditivas/embriología , Cóclea/embriología , Cóclea/inervación , Núcleo Coclear/embriología , Células Ciliadas Auditivas/fisiología , Proteínas con Homeodominio LIM/genética , Proteínas con Homeodominio LIM/fisiología , Ratones , Neurogénesis/genética , Ganglio Espiral de la Cóclea/enzimología , Factores de Transcripción/genética , Factores de Transcripción/fisiología
14.
Hum Genet ; 143(8): 979-993, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39066985

RESUMEN

Gasdermin E (GSDME), a member of the gasdermin protein family, is associated with post-lingual hearing loss. All GSDME pathogenic mutations lead to skipping exon 8; however, the molecular mechanisms underlying hearing loss caused by GSDME mutants remain unclear. GSDME was recently identified as one of the mediators of programmed cell death, including apoptosis and pyroptosis. Therefore, in this study, we injected mice with GSDME mutant (MT) and examined the expression levels to assess its effect on hearing impairment. We observed loss of hair cells in the organ of Corti and spiral ganglion neurons. Further, the N-terminal release from the GSDME mutant in HEI-OC1 cells caused pyroptosis, characterized by cell swelling and rupture of the plasma membrane, releasing lactate dehydrogenase and cytokines such as interleukin-1ß. We also observed that the N-terminal release from GSDME mutants could permeabilize the mitochondrial membrane, releasing cytochromes and activating the mitochondrial apoptotic pathway, thereby generating possible positive feedback on the cleavage of GSDME. Furthermore, we found that treatment with disulfiram or dimethyl fumarate might inhibit pyroptosis and apoptosis by inhibiting the release of GSDME-N from GSDME mutants. In conclusion, this study elucidated the molecular mechanism associated with hearing loss caused by GSDME gene mutations, offering novel insights for potential treatment strategies.


Asunto(s)
Apoptosis , Piroptosis , Piroptosis/genética , Animales , Ratones , Mutación con Ganancia de Función , Pérdida Auditiva/genética , Pérdida Auditiva/patología , Humanos , Ganglio Espiral de la Cóclea/metabolismo , Ganglio Espiral de la Cóclea/patología , Órgano Espiral/metabolismo , Órgano Espiral/patología , Células Ciliadas Auditivas/metabolismo , Células Ciliadas Auditivas/patología , Gasderminas
15.
Biochem Biophys Res Commun ; 704: 149704, 2024 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-38430700

RESUMEN

Ribbon synapses in the cochlear hair cells are subject to extensive pruning and maturation processes before hearing onset. Previous studies have highlighted the pivotal role of thyroid hormone (TH) in this developmental process, yet the detailed mechanisms are largely unknown. In this study, we found that the thyroid hormone receptor α (Thrα) is expressed in both sensory epithelium and spiral ganglion neurons in mice. Hypothyroidism, induced by Pax8 gene knockout, significantly delays the synaptic pruning during postnatal development in mice. Detailed spatiotemporal analysis of ribbon synapse distribution reveals that synaptic maturation involves not only ribbon pruning but also their migration, both of which are notably delayed in the cochlea of Pax8 knockout mice. Intriguingly, postnatal hyperthyroidism, induced by intraperitoneal injections of liothyronine sodium (T3), accelerates the pruning of ribbon synapses to the mature state without affecting the auditory functions. Our findings suggest that thyroid hormone does not play a deterministic role but rather controls the timing of cochlear ribbon synapse maturation.


Asunto(s)
Cóclea , Sinapsis , Animales , Ratones , Sinapsis/fisiología , Hormonas Tiroideas , Ganglio Espiral de la Cóclea , Audición/fisiología , Ratones Noqueados
16.
J Nanobiotechnology ; 22(1): 458, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39085923

RESUMEN

Cochlear implants can directly activate the auditory system's primary sensory neurons, the spiral ganglion neurons (SGNs), via circumvention of defective cochlear hair cells. This bypass restores auditory input to the brainstem. SGN loss etiologies are complex, with limited mammalian regeneration. Protecting and revitalizing SGN is critical. Tissue engineering offers a novel therapeutic strategy, utilizing seed cells, biomolecules, and scaffold materials to create a cellular environment and regulate molecular cues. This review encapsulates the spectrum of both human and animal research, collating the factors contributing to SGN loss, the latest advancements in the utilization of exogenous stem cells for auditory nerve repair and preservation, the taxonomy and mechanism of action of standard biomolecules, and the architectural components of scaffold materials tailored for the inner ear. Furthermore, we delineate the potential and benefits of the biohybrid neural interface, an incipient technology in the realm of implantable devices. Nonetheless, tissue engineering requires refined cell selection and differentiation protocols for consistent SGN quality. In addition, strategies to improve stem cell survival, scaffold biocompatibility, and molecular cue timing are essential for biohybrid neural interface integration.


Asunto(s)
Regeneración Nerviosa , Ganglio Espiral de la Cóclea , Ingeniería de Tejidos , Andamios del Tejido , Ganglio Espiral de la Cóclea/citología , Humanos , Ingeniería de Tejidos/métodos , Animales , Andamios del Tejido/química , Neuronas , Implantes Cocleares , Células Madre/citología , Diferenciación Celular
17.
Proc Natl Acad Sci U S A ; 118(18)2021 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-33903231

RESUMEN

The cochlea of our auditory system is an intricate structure deeply embedded in the temporal bone. Compared with other sensory organs such as the eye, the cochlea has remained poorly accessible for investigation, for example, by imaging. This limitation also concerns the further development of technology for restoring hearing in the case of cochlear dysfunction, which requires quantitative information on spatial dimensions and the sensorineural status of the cochlea. Here, we employed X-ray phase-contrast tomography and light-sheet fluorescence microscopy and their combination for multiscale and multimodal imaging of cochlear morphology in species that serve as established animal models for auditory research. We provide a systematic reference for morphological parameters relevant for cochlear implant development for rodent and nonhuman primate models. We simulate the spread of light from the emitters of the optical implants within the reconstructed nonhuman primate cochlea, which indicates a spatially narrow optogenetic excitation of spiral ganglion neurons.


Asunto(s)
Cóclea/diagnóstico por imagen , Implantación Coclear , Pérdida Auditiva Sensorineural/terapia , Neuronas/metabolismo , Animales , Cóclea/patología , Implantes Cocleares , Modelos Animales de Enfermedad , Potenciales Evocados Auditivos del Tronco Encefálico/genética , Potenciales Evocados Auditivos del Tronco Encefálico/fisiología , Pérdida Auditiva Sensorineural/genética , Pérdida Auditiva Sensorineural/fisiopatología , Humanos , Neuronas/patología , Optogenética , Ganglio Espiral de la Cóclea/diagnóstico por imagen , Ganglio Espiral de la Cóclea/patología
18.
Int J Mol Sci ; 25(16)2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39201803

RESUMEN

The degeneration of spiral ganglion neurons (SGNs), which convey auditory signals from hair cells to the brain, can be a primary cause of sensorineural hearing loss (SNHL) or can occur secondary to hair cell loss. Emerging therapies for SNHL include the replacement of damaged SGNs using stem cell-derived otic neuronal progenitors (ONPs). However, the availability of renewable, accessible, and patient-matched sources of human stem cells is a prerequisite for successful replacement of the auditory nerve. In this study, we derived ONP and SGN-like cells by a reliable and reproducible stepwise guidance differentiation procedure of self-renewing human dental pulp stem cells (hDPSCs). This in vitro differentiation protocol relies on the modulation of BMP and TGFß pathways using a free-floating 3D neurosphere method, followed by differentiation on a Geltrex-coated surface using two culture paradigms to modulate the major factors and pathways involved in early otic neurogenesis. Gene and protein expression analyses revealed efficient induction of a comprehensive panel of known ONP and SGN-like cell markers during the time course of hDPSCs differentiation. Atomic force microscopy revealed that hDPSC-derived SGN-like cells exhibit similar nanomechanical properties as their in vivo SGN counterparts. Furthermore, spiral ganglion neurons from newborn rats come in close contact with hDPSC-derived ONPs 5 days after co-culturing. Our data demonstrate the capability of hDPSCs to generate SGN-like neurons with specific lineage marker expression, bipolar morphology, and the nanomechanical characteristics of SGNs, suggesting that the neurons could be used for next-generation cochlear implants and/or inner ear cell-based strategies for SNHL.


Asunto(s)
Diferenciación Celular , Pulpa Dental , Neuronas , Ganglio Espiral de la Cóclea , Pulpa Dental/citología , Humanos , Ganglio Espiral de la Cóclea/citología , Ganglio Espiral de la Cóclea/metabolismo , Animales , Ratas , Neuronas/metabolismo , Neuronas/citología , Células Cultivadas , Nervio Coclear/citología , Nervio Coclear/metabolismo , Células Madre/citología , Células Madre/metabolismo , Neurogénesis
19.
Int J Mol Sci ; 25(10)2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38791192

RESUMEN

The synapses between inner hair cells (IHCs) and spiral ganglion neurons (SGNs) are the most vulnerable structures in the noise-exposed cochlea. Cochlear synaptopathy results from the disruption of these synapses following noise exposure and is considered the main cause of poor speech understanding in noisy environments, even when audiogram results are normal. Cochlear synaptopathy leads to the degeneration of SGNs if damaged IHC-SGN synapses are not promptly recovered. Oxidative stress plays a central role in the pathogenesis of cochlear synaptopathy. C-Phycocyanin (C-PC) has antioxidant and anti-inflammatory activities and is widely utilized in the food and drug industry. However, the effect of the C-PC on noise-induced cochlear damage is unknown. We first investigated the therapeutic effect of C-PC on noise-induced cochlear synaptopathy. In vitro experiments revealed that C-PC reduced the H2O2-induced generation of reactive oxygen species in HEI-OC1 auditory cells. H2O2-induced cytotoxicity in HEI-OC1 cells was reduced with C-PC treatment. After white noise exposure for 3 h at a sound pressure of 118 dB, the guinea pigs intratympanically administered 5 µg/mL C-PC exhibited greater wave I amplitudes in the auditory brainstem response, more IHC synaptic ribbons and more IHC-SGN synapses according to microscopic analysis than the saline-treated guinea pigs. Furthermore, the group treated with C-PC had less intense 4-hydroxynonenal and intercellular adhesion molecule-1 staining in the cochlea compared with the saline group. Our results suggest that C-PC improves cochlear synaptopathy by inhibiting noise-induced oxidative stress and the inflammatory response in the cochlea.


Asunto(s)
Cóclea , Molécula 1 de Adhesión Intercelular , Ruido , Estrés Oxidativo , Ficocianina , Sinapsis , Animales , Estrés Oxidativo/efectos de los fármacos , Cobayas , Ficocianina/farmacología , Ficocianina/uso terapéutico , Cóclea/metabolismo , Cóclea/efectos de los fármacos , Cóclea/patología , Sinapsis/efectos de los fármacos , Sinapsis/metabolismo , Ruido/efectos adversos , Molécula 1 de Adhesión Intercelular/metabolismo , Pérdida Auditiva Provocada por Ruido/tratamiento farmacológico , Pérdida Auditiva Provocada por Ruido/metabolismo , Pérdida Auditiva Provocada por Ruido/patología , Especies Reactivas de Oxígeno/metabolismo , Masculino , Ganglio Espiral de la Cóclea/efectos de los fármacos , Ganglio Espiral de la Cóclea/metabolismo , Ganglio Espiral de la Cóclea/patología , Peróxido de Hidrógeno/metabolismo , Células Ciliadas Auditivas Internas/efectos de los fármacos , Células Ciliadas Auditivas Internas/metabolismo , Células Ciliadas Auditivas Internas/patología , Antioxidantes/farmacología , Línea Celular , Pérdida de Audición Oculta
20.
Dev Dyn ; 252(1): 124-144, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36284453

RESUMEN

BACKGROUND: Proper connectivity between type I spiral ganglion neurons (SGNs) and inner hair cells (IHCs) in the cochlea is necessary for conveying sound information to the brain in mammals. Previous studies have shown that type I SGNs are heterogeneous in form, function and synaptic location on IHCs, but factors controlling their patterns of connectivity are not well understood. RESULTS: During development, cochlear supporting cells and SGNs express Semaphorin-3A (SEMA3A), a known axon guidance factor. Mice homozygous for a point mutation that attenuates normal SEMA3A repulsive activity (Sema3aK108N ) show cochleae with grossly normal patterns of IHC innervation. However, genetic sparse labeling and three-dimensional reconstructions of individual SGNs show that cochleae from Sema3aK108N mice lacked the normal synaptic distribution of type I SGNs. Additionally, Sema3aK108N cochleae show a disrupted distribution of GLUA2 postsynaptic patches around the IHCs. The addition of SEMA3A-Fc to postnatal cochleae led to increases in SGN branching, similar to the effects of inhibiting glutamate receptors. Ca2+ imaging studies show that SEMA3A-Fc decreases SGN activity. CONCLUSIONS: Contrary to the canonical view of SEMA3A as a guidance ligand, our results suggest SEMA3A may regulate SGN excitability in the cochlea, which may influence the morphology and synaptic arrangement of type I SGNs.


Asunto(s)
Células Ciliadas Auditivas , Semaforina-3A , Animales , Ratones , Cóclea/metabolismo , Neuronas/metabolismo , Semaforina-3A/genética , Semaforina-3A/metabolismo , Ganglio Espiral de la Cóclea/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA