Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Plant Cell ; 31(7): 1539-1562, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31076540

RESUMEN

Cellular calcium elevation is an important signal used by plants for recognition and signaling of environmental stress. Perception of the generalist insect, Spodoptera litura, by Arabidopsis (Arabidopsis thaliana) activates cytosolic Ca2+ elevation, which triggers downstream defense. However, not all the Ca2+ channels generating the signal have been identified, nor are their modes of action known. We report on a rapidly activated, leaf vasculature- and plasma membrane-localized, CYCLIC NUCLEOTIDE GATED CHANNEL19 (CNGC19), which activates herbivory-induced Ca2+ flux and plant defense. Loss of CNGC19 function results in decreased herbivory defense. The cngc19 mutant shows aberrant and attenuated intravascular Ca2+ fluxes. CNGC19 is a Ca2+-permeable channel, as hyperpolarization of CNGC19-expressing Xenopus oocytes in the presence of both cyclic adenosine monophosphate and Ca2+ results in Ca2+ influx. Breakdown of Ca2+-based defense in cngc19 mutants leads to a decrease in herbivory-induced jasmonoyl-l-isoleucine biosynthesis and expression of JA responsive genes. The cngc19 mutants are deficient in aliphatic glucosinolate accumulation and hyperaccumulate its precursor, methionine. CNGC19 modulates aliphatic glucosinolate biosynthesis in tandem with BRANCHED-CHAIN AMINO ACID TRANSAMINASE4, which is involved in the chain elongation pathway of Met-derived glucosinolates. Furthermore, CNGC19 interacts with herbivory-induced CALMODULIN2 in planta. Together, our work reveals a key mechanistic role for the Ca2+ channel CNGC19 in the recognition of herbivory and the activation of defense signaling.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Arabidopsis/parasitología , Canales de Calcio/metabolismo , Canales Catiónicos Regulados por Nucleótidos Cíclicos/metabolismo , Herbivoria/fisiología , Spodoptera/fisiología , Animales , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Calcio/metabolismo , Canales de Calcio/genética , Señalización del Calcio/efectos de los fármacos , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Permeabilidad de la Membrana Celular/efectos de los fármacos , Canales Catiónicos Regulados por Nucleótidos Cíclicos/genética , Ciclopentanos/farmacología , Citosol/efectos de los fármacos , Citosol/metabolismo , Regulación hacia Abajo/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Glucosinolatos/metabolismo , Herbivoria/efectos de los fármacos , Metionina/metabolismo , Modelos Biológicos , Mutación/genética , Oxilipinas/farmacología , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/parasitología , Haz Vascular de Plantas/efectos de los fármacos , Haz Vascular de Plantas/genética , Unión Proteica/efectos de los fármacos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transducción de Señal/efectos de los fármacos , Spodoptera/efectos de los fármacos , Xenopus
2.
Mol Cell Proteomics ; 19(12): 1936-1952, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32883801

RESUMEN

Huanglongbing (HLB) is the most devastating and widespread citrus disease. All commercial citrus varieties are susceptible to the HLB-associated bacterium, Candidatus Liberibacter asiaticus (CLas), which resides in the phloem. The phloem is part of the plant vascular system and is involved in sugar transport. To investigate the plant response to CLas, we enriched for proteins surrounding the phloem in an HLB susceptible sweet orange variety, Washington navel (Citrus sinensis (L) Osbeck). Quantitative proteomics revealed global changes in the citrus proteome after CLas inoculation. Plant metabolism and translation were suppressed, whereas defense-related proteins such as peroxidases, proteases and protease inhibitors were induced in the vasculature. Transcript accumulation and enzymatic activity of plant peroxidases in CLas infected sweet orange varieties under greenhouse and field conditions were assessed. Although peroxidase transcript accumulation was induced in CLas infected sweet orange varieties, peroxidase enzymatic activity varied. Specific serine proteases were up-regulated in Washington navel in the presence of CLas based on quantitative proteomics. Subsequent activity-based protein profiling revealed increased activity of two serine proteases, and reduced activity of one protease in two C. sinensis sweet orange varieties under greenhouse and field conditions. The observations in the current study highlight global reprogramming of the citrus vascular proteome and differential regulation of enzyme classes in response to CLas infection. These results open an avenue for further investigation of diverse responses to HLB across different environmental conditions and citrus genotypes.


Asunto(s)
Citrus/enzimología , Citrus/microbiología , Progresión de la Enfermedad , Peroxidasas/metabolismo , Enfermedades de las Plantas/microbiología , Haz Vascular de Plantas/metabolismo , Proteómica , Serina Proteasas/metabolismo , Citrus/efectos de los fármacos , Citrus/genética , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Ontología de Genes , Peroxidasas/genética , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Haz Vascular de Plantas/efectos de los fármacos , Haz Vascular de Plantas/microbiología , Inhibidores de Proteasas/farmacología , Proteoma/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo
3.
Proc Natl Acad Sci U S A ; 116(32): 16127-16136, 2019 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-31324744

RESUMEN

Florigen, a proteinaceous hormone, functions as a universal long-range promoter of flowering and concurrently as a generic growth-attenuating hormone across leaf and stem meristems. In flowering plants, the transition from the vegetative phase to the reproductive phase entails the orchestration of new growth coordinates and a global redistribution of resources, signals, and mechanical loads among organs. However, the ultimate cellular processes governing the adaptation of the shoot system to reproduction remain unknown. We hypothesized that if the mechanism for floral induction is universal, then the cellular metabolic mechanisms underlying the conditioning of the shoot system for reproduction would also be universal and may be best regulated by florigen itself. To understand the cellular basis for the vegetative functions of florigen, we explored the radial expansion of tomato stems. RNA-Seq and complementary genetic and histological studies revealed that florigen of endogenous, mobile, or induced origins accelerates the transcription network navigating secondary cell wall biogenesis as a unit, promoting vascular maturation and thereby adapting the shoot system to the developmental needs of the ensuing reproductive phase it had originally set into motion. We then demonstrated that a remarkably stable and broadly distributed florigen promotes MADS and MIF genes, which in turn regulate the rate of vascular maturation and radial expansion of stems irrespective of flowering or florigen level. The dual acceleration of flowering and vascular maturation by florigen provides a paradigm for coordinated regulation of independent global developmental programs.


Asunto(s)
Arabidopsis/fisiología , Pared Celular/metabolismo , Florigena/farmacología , Flores/fisiología , Reguladores del Crecimiento de las Plantas/farmacología , Haz Vascular de Plantas/fisiología , Solanum lycopersicum/fisiología , Arabidopsis/efectos de los fármacos , Pared Celular/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Calor , Solanum lycopersicum/efectos de los fármacos , Fotoperiodo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Tallos de la Planta/efectos de los fármacos , Tallos de la Planta/fisiología , Haz Vascular de Plantas/efectos de los fármacos , Reproducción/efectos de los fármacos , Regulación hacia Arriba/efectos de los fármacos
4.
Biochem Biophys Res Commun ; 549: 21-26, 2021 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-33652206

RESUMEN

Polarity is a feature of life. In higher plants, non-autonomous polarity is largely directed by auxin, the morphogen that drives its own polarized flow, Polar Auxin Transport (PAT), to guide patterning events such as phyllotaxis and tropism. The plasma membrane-localized PIN-FORMED (PIN) auxin efflux carriers are rate-limiting factors in PAT. In yeasts and metazoans, the STE20 kinases are key players in cell polarity. We had previously characterized SIK1 as a STE20/Hippo orthologue in Arabidopsis and confirmed its function in mitotic exit and organ growth. Here we explore the possible link between SIK1, auxin, PIN, and polarity. Abnormal phyllotaxis and gravitropism were observed in sik1. sik1 was more sensitive to exogenous auxin in primary root elongation and lateral root emergence. RNA-Seq revealed reduced expression in auxin biosynthesis genes and induced expression of auxin flux carriers in sik1. However, normal tissue- and sub-cellular localization patterns of PIN1 and PIN2 were observed in sik1. The dark-induced vacuolar degradation of PIN2 also appeared normal in sik1. An additive phenotype was observed in the sik1 pin1 double mutant, indicating that SIK1 does not directly regulate PIN1. The polarity defects of sik1 are hence unlikely mediated by PINs and await future exploration.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/citología , Arabidopsis/enzimología , Polaridad Celular , Proteínas de Transporte de Membrana/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Arabidopsis/genética , Arabidopsis/fisiología , Proteínas de Arabidopsis/genética , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Cotiledón/crecimiento & desarrollo , Oscuridad , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Gravitropismo/fisiología , Ácidos Indolacéticos/farmacología , Mutación/genética , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/crecimiento & desarrollo , Haz Vascular de Plantas/efectos de los fármacos , Haz Vascular de Plantas/metabolismo , Proteínas Serina-Treonina Quinasas/genética
5.
Development ; 145(23)2018 11 26.
Artículo en Inglés | MEDLINE | ID: mdl-30389856

RESUMEN

The thickening of plant organs is supported by secondary growth, a process by which new vascular tissues (xylem and phloem) are produced. Xylem is composed of several cell types, including xylary fibers, parenchyma and vessel elements. In Arabidopsis, it has been shown that fibers are promoted by the class-I KNOX gene KNAT1 and the plant hormones gibberellins, and are repressed by a small set of receptor-like kinases; however, we lack a mechanistic framework to integrate their relative contributions. Here, we show that DELLAs, negative elements of the gibberellin signaling pathway, physically interact with KNAT1 and impair its binding to KNAT1-binding sites. Our analysis also indicates that at least 37% of the transcriptome mobilized by KNAT1 is potentially dependent on this interaction, and includes genes involved in secondary cell wall modifications and phenylpropanoid biosynthesis. Moreover, the promotion by constitutive overexpression of KNAT1 of fiber formation and the expression of genes required for fiber differentiation were still reverted by DELLA accumulation, in agreement with post-translational regulation of KNAT1 by DELLA proteins. These results suggest that gibberellins enhance fiber development by promoting KNAT1 activity.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/citología , Arabidopsis/metabolismo , Diferenciación Celular , Giberelinas/farmacología , Proteínas de Homeodominio/metabolismo , Xilema/citología , Xilema/metabolismo , Arabidopsis/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Mutación con Ganancia de Función/genética , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Fenotipo , Haz Vascular de Plantas/efectos de los fármacos , Haz Vascular de Plantas/metabolismo , Regiones Promotoras Genéticas/genética , Unión Proteica/efectos de los fármacos , Transcriptoma/efectos de los fármacos , Transcriptoma/genética , Xilema/efectos de los fármacos
6.
Development ; 144(19): 3578-3589, 2017 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-28851711

RESUMEN

The plant vascular network consists of specialized phloem and xylem elements that undergo two distinct morphogenetic developmental programs to become transport-functional units. Whereas vacuolar rupture is a determinant step in protoxylem differentiation, protophloem elements never form a big central vacuole. Here, we show that a genetic disturbance of phosphatidylinositol 4,5-bis-phosphate [PtdIns(4,5)P2] homeostasis rewires cell trafficking towards the vacuole in Arabidopsis thaliana roots. Consequently, an enhanced phosphoinositide-mediated vacuolar biogenesis correlates with premature programmed cell death (PCD) and secondary cell wall elaboration in xylem cells. By contrast, vacuolar fusion events in protophloem cells trigger the abnormal formation of big vacuoles, preventing cell clearance and tissue functionality. Removal of the inositol 5' phosphatase COTYLEDON VASCULAR PATTERN 2 from the plasma membrane (PM) by brefeldin A (BFA) treatment increases PtdIns(4,5)P2 content at the PM and disrupts protophloem continuity. Conversely, BFA application abolishes vacuolar fusion events in xylem tissue without preventing PCD, suggesting the existence of additional PtdIns(4,5)P2-dependent cell death mechanisms. Overall, our data indicate that tight PM phosphoinositide homeostasis is required to modulate intracellular trafficking contributing to oppositely regulate vascular differentiation.


Asunto(s)
Arabidopsis/citología , Diferenciación Celular , Homeostasis , Fosfatidilinositoles/metabolismo , Raíces de Plantas/citología , Haz Vascular de Plantas/citología , Apoptosis/efectos de los fármacos , Arabidopsis/efectos de los fármacos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Transporte Biológico/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Estradiol/farmacología , Homeostasis/efectos de los fármacos , Espacio Intracelular/metabolismo , Floema/citología , Floema/efectos de los fármacos , Floema/metabolismo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/metabolismo , Haz Vascular de Plantas/efectos de los fármacos , Haz Vascular de Plantas/metabolismo , Vacuolas/efectos de los fármacos , Vacuolas/metabolismo , Xilema/citología , Xilema/efectos de los fármacos , Xilema/metabolismo
7.
New Phytol ; 214(1): 81-96, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27859288

RESUMEN

The primary thickening growth of Moso (Phyllostachys edulis) underground shoots largely determines the culm circumference. However, its developmental mechanisms remain largely unknown. Using an integrated anatomy, mathematics and genomics approach, we systematically studied cellular and molecular mechanisms underlying the growth of Moso underground shoots. We discovered that the growth displayed a spiral pattern and pith played an important role in promoting the primary thickening process of Moso underground shoots and driving the evolution of culms with different sizes among different bamboo species. Different with model plants, the shoot apical meristem (SAM) of Moso is composed of six layers of cells. Comparative transcriptome analysis identified a large number of genes related to the vascular tissue formation that were significantly upregulated in a thick wall variant with narrow pith cavity, mildly spiral growth, and flat and enlarged SAM, including those related to plant hormones and those involved in cell wall development. These results provide a systematic perspective on the primary thickening growth of Moso underground shoots, and support a plausible mechanism resulting in the narrow pith cavity, weak spiral growth but increased vascular bundle of the thick wall Moso.


Asunto(s)
Genes de Plantas , Estudios de Asociación Genética , Brotes de la Planta/citología , Brotes de la Planta/crecimiento & desarrollo , Poaceae/crecimiento & desarrollo , Poaceae/genética , Evolución Biológica , Diferenciación Celular/efectos de los fármacos , Pared Celular/efectos de los fármacos , Pared Celular/genética , Pared Celular/ultraestructura , Celulosa/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Meristema/citología , Meristema/efectos de los fármacos , Reguladores del Crecimiento de las Plantas/farmacología , Brotes de la Planta/genética , Brotes de la Planta/ultraestructura , Haz Vascular de Plantas/citología , Haz Vascular de Plantas/efectos de los fármacos , Poaceae/citología , Poaceae/ultraestructura , Transcriptoma/efectos de los fármacos , Transcriptoma/genética
8.
Small ; 12(5): 623-30, 2016 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-26662357

RESUMEN

Biological responses to photothermal effects of gold nanoparticles (GNPs) have been demonstrated and employed for various applications in diverse systems except for one important class - plants. Here, the uptake of GNPs through Arabidopsis thaliana roots and translocation to leaves are reported. Successful plasmonic nanobubble generation and acoustic signal detection in planta is demonstrated. Furthermore, Arabidopsis leaves harboring GNPs and exposed to continuous laser or noncoherent light show elevated temperatures across the leaf surface and induced expression of heat-shock regulated genes. Overall, these results demonstrate that Arabidopsis can readily take up GNPs through the roots and translocate the particles to leaf tissues. Once within leaves, GNPs can act as photothermal agents for on-demand remote activation of localized biological processes in plants.


Asunto(s)
Arabidopsis/efectos de los fármacos , Arabidopsis/efectos de la radiación , Oro/farmacología , Luz , Nanopartículas del Metal/química , Temperatura , Acústica , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Transporte Biológico/efectos de los fármacos , Transporte Biológico/efectos de la radiación , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Genes de Plantas , Imagenología Tridimensional , Rayos Láser , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/metabolismo , Hojas de la Planta/efectos de la radiación , Haz Vascular de Plantas/efectos de los fármacos , Haz Vascular de Plantas/efectos de la radiación
9.
J Exp Bot ; 67(8): 2309-24, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26912800

RESUMEN

Among 50 CLE gene family members in the Populus trichocarpa genome, three and six PtCLE genes encode a CLE motif sequence highly homologous to Arabidopsis CLV3 and TDIF peptides, respectively, which potentially make them functional equivalents. To test and compare their biological activity, we first chemically synthesized each dodecapeptide and analysed itsi n vitro bioactivity on Arabidopsis seedlings. Similarly, but to a different extent, three types of poplar CLV3-related peptides caused root meristem consumption, phyllotaxis disorder, anthocyanin accumulation and failure to enter the bolting stage. In comparison, application of two poplar TDIF-related peptides led to root length promotion in a dose-dependent manner with an even stronger effect observed for poplar TDIF-like peptide than TDIF. Next, we constructed CaMV35S:PtCLE transgenic plants for each of the nine PtCLE genes. Phenotypic abnormalities exemplified by arrested shoot apical meristem and abnormal flower structure were found to be more dominant and severe in 35S:PtCLV3 and 35S:PtCLV3-like2 lines than in the 35S:PtCLV3-like line. Disordered vasculature was detected in both stem and hypocotyl cross-sections in Arabidopsis plants over-expressing poplar TDIF-related genes with the most defective vascular patterning observed for TDIF2 and two TDIF-like genes. Phenotypic difference consistently observed in peptide application assay and transgenic analysis indicated the functional diversity of nine poplar PtCLE genes under investigation. This work represents the first report on the functional analysis of CLE genes in a tree species and constitutes a basis for further study of the CLE peptide signalling pathway in tree development.


Asunto(s)
Arabidopsis/genética , Genes de Plantas , Péptidos/farmacología , Populus/genética , Secuencias de Aminoácidos , Arabidopsis/efectos de los fármacos , Arabidopsis/crecimiento & desarrollo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Familia de Multigenes , Especificidad de Órganos/efectos de los fármacos , Especificidad de Órganos/genética , Fenotipo , Filogenia , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/crecimiento & desarrollo , Haz Vascular de Plantas/efectos de los fármacos , Haz Vascular de Plantas/metabolismo , Plantas Modificadas Genéticamente , Alineación de Secuencia
10.
Planta ; 242(1): 23-37, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26007688

RESUMEN

MAIN CONCLUSION: So far, considerable advances have been achieved in understanding the mechanisms of Si uptake and transport in vascular plants. This review presents a comprehensive update about this issue, but also provides the new insights into the role of Si against mineral stresses that occur in acid soils. Such information could be helpful to understand both the differential Si uptake ability as well as the benefits of this mineral element on plants grown under acidic conditions. Silicon (Si) has been widely recognized as a beneficial element for many plant species, especially under stress conditions. In the last few years, great efforts have been made to elucidate the mechanisms involved in uptake and transport of Si by vascular plants and recently, different Si transporters have been identified. Several researches indicate that Si can alleviate various mineral stresses in plants growing under acidic conditions, including aluminium (Al) and manganese (Mn) toxicities as well as phosphorus (P) deficiency all of which are highly detrimental to crop production. This review presents recent findings concerning the influence of uptake and transport of Si on mineral stress under acidic conditions because a knowledge of this interaction provides the basis for understanding the role of Si in mitigating mineral stress in acid soils. Currently, only four Si transporters have been identified and there is little information concerning the response of Si transporters under stress conditions. More investigations are therefore needed to establish whether there is a relationship between Si transporters and the benefits of Si to plants subjected to mineral stress. Evidence presented suggests that Si supply and its subsequent accumulation in plant tissues could be exploited as a strategy to improve crop productivity on acid soils.


Asunto(s)
Ácidos/farmacología , Minerales/metabolismo , Haz Vascular de Plantas/metabolismo , Silicio/farmacología , Estrés Fisiológico/efectos de los fármacos , Transporte Biológico/efectos de los fármacos , Haz Vascular de Plantas/efectos de los fármacos
11.
Physiol Plant ; 153(2): 253-68, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24930426

RESUMEN

Verticillium dahliae is a prominent generator of plant vascular wilting disease and sulfur (S)-enhanced defense (SED) mechanisms contribute to its in-planta elimination. The accumulation of S-containing defense compounds (SDCs) including elemental S (S(0) ) has been described based on the comparison of two near-isogenic tomato (Solanum lycopersicum) lines differing in fungal susceptibility. To better understand the effect of S nutrition on V. dahliae resistance both lines were supplied with low, optimal or supraoptimal sulfate-S. An absolute quantification demonstrated a most effective fungal elimination due to luxury plant S nutrition. High-pressure liquid chromatography (HPLC) showed a strong regulation of Cys levels and an S-responsive GSH pool rise in the bulk hypocotyl. High-frequency S peak accumulations were detected in vascular bundles of resistant tomato plants after fungal colonization by laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS). Global transcriptomic analysis suggested that early steps of the primary S metabolism did not promote the SDCs synthesis in the whole hypocotyl as gene expression was downregulated after infection. Enhanced S fertilization mostly alleviated the repressive fungal effect but did not reverse it. Upregulation of glutathione (GSH)-associated genes in bulk hypocotyls but not in vascular bundles indicated a global antioxidative role of GSH. To finally assign the contribution of S metabolism-associated genes to high S(0) accumulations exclusively found in the resistant tomato line, a spatial gene expression approach was applied. Laser microdissection of infected vascular bundles revealed a switch toward transcription of genes connected with cysteine (Cys) synthesis. The upregulation of LeOASTLp1 suggests a role for Cys as key precursor for local S accumulations (possibly S(0) ) in the vascular bundles of the V. dahliae-resistant tomato line.


Asunto(s)
Cisteína/metabolismo , Regulación de la Expresión Génica de las Plantas , Hipocótilo/genética , Haz Vascular de Plantas/metabolismo , Solanum lycopersicum/genética , Solanum lycopersicum/microbiología , Azufre/metabolismo , Verticillium/fisiología , Transporte Biológico/efectos de los fármacos , Recuento de Colonia Microbiana , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Genes de Plantas , Estudios de Asociación Genética , Genotipo , Hipocótilo/efectos de los fármacos , Solanum lycopersicum/efectos de los fármacos , Solanum lycopersicum/inmunología , Microdisección , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/microbiología , Haz Vascular de Plantas/efectos de los fármacos , Haz Vascular de Plantas/genética , Haz Vascular de Plantas/microbiología , Espectrofotometría Atómica , Sulfatos/farmacología , Compuestos de Sulfhidrilo/metabolismo , Verticillium/efectos de los fármacos , Verticillium/crecimiento & desarrollo , Xilema/microbiología
12.
Plant Cell Physiol ; 55(2): 258-68, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24406628

RESUMEN

Elevated CO2 concentrations (eCO2) trigger various plant responses. Despite intensive studies of these responses, the underlying mechanisms remain obscure. In this work, we investigated when and how leaf physiology and anatomy are affected by eCO2 in rice plants. We analyzed the most recently fully expanded leaves that developed successively after transfer of the plant to eCO2. To discriminate between the effects of eCO2 and those of nitrogen deficiency, we used three different levels of N application. We found that a decline in the leaf soluble protein content (on a leaf area basis) at eCO2 was only observed under N deficiency. The length and width of the leaf blade were reduced by both eCO2 and N deficiency, whereas the blade thickness was increased by eCO2 but was not affected by N deficiency. The change in length by eCO2 became detectable in the secondly fully expanded leaf, and those in width and thickness in the thirdly fully expanded leaf, which were at the leaf developmental stages P4 and P3, respectively, at the onset of the eCO2 treatment. The decreased blade length at eCO2 was associated with a decrease in the epidermal cell number on the adaxial side and a reduction in cell length on the abaxial side. The decreased width resulted from decreased numbers of small vascular bundles and epidermal cell files. The increased thickness was ascribed mainly to enhanced development of bundle sheath extensions at the ridges of vascular bundles. These observations enable us to identify the sites of action of eCO2 on rice leaf development.


Asunto(s)
Dióxido de Carbono/metabolismo , Nitrógeno/deficiencia , Oryza/fisiología , Fotosíntesis , Transpiración de Plantas , Nitrógeno/metabolismo , Oryza/citología , Oryza/efectos de los fármacos , Oryza/crecimiento & desarrollo , Hojas de la Planta/citología , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/fisiología , Haz Vascular de Plantas/citología , Haz Vascular de Plantas/efectos de los fármacos , Haz Vascular de Plantas/crecimiento & desarrollo , Haz Vascular de Plantas/fisiología
13.
Plant Cell Physiol ; 55(4): 764-72, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24363287

RESUMEN

The trans-Golgi network (TGN) is a tubular-vesicular organelle that matures from the trans cisternae of the Golgi apparatus. In plants, the TGN functions as a central hub for three trafficking pathways: the secretory pathway, the vacuolar trafficking pathway and the endocytic pathway. Here, we describe a novel TGN-localized membrane protein, CONTINUOUS VASCULAR RING (COV1), that is crucial for TGN function in Arabidopsis. The COV1 gene was originally identified from the stem vascular patterning mutant of Arabidopsis thaliana. However, the molecular function of COV1 was not identified. Fluorescently tagged COV1 proteins co-localized with the TGN marker proteins, SYNTAXIN OF PLANTS 4 (SYP4) and vacuolar-type H(+)-ATPase subunit a1 (VHA-a1). Consistently, COV1-localized compartments were sensitive to concanamycin A, a specific inhibitor of VHA. Intriguingly, cov1 mutants exhibited abnormal Golgi morphologies, including a reduction in the number of Golgi cisternae and a reduced association between the TGN and the Golgi apparatus. A deficiency in COV1 also resulted in a defect in vacuolar protein sorting, which was characterized by the abnormal accumulation of storage protein precursors in seeds. Moreover, we found that the development of an idioblast, the myrosin cell, was abnormally increased in cov1 leaves. Our results demonstrate that the novel TGN-localized protein COV1 is required for Golgi morphology, vacuolar trafficking and myrosin cell development.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Proteínas de la Membrana/metabolismo , Vacuolas/metabolismo , Red trans-Golgi/metabolismo , Diferenciación Celular/efectos de los fármacos , Concanavalina A/farmacología , Prueba de Complementación Genética , Proteínas Fluorescentes Verdes/metabolismo , Proteínas Luminiscentes/metabolismo , Fenotipo , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/metabolismo , Haz Vascular de Plantas/efectos de los fármacos , Haz Vascular de Plantas/metabolismo , Transporte de Proteínas/efectos de los fármacos , Proteínas de Almacenamiento de Semillas/metabolismo , Vacuolas/efectos de los fármacos , Red trans-Golgi/efectos de los fármacos , Red trans-Golgi/ultraestructura , Proteína Fluorescente Roja
14.
New Phytol ; 201(4): 1176-1182, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24387138

RESUMEN

• The stress-related phytohormones, salicylic acid (SA) and abscisic acid (ABA), and the three jasmonates, jasmonic acid (JA), cis-12-oxo-phytodienoic acid (cis-OPDA), and (+)-7-iso-jasmonoyl-L-isoleucine (JA-Ile), were investigated in phloem and xylem exudates of Cucurbita maxima. • Phloem and xylem exudates were separately collected and analysed via liquid chromatography-mass spectrometry. • We show direct evidence for all three jasmonates, ABA, and SA in both phloem and xylem exudates of C. maxima. JA and JA-Ile concentrations are higher in xylem (JA: c(xylem) ≈ 199.5 nM, c(phloem) ≈ 43.9 nM; JA-Ile: c(xylem) ≈ 7.9 nM, c(phloem) ≈ 1.6 nM), whereas ABA and SA concentrations are higher in phloem exudates (ABA: c(xylem) ≈ 37.1 nM, c(phloem) ≈ 142.6 nM; SA: c(xylem) ≈ 61.6 nM, c(phloem) ≈ 1319 nM). During bacteria-derived flagellin 22 (flg22)-triggered remote root-to-shoot signalling, phytohormone concentration changed rapidly both in phloem and xylem. • The unequal distribution of phytohormones suggests that phloem and xylem have distinct roles in defence responses. Our data shed light on systemic phytohormone signalling and help explain how plants cope with environmental challenges by lateral exchange between phloem and xylem. Our analysis is a starting point for further investigations of how phytohormones contribute to phloem- and xylem-based defence signalling.


Asunto(s)
Cucurbita/fisiología , Flagelina/farmacología , Reguladores del Crecimiento de las Plantas/farmacología , Haz Vascular de Plantas/fisiología , Estrés Fisiológico/efectos de los fármacos , Cucurbita/efectos de los fármacos , Floema/efectos de los fármacos , Floema/fisiología , Exudados de Plantas/metabolismo , Haz Vascular de Plantas/efectos de los fármacos , Xilema/efectos de los fármacos , Xilema/fisiología
15.
Plant Physiol ; 163(2): 625-34, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24027243

RESUMEN

Appropriate stimulus-response coupling requires that each signal induces a characteristic response, distinct from that induced by other signals, and that there is the potential for individual signals to initiate different downstream responses dependent on cell type. How such specificity is encoded in plant signaling is not known. One possibility is that information is encoded in signal transduction pathways to ensure stimulus- and cell type-specific responses. The calcium ion acts as a second messenger in response to mechanical stimulation, hydrogen peroxide, NaCl, and cold in plants and also in circadian timing. We use GAL4 transactivation of aequorin in enhancer trap lines of Arabidopsis (Arabidopsis thaliana) to test the hypothesis that stimulus- and cell-specific information can be encoded in the pattern of dynamic alterations in the concentration of intracellular free Ca(2+) ([Ca(2+)]i). We demonstrate that mechanically induced increases in [Ca(2+)]i are largely restricted to the epidermal pavement cells of leaves, that NaCl induces oscillatory [Ca(2+)]i signals in spongy mesophyll and vascular bundle cells, but not other cell types, and detect circadian rhythms of [Ca(2+)]i only in the spongy mesophyll. We demonstrate stimulus-specific [Ca(2+)]i dynamics in response to touch, cold, and hydrogen peroxide, which in the case of the latter two signals are common to all cell types tested. GAL4 transactivation of aequorin in specific leaf cell types has allowed us to bypass the technical limitations associated with fluorescent Ca(2+) reporter dyes in chlorophyll-containing tissues to identify the cell- and stimulus-specific complexity of [Ca(2+)]i dynamics in leaves of Arabidopsis and to determine from which tissues stress- and circadian-regulated [Ca(2+)]i signals arise.


Asunto(s)
Arabidopsis/citología , Arabidopsis/metabolismo , Señalización del Calcio , Calcio/metabolismo , Espacio Intracelular/metabolismo , Especificidad de Órganos , Aequorina/metabolismo , Arabidopsis/efectos de los fármacos , Señalización del Calcio/efectos de los fármacos , Ritmo Circadiano/efectos de los fármacos , Frío , Proteínas de Unión al ADN/metabolismo , Elementos de Facilitación Genéticos/genética , Proteínas Fluorescentes Verdes/metabolismo , Peróxido de Hidrógeno/farmacología , Espacio Intracelular/efectos de los fármacos , Células del Mesófilo/efectos de los fármacos , Células del Mesófilo/metabolismo , Epidermis de la Planta/efectos de los fármacos , Epidermis de la Planta/metabolismo , Estomas de Plantas/citología , Estomas de Plantas/efectos de los fármacos , Estomas de Plantas/metabolismo , Haz Vascular de Plantas/efectos de los fármacos , Haz Vascular de Plantas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Cloruro de Sodio/farmacología , Estrés Fisiológico/efectos de los fármacos , Factores de Transcripción/metabolismo , Activación Transcripcional/efectos de los fármacos
16.
Plant Physiol ; 163(4): 1868-82, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24130197

RESUMEN

Plants use a complex signal transduction network to regulate their adaptation to the ever-changing environment. Rice (Oryza sativa) WRKY13 plays a vital role in the cross talk between abiotic and biotic stress signaling pathways by suppressing abiotic stress resistance and activating disease resistance. However, it is not clear how WRKY13 directly regulates this cross talk. Here, we show that WRKY13 is a transcriptional repressor. During the rice responses to drought stress and bacterial infection, WRKY13 selectively bound to certain site- and sequence-specific cis-elements on the promoters of SNAC1 (for STRESS RESPONSIVE NO APICAL MERISTEM, ARABIDOPSIS TRANSCRIPTION ACTIVATION FACTOR1/2, CUP-SHAPED COTYLEDON), the overexpression of which increases drought resistance, and WRKY45-1, the knockout of which increases both bacterial disease and drought resistance. WRKY13 also bound to two cis-elements of its native promoter to autoregulate the balance of its gene expression in different physiological activities. WRKY13 was induced in leaf vascular tissue, where bacteria proliferate, during infection, and in guard cells, where the transcriptional factor SNAC1 enhances drought resistance, during both bacterial infection and drought stress. These results suggest that WRKY13 regulates the antagonistic cross talk between drought and disease resistance pathways by directly suppressing SNAC1 and WRKY45-1 and autoregulating its own expression via site- and sequence-specific cis-elements on the promoters of these genes in vascular tissue where bacteria proliferate and guard cells where the transcriptional factor SNAC1 mediates drought resistance by promoting stomatal closure.


Asunto(s)
Oryza/fisiología , Proteínas de Plantas/metabolismo , Secuencias Reguladoras de Ácidos Nucleicos/genética , Transducción de Señal , Estrés Fisiológico , ADN de Plantas/metabolismo , Deshidratación , Sequías , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Proteínas Fluorescentes Verdes/metabolismo , Modelos Biológicos , Datos de Secuencia Molecular , Mutación/genética , Oryza/efectos de los fármacos , Oryza/genética , Oryza/microbiología , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/genética , Estomas de Plantas/citología , Estomas de Plantas/efectos de los fármacos , Estomas de Plantas/genética , Haz Vascular de Plantas/efectos de los fármacos , Haz Vascular de Plantas/genética , Plantas Modificadas Genéticamente , Regiones Promotoras Genéticas , Unión Proteica/efectos de los fármacos , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Cloruro de Sodio/farmacología , Estrés Fisiológico/efectos de los fármacos , Estrés Fisiológico/genética , Transcripción Genética/efectos de los fármacos , Xanthomonas/efectos de los fármacos , Xanthomonas/fisiología
17.
Plant Cell Environ ; 37(5): 1046-58, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24004447

RESUMEN

C4 plants have a biochemical carbon concentrating mechanism (CCM) that increases CO2 concentration around ribulose bisphosphate carboxylase oxygenase (Rubisco) in the bundle sheath (BS). Under limiting light, the activity of the CCM generally decreases, causing an increase in leakiness, (Φ), the ratio of CO2 retrodiffusing from the BS relative to C4 carboxylation processes. Maize plants were grown under high and low light regimes (respectively HL, 600 versus LL, 100 µE m(-2) s(-1) ). Short-term acclimation of Φ was compared from isotopic discrimination (Δ), gas exchange and photochemistry. Direct measurement of respiration in the light, and ATP production rate (JATP ), allowed us use a novel approach to derive Φ, compared with the conventional fitting of measured and predicted Δ. HL grown plants responded to decreasing light intensities with the well-documented increase in Φ. Conversely, LL plants showed a constant Φ, which has not been observed previously. We explain the pattern by two contrasting acclimation strategies: HL plants maintained a high CCM activity at LL, resulting in high CO2 overcycling and increased Φ; LL plants acclimated by down-regulating the CCM, effectively optimizing scarce ATP supply. This surprising plasticity may limit the impact of Φ-dependent carbon losses in leaves becoming shaded within developing canopies.


Asunto(s)
Aclimatación/efectos de la radiación , Carbono/metabolismo , Luz , Haz Vascular de Plantas/fisiología , Haz Vascular de Plantas/efectos de la radiación , Zea mays/fisiología , Zea mays/efectos de la radiación , Aclimatación/efectos de los fármacos , Isótopos de Carbono , Modelos Biológicos , Oxígeno/farmacología , Fotosíntesis/efectos de los fármacos , Fotosíntesis/efectos de la radiación , Complejo de Proteína del Fotosistema II/metabolismo , Haz Vascular de Plantas/efectos de los fármacos , Zea mays/efectos de los fármacos
18.
Plant Cell ; 23(4): 1435-48, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21498679

RESUMEN

A sessile lifestyle forces plants to respond promptly to factors that affect their genomic integrity. Therefore, plants have developed checkpoint mechanisms to arrest cell cycle progression upon the occurrence of DNA stress, allowing the DNA to be repaired before onset of division. Previously, the WEE1 kinase had been demonstrated to be essential for delaying progression through the cell cycle in the presence of replication-inhibitory drugs, such as hydroxyurea. To understand the severe growth arrest of WEE1-deficient plants treated with hydroxyurea, a transcriptomics analysis was performed, indicating prolonged S-phase duration. A role for WEE1 during S phase was substantiated by its specific accumulation in replicating nuclei that suffered from DNA stress. Besides an extended replication phase, WEE1 knockout plants accumulated dead cells that were associated with premature vascular differentiation. Correspondingly, plants without functional WEE1 ectopically expressed the vascular differentiation marker VND7, and their vascular development was aberrant. We conclude that the growth arrest of WEE1-deficient plants is due to an extended cell cycle duration in combination with a premature onset of vascular cell differentiation. The latter implies that the plant WEE1 kinase acquired an indirect developmental function that is important for meristem maintenance upon replication stress.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Diferenciación Celular , Replicación del ADN , Haz Vascular de Plantas/citología , Proteínas Serina-Treonina Quinasas/metabolismo , Estrés Fisiológico , Arabidopsis/citología , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Bleomicina/farmacología , Muerte Celular/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Análisis por Conglomerados , Reparación del ADN/efectos de los fármacos , Replicación del ADN/efectos de los fármacos , Estabilidad de Enzimas/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Genes de Plantas/genética , Hidroxiurea/farmacología , Cinética , Meristema/citología , Meristema/efectos de los fármacos , Análisis de Secuencia por Matrices de Oligonucleótidos , Fenotipo , Haz Vascular de Plantas/efectos de los fármacos , Fase S/efectos de los fármacos , Estrés Fisiológico/efectos de los fármacos , Factores de Tiempo
19.
Plant Cell Rep ; 33(1): 35-45, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24081612

RESUMEN

KEY MESSAGE: SlCRF1 and SlCRF2 are expressed throughout the plant, prominently in vascular tissue. Each SlCRF has a distinct pattern of cytokinin induction and regulation by abiotic stresses in different organs. Cytokinin is an essential plant hormone involved in the regulation of many growth and developmental processes. While many cytokinin signaling pathway components have been well characterized, the cytokinin response factors (CRFs) that form a branch of this pathway are less well understood. This study examines the tomato (Solanum lycopersicum (L.)) CRF genes, SlCRF1 and SlCRF2 presenting a detailed and novel characterization of their developmental expression patterns, transcriptional regulation by hormones particularly cytokinin, and response to abiotic stresses. Both SlCRF1 and SlCRF2 were predominantly expressed in vasculature in tissues throughout the plant, with an overall trend for greater SlCRF2 expression in younger organs. Hormone regulation of SlCRF1 and SlCRF2 transcripts is primarily by cytokinin, which induced both SlCRFs in different organs over a range of developmental stages. The strongest cytokinin induction was found in leaves, with SlCRF2 induced to a higher level than SlCRF1. Examination of SlCRF transcripts during abiotic stress responses revealed that SlCRF1 and SlCRF2 have distinct patterns of regulation from each other and between leaves and roots. Novel connections between SlCRFs and stresses were found in particular including a strong induction of SlCRF1 by cold stress and a strong induction of SlCRF2 by oxidative stress in roots and unique patterns of induction/repression linking both SlCRFs to drought stress and response during recovery. Overall, this study provides a clear picture of SlCRF1 and SlCRF2 expression patterns across tissues during development and in response to cytokinin and specific stresses, indicating their importance in plant growth and environmental responses.


Asunto(s)
Genes de Plantas/genética , Reguladores del Crecimiento de las Plantas/farmacología , Proteínas de Plantas/genética , Solanum lycopersicum/genética , Solanum lycopersicum/fisiología , Estrés Fisiológico/genética , Citocininas/farmacología , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Glucuronidasa/metabolismo , Solanum lycopersicum/efectos de los fármacos , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/genética , Proteínas de Plantas/metabolismo , Haz Vascular de Plantas/efectos de los fármacos , Haz Vascular de Plantas/genética , Regiones Promotoras Genéticas/genética , Estrés Fisiológico/efectos de los fármacos , Transcripción Genética/efectos de los fármacos
20.
Plant Cell Physiol ; 54(6): 971-81, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23539244

RESUMEN

Cytokinin response factor 6 (CRF6) is an Arabidopsis AP2/ERF transcription factor which is transcriptionally induced by cytokinin. Cytokinin is known to delay leaf senescence in wild-type (WT) plants, for example in dark-incubated detached leaves. This response is mediated by the cytokinin receptor Arabidopsis histidine kinase receptor 3 (AHK3). Similar to ahk3 mutants, crf6 leaves show decreased sensitivity to this cytokinin effect. Leaves overexpressing CRF6 retain more Chl than those of the WT under these conditions without exogenous cytokinin. It therefore appears that an increase in expression of CRF6 downstream of the perception of cytokinin by AHK3 is involved in the delay of leaf senescence. Intact crf6 plants also begin to undergo monocarpic senescence sooner than WT plants. Interestingly, plants overexpressing CRF6 display a more extreme acceleration of development than crf6 mutants, suggesting that a specific expression level or localization of CRF6 is necessary to prevent premature senescence. Expression analyses indicate that CRF6 is highly expressed in the veins of mature leaves and that this expression decreases with age. CRF6 expression is shown to be induced by abiotic stress, in addition to increased cytokinin. Together, these findings suggest that CRF6 functions to regulate developmental senescence negatively and may have a similar role in response to stress. CRF6 may therefore be involved in fine-tuning the timing of developmental and stress-induced senescence. CRF6 functioning in negative regulation of senescence is significant in that it is the first process known to be regulated by cytokinin, in which a CRF can be placed specifically downstream of the cytokinin signaling pathway.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Citocininas/farmacología , Hojas de la Planta/crecimiento & desarrollo , Estrés Fisiológico/efectos de los fármacos , Factores de Transcripción/metabolismo , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Oscuridad , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Modelos Biológicos , Mutación/genética , Desarrollo de la Planta/efectos de los fármacos , Desarrollo de la Planta/genética , Hojas de la Planta/efectos de los fármacos , Haz Vascular de Plantas/efectos de los fármacos , Haz Vascular de Plantas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Estrés Fisiológico/genética , Factores de Transcripción/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA