Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Invertebr Pathol ; 195: 107831, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36257350

RESUMEN

The parasite Haplosporidium costale is known to infect and cause mortality in the oyster Crassostrea virginica in the USA. Decades after its first description in the 1960s, this parasite was detected in Crassostrea gigas in the USA and China. However, it presented a low prevalence and no mortality was associated with it. More recently, in 2019, H. costale was detected in France in a batch of moribund oysters. In order to observe how long this parasite has been present on French coasts, from Normandy to Thau lagoon, a retrospective investigation was conducted on 871 adult and spat oyster batches from 2004 to 2020. To allow rapid detection on a large panel of samples, a real-time PCR for the H. costale actin gene was developed. This method allowed the detection of H. costale DNA in adults from 2005 and in spat from 2008. The H. costale prevalence in spat appeared higher than in adults over the years studied, 14.59 % compared to 6.50 %, respectively. All samples presenting positive results were then sequenced on two targets, H. costale rRNA and actin genes. The actin gene sequencing highlighted the presence of two H. costale strains. Adult C. gigas as well as spat batches coming from hatcheries and DNA controls from C. virginica all presented with the Profile 1 H. costale strain. The Profile 2 H. costale strain was detected only in C. gigas spat coming from natural sources. These observations suggest a correlation between the origin of oysters and H. costale strains which may have been caused by commercial imports between Japan, USA and France back to the 1970s. Over the positive samples studied, only few batches (n = 3) suffered mortalities which could be hypothesized to be caused by H. costale, all presenting the Profile 1 H. costale strain.


Asunto(s)
Crassostrea , Haplosporidios , Parásitos , Animales , Crassostrea/parasitología , Estudios Retrospectivos , Actinas , Haplosporidios/genética
2.
Dis Aquat Organ ; 151: 111-121, 2022 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-36300764

RESUMEN

A multiplex quantitative PCR (qPCR) assay for the simultaneous detection of 3 eastern oyster Crassostrea virginica parasites, Perkinsus marinus, Haplosporidium nelsoni, and H. costale, was developed using 3 different fluorescently labeled hydrolysis probes. The primers and probe from a previously validated singleplex qPCR for P. marinus detection were combined with newly designed primers and probes specific for H. nelsoni and H. costale. The functionality of the multiplex assay was demonstrated on 2 different platforms by the linear relationship of the standard curves and similar cycle threshold (CT) values between parasites. Efficiency of the multiplex qPCR assay on the Roche and BioRad platforms ranged between 93 and 101%. The sensitivity of detection ranged between 10 and 100 copies of plasmid DNA for P. marinus and Haplosporidium spp., respectively. The concordance between the Roche and BioRad platforms in the identification of the parasites P. marinus, H. nelsoni, and H. costale was 91, 97, and 97%, respectively, with a 10-fold increase in the sensitivity of detection of Haplosporidium spp. on the BioRad thermocycler. The concordance between multiplex qPCR and histology for P. marinus, H. nelsoni, and H. costale was 54, 57, and 87%, respectively. Discordances between detection methods were largely related to localized or low levels of infections in oyster tissues, and qPCR was the more sensitive diagnostic. The multiplex qPCR developed here is a sensitive diagnostic tool for the quantification and surveillance of single and mixed infections in the eastern oyster.


Asunto(s)
Crassostrea , Haplosporidios , Ostreidae , Parásitos , Animales , Crassostrea/parasitología , Sensibilidad y Especificidad , Haplosporidios/genética , Reacción en Cadena en Tiempo Real de la Polimerasa/veterinaria , ADN
3.
Biomarkers ; 26(5): 450-461, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33899623

RESUMEN

PURPOSE: Pinna nobilis (fan mussel) is one of the most important endemic bivalve molluscs in the Mediterranean and mass mortality events were observed in these mussels in recent years. In this study, we report mass mortalities caused by Haplosporidium pinnae, which has been spreading in the Mediterranean for 3 years, and reached the Çanakkale Strait, which is the entrance of the Marmara and the Black Sea. MATERIAL AND METHODS: Field observations during sampling and subsequent histopathological, biochemical, genetic, and microbiological analyses were carried out. RESULTS: These analyses showed that H. pinnae infection spread among the natural beds of P. nobilis, causing severe tissue damage and oxidative stress. Our phylogenetic analyses suggested that the parasite spread through the Mediterranean much faster than thought. The results showed that vibriosis originating from Vibrio coralliilyticus, Vibrio tubiashii, Vibrio mediterranei, and Vibrio hispanicus, acted together with H. pinnae in infected individuals and caused death. CONCLUSION: It is highly probable that the spread of H. pinnae to the Sea of Marmara and the Black Sea may occur earlier than expected, and it was concluded that mass deaths were caused by co-infection with H. pinnae and a geographically specific marine pathogen that can infect P. nobilis populations.


Asunto(s)
Bivalvos/microbiología , Bivalvos/parasitología , Coinfección , Infecciones por Bacterias Gramnegativas/microbiología , Haplosporidios/patogenicidad , Infecciones por Protozoos/parasitología , Vibrio/patogenicidad , Animales , Bivalvos/metabolismo , Monitoreo del Ambiente , Infecciones por Bacterias Gramnegativas/metabolismo , Infecciones por Bacterias Gramnegativas/transmisión , Haplosporidios/genética , Interacciones Huésped-Parásitos , Estrés Oxidativo , Filogenia , Infecciones por Protozoos/metabolismo , Infecciones por Protozoos/transmisión , Ribotipificación , Vibrio/genética
4.
Parasitology ; 147(11): 1229-1237, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32539882

RESUMEN

This study provides a morphological and phylogenetic characterization of two novel species of the order Haplosporida (Haplosporidium carcini n. sp., and H. cranc n. sp.) infecting the common shore crab Carcinus maenas collected at one location in Swansea Bay, South Wales, UK. Both parasites were observed in the haemolymph, gills and hepatopancreas. The prevalence of clinical infections (i.e. parasites seen directly in fresh haemolymph preparations) was low, at ~1%, whereas subclinical levels, detected by polymerase chain reaction, were slightly higher at ~2%. Although no spores were found in any of the infected crabs examined histologically (n = 334), the morphology of monokaryotic and dikaryotic unicellular stages of the parasites enabled differentiation between the two new species. Phylogenetic analyses of the new species based on the small subunit (SSU) rDNA gene placed H. cranc in a clade of otherwise uncharacterized environmental sequences from marine samples, and H. carcini in a clade with other crustacean-associated lineages.


Asunto(s)
Braquiuros/parasitología , Haplosporidios , Animales , Genes Protozoarios , Branquias/parasitología , Haplosporidios/clasificación , Haplosporidios/genética , Haplosporidios/aislamiento & purificación , Hemolinfa/parasitología , Hepatopáncreas/parasitología , Filogenia , Prevalencia
5.
Parasitology ; 147(5): 584-592, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31727189

RESUMEN

Haplosporidian protist parasites are a major concern for aquatic animal health, as they have been responsible for some of the most significant marine epizootics on record. Despite their impact on food security, aquaculture and ecosystem health, characterizing haplosporidian diversity, distributions and host range remains challenging. In this study, water filtering bivalve species, cockles Cerastoderma edule, mussels Mytilus spp. and Pacific oysters Crassostrea gigas, were screened using molecular genetic assays using deoxyribonucleic acid (DNA) markers for the Haplosporidia small subunit ribosomal deoxyribonucleic acid region. Two Haplosporidia species, both belonging to the Minchinia clade, were detected in C. edule and in the blue mussel Mytilus edulis in a new geographic range for the first time. No haplosporidians were detected in the C. gigas, Mediterranean mussel Mytilus galloprovincialis or Mytilus hybrids. These findings indicate that host selection and partitioning are occurring amongst cohabiting bivalve species. The detection of these Haplosporidia spp. raises questions as to whether they were always present, were introduced unintentionally via aquaculture and or shipping or were naturally introduced via water currents. These findings support an increase in the known diversity of a significant parasite group and highlight that parasite species may be present in marine environments but remain undetected, even in well-studied host species.


Asunto(s)
Cardiidae/parasitología , Crassostrea/parasitología , Haplosporidios/aislamiento & purificación , Mytilus/parasitología , Animales , Acuicultura , Biodiversidad , ADN Protozoario , Seguimiento de Parámetros Ecológicos , Ecosistema , Haplosporidios/clasificación , Haplosporidios/genética , Especificidad del Huésped , Patología Molecular/métodos , Filogenia , Filogeografía , ARN Ribosómico
6.
J Invertebr Pathol ; 175: 107454, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32822733

RESUMEN

Recently, a putative new hyperparasitic haplosporidian in the genus Urosporidium was identified from metacercariae of the trematode Parvatrema duboisi infecting Manila clam Ruditapes philippinarum on the west coast of Korea. In this study, we applied small subunit ribosomal DNA (SSU rDNA) sequences as a marker to substantiate the phylogenetic relationship of the unidentified Urosporidium within the Order Haplosporida. In our phylogenetic analysis, the 1890 bp of SSU rDNA sequences obtained were closely related to a haplosporidian parasite forming a sister clade to Urosporidium group, although the gene sequences were only 89.22-89.70% similar to Urosporidium spp. Such molecular phylogenetic distance within the genus suggested that the unidentified Urosporidium is a new member of the genus. Accordingly, we report the unidentified haplosporidian hyperparasite as Urosporidium tapetis sp. nov.


Asunto(s)
Bivalvos/parasitología , Haplosporidios/clasificación , Trematodos/microbiología , Animales , Haplosporidios/genética , Haplosporidios/fisiología , Metacercarias/crecimiento & desarrollo , Metacercarias/microbiología , ARN de Helminto/análisis , ARN Ribosómico/análisis , República de Corea , Análisis de Secuencia de ARN , Trematodos/crecimiento & desarrollo
7.
J Invertebr Pathol ; 164: 32-37, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31026464

RESUMEN

The fan mussel, Pinna nobilis (Linnaeus 1758), is an endemic bivalve of the Mediterranean basin, protected by international legislation as an endangered species. In the early summer of 2018, a mass mortality event (MME) of P. nobilis was recorded in the Gulf of Taranto (Southern Italy, Ionian Sea). Moribund specimens of P. nobilis were collected by scuba divers and processed by bacteriological, parasitological, histopathological and molecular analyses to investigate the causes of this MME. Different developmental stages (i.e., plasmodia, spores and sporocysts) of a presumptive haplosporidian parasite were observed during the histological analysis in the epithelium and in the lumen of the digestive tubules, where mature spores occurred either free or in sporocysts. The spores presented an operculum and an ovoid shape measuring 4.4 µm (±0.232) in length and 3.6 µm (±0.233) in width. BLAST analysis of an 18SrRNA sequence revealed a high nucleotide similarity (99%) with the reference sequence of Haplosporidium pinnae available in GenBank database. Phylogenetic analysis clustered the sequence of the pathogen in a paraphyletic clade with the reference sequence of H. pinnae, excluding other haplosporidians (i.e., Bonamia and Minchinia genera). Based on data reported, H. pinnae was the causative agent of MME in the populations of P. nobilis sampled in the Ionian Sea, where the conservation of this endangered species is heavily threatened by such a protozoan infection. Further investigations should contribute to knowledge about the life cycle of H. pinnae in order to reduce spread of the pathogen and to mitigate the burden of the disease where P. nobilis is facing the risk of extinction.


Asunto(s)
Bivalvos/parasitología , Haplosporidios/aislamiento & purificación , Infecciones Protozoarias en Animales/parasitología , Animales , Haplosporidios/genética , Italia , Filogenia , Infecciones Protozoarias en Animales/mortalidad , ARN Ribosómico 18S/genética , Alimentos Marinos/parasitología
8.
J Invertebr Pathol ; 157: 9-24, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30005968

RESUMEN

This study provides morphological and molecular characterization of a new species, Haplosporidium pinnae), very likely responsible for mass mortality of fan mussels, Pinna nobilis, in the Western Mediterranean Sea. The parasite was found in dead or moribund P. nobilis but did not occur in healthy fan mussels from locations that were not affected by abnormal mortality. Histological examination of infected fan mussels showed uninucleate cells of a haplosporidan parasite throughout the connective tissue and hemolymph sinuses of the visceral mass and binucleate cells and, rarely, multinucleate plasmodia were also detected in the connective tissue. Additionally, stages of sporulation occurred in the epithelium of the host digestive gland tubules. Spores were slightly ellipsoidal with a hinged operculum in one pole. Typical haplosporosomes were not found with TEM but vesicles with two concentric membranes resembling haplosporosomes were abundant in the cytoplasm of the multinucleate plasmodia occurring in host digestive gland tubules. SEM analysis showed multiple structures on the spore surface; some spores had two or four long tape-like filaments attached to the spore wall. Phylogenetic analysis based on the SSU rDNA sequence placed this parasite within a large clade including species of the order Haplosporida, not in the Bonamia/Minchinia subclade or the subclade containing most Haplosporidium species, but within a subclade of Haplosporidium sp. from Penaeus vannamei. Our results suggested that H. pinnae and the parasite of P. vannamei may represent a distinct new genus within the order Haplosporida.


Asunto(s)
Bivalvos/parasitología , Haplosporidios/genética , Infecciones Protozoarias en Animales , Animales , ADN Ribosómico/análisis , Genes Protozoarios/genética , Haplosporidios/clasificación , Mar Mediterráneo , Filogenia , Mariscos/parasitología
9.
J Fish Dis ; 41(1): 41-48, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28707705

RESUMEN

The cockle Cerastoderma edule fishery has traditionally been the most important shellfish species in terms of biomass in Galicia (NW Spain). In the course of a survey of the histopathological conditions affecting this species in the Ria of Arousa, a haplosporidan parasite that had not been observed in Galicia was detected in one of the most productive cockle beds of Galicia. Uni- and binucleate cells and multinucleate plasmodia were observed in the connective tissue mainly in the digestive area, gills and gonad. The parasite showed low prevalence, and it was not associated with abnormal cockle mortality. Molecular identification showed that this parasite was closely related to the haplosporidan Minchinia mercenariae that had been reported infecting hard clams Mercenaria mercenaria from the Atlantic coast of the United States. The molecular characterization of its SSU rDNA region allowed obtaining a fragment of 1,796 bp showing 98% homology with M. mercenariae parasite. Phylogenetic analysis supported this identification as this parasite was clustered in the same clade as M. mercenariae from the United States and other M. mercenariae-like sequences from the UK, with bootstrap value of 99%. The occurrence of M. mercenariae-like parasites infecting molluscs outside the United States is confirmed.


Asunto(s)
Cardiidae/parasitología , Enfermedades de los Peces/parasitología , Haplosporidios/clasificación , Animales , ADN Protozoario/análisis , ADN Ribosómico/análisis , Haplosporidios/genética , Filogenia , Infecciones Protozoarias en Animales , Análisis de Secuencia de ADN , España/epidemiología
10.
Parasitology ; 143(9): 1119-32, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27263626

RESUMEN

Parasites can exert strong effects on population to ecosystem level processes, but data on parasites are limited for many global regions, especially tropical marine systems. Characterizing parasite diversity and distributions are the first steps towards understanding the potential impacts of parasites. The Panama Canal serves as an interesting location to examine tropical parasite diversity and distribution, as it is a conduit between two oceans and a hub for international trade. We examined metazoan and protistan parasites associated with ten oyster species collected from both Panamanian coasts, including the Panama Canal and Bocas del Toro. We found multiple metazoan taxa (pea crabs, Stylochus spp., Urastoma cyrinae). Our molecular screening for protistan parasites detected four species of Perkinsus (Perkinsus marinus, Perkinsus chesapeaki, Perkinsus olseni, Perkinsus beihaiensis) and several haplosporidians, including two genera (Minchinia, Haplosporidium). Species richness was higher for the protistan parasites than for the metazoans, with haplosporidian richness being higher than Perkinsus richness. Perkinsus species were the most frequently detected and most geographically widespread among parasite groups. Parasite richness and overlap differed between regions, locations and oyster hosts. These results have important implications for tropical parasite richness and the dispersal of parasites due to shipping associated with the Panama Canal.


Asunto(s)
Haplosporidios/clasificación , Ostreidae/parasitología , Platelmintos/clasificación , Animales , Teorema de Bayes , Región del Caribe , ADN Protozoario/química , ADN Protozoario/aislamiento & purificación , Haplosporidios/genética , Haplosporidios/aislamiento & purificación , Funciones de Verosimilitud , Ostreidae/clasificación , Océano Pacífico , Panamá , Zona del Canal de Panamá , Filogenia , Platelmintos/genética , Platelmintos/aislamiento & purificación , Salinidad , Estaciones del Año , Clima Tropical
11.
Parasitology ; 142(12): 1523-34, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26282916

RESUMEN

Bonamia exitiosa is an intracellular parasite (Haplosporidia) that has been associated with mass mortalities in oyster populations in the Southern hemisphere. This parasite was recently detected in the Northern hemisphere including Europe. Some representatives of the Bonamia genus have not been well categorized yet due to the lack of genomic information. In the present work, we have applied Whole-Genome Amplification (WGA) technique in order to characterize the actin gene in the unculturable protozoan B. exitiosa. This is the first protein coding gene described in this species. Molecular analysis revealed that B. exitiosa actin is more similar to Bonamia ostreae actin gene-1. Actin phylogeny placed the Bonamia sp. infected oysters in the same clade where the herein described B. exitiosa actin resolved, offering novel information about the classification of the genus. Our results showed that WGA methodology is a promising and valuable technique to be applied to unculturable protozoans whose genomic material is limited.


Asunto(s)
Genoma de Protozoos/genética , Haplosporidios/clasificación , Ostreidae/parasitología , Reacción en Cadena de la Polimerasa/veterinaria , Actinas/genética , Secuencia de Aminoácidos , Animales , Secuencia de Bases , ADN Protozoario/química , ADN Protozoario/genética , Europa (Continente) , Haplosporidios/genética , Haplosporidios/aislamiento & purificación , Datos de Secuencia Molecular , Filogenia , Alineación de Secuencia/veterinaria , Análisis de Secuencia de ADN/veterinaria
12.
J Invertebr Pathol ; 118: 59-65, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24607665

RESUMEN

Both wild and cultured mussels (Mytilus edulis, Mytilus galloprovincialis and hybrids), are found along most of the Irish coastline. M. edulis is widespread along all Irish coasts and is the only mussel species present on both the east coast of Ireland and the Welsh coast in the Irish Sea. M. galloprovincialis and hybrids are found along the Irish coastline except for the east coast. Samples of Mytilus spp. were collected from twenty-four sites, encompassing all coasts of Ireland and the Welsh coast, at different times of the year and over several years (2008-2011). In total, 841 mussels were examined histologically to assess their health status and the presence of any parasites or commensals. Mussels from 14 of the 24 sites were screened using polymerase chain reaction (PCR) to determine which mytilid species were present. A range of parasites were observed, generally at low levels. The most diverse community of parasites was observed at a sheltered site with poor water quality. Of significance, a previously undescribed haplosporidian was detected in a single mussel sample in the Menai Strait, Wales, by PCR and was confirmed by direct sequencing and is most closely related to Minchina chitonis and a haplosporidian of the Florida marsh clam Cyrenoida floridana. While M. edulis were infected by a variety of micro- and macro-parasites, only trematodes were observed in M. galloprovincialis and hybrids. Habitat description and the environmental factors influencing the study sites, including water quality and exposure, were recorded.


Asunto(s)
Haplosporidios/genética , Mytilus edulis/parasitología , Animales , Irlanda , Reacción en Cadena de la Polimerasa , Gales , Calidad del Agua
13.
J Invertebr Pathol ; 115: 33-40, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24211185

RESUMEN

Protistan oyster parasites in the genus Bonamia have been observed in recent years infecting new hosts on five continents, with most of these parasites genetically similar to austral species Bonamia exitiosa and Bonamia roughleyi. Identification of the newly observed parasites as one or another of these described species has been complicated by the fact that B. exitiosa and B. roughleyi are phylogenetically indistinguishable at the small-subunit ribosomal DNA (SSU rDNA) level, with samples of B. roughleyi type material no longer available for genetic re-analyses using more informative internal transcribed spacer (ITS) region DNA sequences. To resolve this issue, we evaluated B. roughleyi in field collections of hosts Saccostrea glomerata and Ostrea angasi (as well as Crassostrea gigas) in New South Wales, Australia in 2006 and 2007, and re-analyzed histological samples from the original description of this parasite species using in situ hybridization. Despite (1) reports of the oyster disease putatively caused by B. roughleyi during the time of collections, (2) the observation of gross lesions characteristic of the disease, and (3) the observation of B. roughleyi cells in association with the lesions, we detected a Bonamia sp. by PCR in just 1/42 O. angasi (2.4%), and 1/608 S. glomerata (0.2%), the latter oyster of which is the type host. SSU rDNA sequences of the amplicons were nearly identical to those of B. exitiosa and B. roughleyi, and phylogenetic analysis of ITS region sequences placed them on a B. exitiosa clade. A Haplosporidium sp. sequence similar to that of H. costale was PCR-amplified from nearly half the S. glomerata and O. angasi, but no Haplosporidium sp. was observed histologically. Our inability to identify a Bonamia sp. sequence in association with the B. roughleyi observed histologically suggests that this parasite is not a Bonamia sp. at all, and should be regarded as B. roughleyi nomen dubium. We conclude that the Bonamia sp. that we and other investigators detected in southeastern Australian S. glomerata and O. angasi was B. exitiosa.


Asunto(s)
Haplosporidios/genética , Ostreidae/parasitología , Animales , Australia , ADN Protozoario/análisis , ADN Protozoario/genética , ADN Ribosómico/análisis , ADN Ribosómico/genética , Hibridación in Situ , Filogenia , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
14.
Dis Aquat Organ ; 110(1-2): 5-23, 2014 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-25060494

RESUMEN

Organisms of the genus Bonamia are intracellular protistan parasites of oysters. To date, 4 species have been described (B. ostreae, B. exitiosa, B. perspora and B. roughleyi), although the status of B. roughleyi is controversial. Introduction especially of B. ostreae and B. exitiosa to naïve host populations has been shown to cause mass mortalities in the past and has had a dramatic impact on oyster production. Both B. ostreae and B. exitiosa are pathogens notifiable to the World Organisation for Animal Health (OIE) and the European Union. Effective management of the disease caused by these pathogens is complicated by the extensive nature of the oyster production process and limited options for disease control of the cultured stocks in open water. This review focuses on the recent advances in research on genetic relationships between Bonamia isolates, geographical distribution, susceptible host species, diagnostics, epizootiology, host-parasite interactions, and disease resistance and control of this globally important genus of oyster pathogens.


Asunto(s)
Haplosporidios/fisiología , Ostreidae/parasitología , Animales , Haplosporidios/genética , Interacciones Huésped-Parásitos , Filogenia
15.
Dis Aquat Organ ; 110(1-2): 33-54, 2014 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-25060496

RESUMEN

The genus Bonamia (Haplosporidia) includes economically significant oyster parasites. Described species were thought to have fairly circumscribed host and geographic ranges: B. ostreae infecting Ostrea edulis in Europe and North America, B. exitiosa infecting O. chilensis in New Zealand, and B. roughleyi infecting Saccostrea glomerata in Australia. The discovery of B. exitiosa-like parasites in new locations and the observation of a novel species, B. perspora, in non-commercial O. stentina altered this perception and prompted our wider evaluation of the global diversity of Bonamia parasites. Samples of 13 oyster species from 21 locations were screened for Bonamia spp. by PCR, and small subunit and internal transcribed spacer regions of Bonamia sp. ribosomal DNA were sequenced from PCR-positive individuals. Infections were confirmed histologically. Phylogenetic analyses using parsimony and Bayesian methods revealed one species, B. exitiosa, to be widely distributed, infecting 7 oyster species from Australia, New Zealand, Argentina, eastern and western USA, and Tunisia. More limited host and geographic distributions of B. ostreae and B. perspora were confirmed, but nothing genetically identifiable as B. roughleyi was found in Australia or elsewhere. Newly discovered diversity included a Bonamia sp. in Dendostrea sandvicensis from Hawaii, USA, that is basal to the other Bonamia species and a Bonamia sp. in O. edulis from Tomales Bay, California, USA, that is closely related to both B. exitiosa and the previously observed Bonamia sp. from O. chilensis in Chile.


Asunto(s)
ADN Espaciador Ribosómico/genética , Haplosporidios/genética , Haplosporidios/fisiología , Ostreidae/parasitología , Filogenia , Animales , Variación Genética , Interacciones Huésped-Parásitos , Ostreidae/genética , Especificidad de la Especie
16.
Dis Aquat Organ ; 110(1-2): 93-9, 2014 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-25060501

RESUMEN

The spread of the protozoan parasite Bonamia ostreae is of major concern to the European flat oyster Ostrea edulis industry. Many studies have looked at the sensitivity of individual methods available to screen for B. ostreae, but in this study, 3 separate laboratories examined 4 methods of diagnosis currently used routinely in laboratories: heart imprints, histology, polymerase chain reaction (PCR) and in situ hybridisation (ISH). The results were compared to estimate interlaboratory variability. Heart imprints and histology had the highest reproducibility amongst the 3 laboratories, with greatest agreement between detection of infected and uninfected individuals. PCR had the highest detection level in every laboratory. These positives were related to the presence of confirmed infections but also in unconfirmed infections, possibly due to the presence of traces of B. ostreae DNA in oysters where clinical infections were not observed. PCR, in combination with histology or ISH, provided the most reliable detection levels in every laboratory. Variation in results for PCR and ISH observed between laboratories may be due to the different protocols used by each laboratory for both methods. Overall, the findings from the 3 laboratories indicated that at least 2 methods, with fixed protocols, should be used for the accurate detection and determination of infection prevalence within a sample. This combination of methods would allow for a clearer and more precise diagnosis of B. ostreae, preventing further spread of the disease and providing more accurate detection levels and epidemiological information.


Asunto(s)
Haplosporidios/aislamiento & purificación , Haplosporidios/fisiología , Laboratorios/normas , Ostrea/parasitología , Animales , ADN/genética , Haplosporidios/genética , Interacciones Huésped-Parásitos , Variaciones Dependientes del Observador , Reacción en Cadena de la Polimerasa , Reproducibilidad de los Resultados
17.
Syst Parasitol ; 88(1): 63-73, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24711113

RESUMEN

A new species of Haplosporidium Caullery & Mesnil, 1899 parasitising the pulmonate gastropod Siphonaria lessonii Blainville in Patagonia, Argentina, is described based on morphological (scanning and transmission electron microscopy) and sequence (small subunit ribosomal RNA gene) data. Different stages of sporulation were observed as infections disseminated in the digestive gland. Haplosporidium patagon n. sp. is characterised by oval or slightly subquadrate spores with an operculum that is ornamented with numerous short digitiform projections of regular height, perpendicular to and covering its outer surface. The operculum diameter is slightly larger than the apical diameter of the spore. Neither the immature nor mature spores showed any kind of projections of the exosporoplasm or of the spore wall. Regarding phylogenetic affinities, the new species was recovered as sister to an undescribed species of Haplosporidium Caullery & Mesnil, 1899 from the polychaete family Syllidae Grube from Japanese waters. The morphological characters (ornamentation of the operculum, spore wall structure, shape and size of spores, and the lack of spore wall projections) corroborate it as an as yet undescribed species of Haplosporidium and the first for the phylum in marine gastropods of South America. Siphonaria lessonii is the only known host to date.


Asunto(s)
Gastrópodos/parasitología , Haplosporidios/clasificación , Filogenia , Animales , Argentina , Haplosporidios/genética , Haplosporidios/ultraestructura , Microscopía Electrónica de Rastreo , Microscopía Electrónica de Transmisión , Datos de Secuencia Molecular , Especificidad de la Especie , Esporas Protozoarias/ultraestructura
18.
J Invertebr Pathol ; 112(3): 208-12, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23238163

RESUMEN

The phylum Haplosporidia is a group of obligate protozoan parasites that infect a number of freshwater and marine invertebrates. Haplosporidian parasites have caused significant mortalities in commercially important shellfish species worldwide. In this study, haplosporidia were detected in Pacific oysters Crassostrea gigas originating in Ireland and were subsequently identified independently in laboratories both in Ireland and in Spain as Haplosporidium nelsoni. In Ireland, H. nelsoni plasmodia were also observed in the heart tissue of a single Ostrea edulis. A range of techniques including heart smear screening, histology, standard polymerase chain reaction (PCR), direct sequencing and in situ hybridisation with an H. nelsoni specific DNA probe were carried out to confirm diagnosis. This is the first reporting of H. nelsoni in oysters in Ireland and this is the first reporting of the detection of this haplosporidian in O. edulis. In Ireland, another haplosporidian was also observed in a single O. edulis during heart smear screening. PCR and DNA sequencing were carried out and indicated the presence of a Haplosporidium sp., most likely Haplosporidium armoricanum. The low prevalence and intensity of infection of both haplosporidian species in Irish C. gigas and in particular O. edulis may indicate that their presence is inconsequential.


Asunto(s)
Haplosporidios/fisiología , Ostreidae/parasitología , Animales , Monitoreo del Ambiente , Haplosporidios/clasificación , Haplosporidios/genética , Interacciones Huésped-Patógeno , Irlanda
19.
Dis Aquat Organ ; 105(3): 243-52, 2013 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-23999708

RESUMEN

Previously, we described the pathology and ultrastructure of an apparently asporous haplosporidian-like parasite infecting the common shore crab Carcinus maenas from the European shoreline. In the current study, extraction of genomic DNA from the haemolymph, gill or hepatopancreas of infected C. maenas was carried out and the small subunit ribosomal DNA (SSU rDNA) of the pathogen was amplified by PCR before cloning and sequencing. All 4 crabs yielded an identical 1736 bp parasite sequence. BLAST analysis against the NCBI GenBank database identified the sequence as most similar to the protistan pathogen group comprising the order Haplosporida within the class Ascetosporea of the phylum Cercozoa Cavalier-Smith, 1998. Parsimony analysis placed the crab pathogen within the genus Haplosporidium, sister to the molluscan parasites H. montforti, H. pickfordi and H. lusitanicum. The parasite infecting C. maenas is hereby named as Haplosporidium littoralis sp. nov. The presence of a haplosporidian parasite infecting decapod crustaceans from the European shoreline with close phylogenetic affinity to previously described haplosporidians infecting molluscs is intriguing. The study provides important phylogenetic data for this relatively understudied, but commercially significant, pathogen group.


Asunto(s)
Crustáceos/parasitología , Haplosporidios/aislamiento & purificación , Animales , Haplosporidios/clasificación , Haplosporidios/genética , Interacciones Huésped-Parásitos , Filogenia
20.
Dis Aquat Organ ; 104(2): 149-61, 2013 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-23709468

RESUMEN

Bonamia ostreae and B. exitiosa have caused mass mortalities of various oyster species around the world and co-occur in some European areas. The World Organisation for Animal Health (OIE) has included infections with both species in the list of notifiable diseases. However, official methods for species-specific diagnosis of either parasite have certain limitations. In this study, new species-specific conventional PCR (cPCR) and real-time PCR techniques were developed to diagnose each parasite species. Moreover, a multiplex PCR method was designed to detect both parasites in a single assay. The analytical sensitivity and specificity of each new method were evaluated. These new procedures were compared with 2 OIE-recommended methods, viz. standard histology and PCR-RFLP. The new procedures showed higher sensitivity than the OIE recommended ones for the diagnosis of both species. The sensitivity of tests with the new primers was higher using oyster gills and gonad tissue, rather than gills alone. The lack of a 'gold standard' prevented accurate estimation of sensitivity and specificity of the new methods. The implementation of statistical tools (maximum likelihood method) for the comparison of the diagnostic tests showed the possibility of false positives with the new procedures, although the absence of a gold standard precluded certainty. Nevertheless, all procedures showed negative results when used for the analysis of oysters from a Bonamia-free area.


Asunto(s)
Haplosporidios/genética , Haplosporidios/aislamiento & purificación , Ostrea/parasitología , Reacción en Cadena de la Polimerasa/métodos , Animales , Genómica , Haplosporidios/clasificación , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA