Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 307
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Acc Chem Res ; 56(11): 1279-1286, 2023 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-36946781

RESUMEN

Sickle cell disease (SCD) is an inherited blood disorder caused by a point mutation in hemoglobin (Hb), the protein in the red blood cell (RBC) responsible for the transport of oxygen (O2) throughout the body. The mutation leads to the expression of sickle cell hemoglobin (HbS). Both Hb and HbS exist in equilibrium between oxygenated and deoxygenated forms; however, deoxygenated HbS can polymerize to form long fibers which distort the shape of RBCs into the characteristic sickled shape. The misshapen RBCs can obstruct blood vessels and capillaries, resulting in a vaso-occlusive crisis. Vaso-occulsion deprives tissues and organs of O2 and can cause intense pain which often results in hospitalization. Chronic organ damage is a major cause of reduced life expectancy for SCD patients.Allosteric effectors are molecules which regulate protein function. HbS allosteric effectors can be used to decrease polymerization by stabilizing the oxygenated form of HbS, which leads to an increase in O2 uptake and a decrease in the sickling of RBCs. Allosteric effectors that have been evaluated for the treatment of SCD include vanillin, 5-hydroxymethyl furfural (5-HMF), and voxelotor, which was approved by the U.S. Food and Drug Administration (FDA) for the treatment of SCD in 2019. 5-HMF did not progress to phase III clinical trials since it suffered from rapid metabolic degradation. However, several derivatives of 5-HMF and vanillin have been synthesized and evaluated as potential candidates for SCD treatment. Derivatives of these compounds have shown promise, but their shortcomings, such as high levels of oxidative metabolism, have prevented them from progressing into marketable drugs. Our efforts have produced multiple 5-HMF derivatives which have been evaluated for their potential to treat SCD. Each derivative was evaluated for its ability to increase O2 affinity (i.e., P50, the partial pressure at which hemoglobin is 50% saturated with O2). The synthesized aryl ether derivatives were evaluated, and results suggest that compounds with multiple aromatic aldehydes may have enhanced biological properties. One such derivative, compound 5, which features two furan aldehyde rings, exhibited increased O2 affinity (P50 = 8.82 ± 1.87 mmHg) over that of unmodified Hb (P50 = 13.67 ± 0.22 mmHg). Future studies include obtaining crystal structures of the 5-HMF derivatives complexed with HbS to confirm the protein-allosteric effector interactions.


Asunto(s)
Anemia de Células Falciformes , Humanos , Anemia de Células Falciformes/tratamiento farmacológico , Anemia de Células Falciformes/metabolismo , Hemoglobinas/química , Hemoglobinas/metabolismo , Hemoglobinas/uso terapéutico , Hemoglobina Falciforme/química , Hemoglobina Falciforme/metabolismo , Hemoglobina Falciforme/uso terapéutico , Eritrocitos , Oxígeno/metabolismo , Aldehídos
2.
Rapid Commun Mass Spectrom ; 38(2): e9671, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38124165

RESUMEN

RATIONALE: Sickle cell disease, a debilitating genetic disorder affecting numerous newborns globally, has historically received limited attention in pharmaceutical research. However, recent years have witnessed a notable shift, with the Food and Drug Administration approving three innovative disease-modifying medications. Voxelotor, also known as GBT440, is a promising compound that effectively prevents sickling, providing a safe approach to alleviate chronic hemolytic anemia in sickle cell disease. It is a novel, orally bioavailable small molecule that inhibits hemoglobin S polymerization by enhancing oxygen affinity to hemoglobin. The investigation demonstrated that voxelotor led to an unintended elevation of hemoglobin levels in healthy individuals by increasing serum erythropoietin levels. METHODS: Voxelotor and its metabolites in an in vitro setting utilizing equine liver microsomes were discussed. Plausible structures of the identified metabolites were inferred through the application of liquid chromatography in conjunction with high-resolution mass spectrometry. RESULTS: Under the experimental conditions, a total of 31 metabolites were detected, including 16 phase I metabolites, two phase II metabolites, and 13 conjugates of phase I metabolites. The principal phase I metabolites were generated through processes such as hydroxylation, reduction, and dissociation. The presence of glucuronide and sulfate conjugates of the parent drug were also observed, along with hydroxylated, reduced, and dissociated analogs. CONCLUSIONS: The data acquired will accelerate the identification of voxelotor and related compounds, aiding in the detection of their illicit use in competitive sports. It is crucial to emphasize that the metabolites detailed in this manuscript were identified through in vitro experiments and their detection in an in vivo study may not be guaranteed.


Asunto(s)
Anemia de Células Falciformes , Doping en los Deportes , Recién Nacido , Humanos , Animales , Caballos , Hemoglobina Falciforme/química , Hemoglobina Falciforme/metabolismo , Hemoglobina Falciforme/uso terapéutico , Doping en los Deportes/prevención & control , Polimerizacion , Anemia de Células Falciformes/tratamiento farmacológico , Anemia de Células Falciformes/metabolismo , Benzaldehídos/farmacología , Benzaldehídos/uso terapéutico , Hemoglobinas
3.
Biophys J ; 122(13): 2782-2790, 2023 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-37270670

RESUMEN

The drug voxelotor (commercially known as Oxbryta) has been approved by the US Food and Drug Administration for the treatment of sickle cell disease. It is known to reduce disease-causing sickling by inhibiting the transformation of the non-polymerizing, high-oxygen-affinity R quaternary structure of sickle hemoglobin into its polymerizing, low-affinity T quaternary structure. It has not been established whether the binding of the drug has anti-sickling effects beyond restricting the change of quaternary structure. By using a laser photolysis method that employs microscope optics, we have determined that fully deoxygenated sickle hemoglobin will assume the T structure. We show that the nucleation rates essential to generate the sickle fibers are not significantly affected by voxelotor. The method employed here should be useful for determining the mechanism of sickling inhibition for proposed drugs.


Asunto(s)
Anemia de Células Falciformes , Hemoglobina Falciforme , Humanos , Hemoglobina Falciforme/química , Hemoglobina Falciforme/metabolismo , Hemoglobina Falciforme/uso terapéutico , Oxígeno/metabolismo , Anemia de Células Falciformes/tratamiento farmacológico , Benzaldehídos/uso terapéutico
4.
Blood ; 138(13): 1172-1181, 2021 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-34197597

RESUMEN

The issue of treating sickle cell disease with drugs that increase hemoglobin oxygen affinity has come to the fore with the US Food and Drug Administration approval in 2019 of voxelotor, the only antisickling drug approved since hydroxyurea in 1998. Voxelotor reduces sickling by increasing the concentration of the nonpolymerizing, high oxygen affinity R (oxy) conformation of hemoglobin S (HbS). Treatment of sickle cell patients with voxelotor increases Hb levels and decreases indicators of hemolysis, but with no indication as yet that it reduces the frequency of pain episodes. In this study, we used the allosteric model of Monod, Wyman, and Changeux to simulate whole-blood oxygen dissociation curves and red cell sickling in the absence and presence of voxelotor under the in vivo conditions of rapid oxygen pressure decreases. Our modeling agrees with results of experiments using a new robust assay, which shows the large, expected decrease in sickling from the drug. The modeling indicates, however, that the increase in oxygen delivery from reduced sickling is largely offset by the increase in oxygen affinity. The net result is that the drug increases overall oxygen delivery only at the very lowest oxygen pressures. However, reduction of sickling mitigates red cell damage and explains the observed decrease in hemolysis. More importantly, our modeling of in vivo oxygen dissociation, sickling, and oxygen delivery suggests that drugs that increase fetal Hb or decrease mean corpuscular hemoglobin concentration (MCHC) should be more therapeutically effective than drugs that increase oxygen affinity.


Asunto(s)
Anemia de Células Falciformes/tratamiento farmacológico , Antidrepanocíticos/uso terapéutico , Benzaldehídos/uso terapéutico , Hemoglobina Falciforme/metabolismo , Oxígeno/metabolismo , Pirazinas/uso terapéutico , Pirazoles/uso terapéutico , Anemia de Células Falciformes/sangre , Anemia de Células Falciformes/metabolismo , Antidrepanocíticos/farmacología , Benzaldehídos/farmacología , Eritrocitos/efectos de los fármacos , Eritrocitos/metabolismo , Hemoglobina Falciforme/química , Humanos , Modelos Moleculares , Oxígeno/sangre , Pirazinas/farmacología , Pirazoles/farmacología
5.
Proc Natl Acad Sci U S A ; 117(26): 15018-15027, 2020 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-32527859

RESUMEN

The pathology of sickle cell disease is caused by polymerization of the abnormal hemoglobin S upon deoxygenation in the tissues to form fibers in red cells, causing them to deform and occlude the circulation. Drugs that allosterically shift the quaternary equilibrium from the polymerizing T quaternary structure to the nonpolymerizing R quaternary structure are now being developed. Here we update our understanding on the allosteric control of fiber formation at equilibrium by showing how the simplest extension of the classic quaternary two-state allosteric model of Monod, Wyman, and Changeux to include tertiary conformational changes provides a better quantitative description. We also show that if fiber formation is at equilibrium in vivo, the vast majority of cells in most tissues would contain fibers, indicating that it is unlikely that the disease would be survivable once the nonpolymerizing fetal hemoglobin has been replaced by adult hemoglobin S at about 1 y after birth. Calculations of sickling times, based on a recently discovered universal relation between the delay time prior to fiber formation and supersaturation, show that in vivo fiber formation is very far from equilibrium. Our analysis indicates that patients survive because the delay period allows the majority of cells to escape the small vessels of the tissues before fibers form. The enormous sensitivity of the duration of the delay period to intracellular hemoglobin composition also explains why sickle trait, the heterozygous condition, and the compound heterozygous condition of hemoglobin S with pancellular hereditary persistence of fetal hemoglobin are both relatively benign conditions.


Asunto(s)
Anemia de Células Falciformes/metabolismo , Hemoglobina Falciforme/química , Oxígeno/metabolismo , Regulación Alostérica , Eritrocitos/química , Eritrocitos/metabolismo , Hemoglobina Fetal/química , Hemoglobina Fetal/metabolismo , Hemoglobina Falciforme/metabolismo , Humanos , Cinética , Oxígeno/química
6.
Biomacromolecules ; 23(9): 3822-3830, 2022 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-35944154

RESUMEN

The molecular origin of sickle cell disease (SCD) has been known since 1949, but treatments remain limited. We present the first high-throughput screening (HTS) platform for discovering small molecules that directly inhibit sickle hemoglobin (HbS) oligomerization and improve blood flow, potentially overcoming a long-standing bottleneck in SCD drug discovery. We show that at concentrations far below the threshold for nucleation and rapid polymerization, deoxygenated HbS forms small assemblies of multiple α2ß2 tetramers. Our HTS platform leverages high-sensitivity fluorescence lifetime measurements that monitor these temporally stable prefibrillar HbS oligomers. We show that this approach is sensitive to compounds that inhibit HbS polymerization with or without modulating hemoglobin oxygen binding affinity. We also report the results of a pilot small-molecule screen in which we discovered and validated several novel inhibitors of HbS oligomerization.


Asunto(s)
Anemia de Células Falciformes , Hemoglobina Falciforme , Anemia de Células Falciformes/tratamiento farmacológico , Anemia de Células Falciformes/metabolismo , Descubrimiento de Drogas , Hemoglobina Falciforme/química , Hemoglobina Falciforme/metabolismo , Hemoglobinas , Humanos , Oxígeno/metabolismo
7.
PLoS Comput Biol ; 17(11): e1008946, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34843453

RESUMEN

Sickle cell disease, a genetic disorder affecting a sizeable global demographic, manifests in sickle red blood cells (sRBCs) with altered shape and biomechanics. sRBCs show heightened adhesive interactions with inflamed endothelium, triggering painful vascular occlusion events. Numerous studies employ microfluidic-assay-based monitoring tools to quantify characteristics of adhered sRBCs from high resolution channel images. The current image analysis workflow relies on detailed morphological characterization and cell counting by a specially trained worker. This is time and labor intensive, and prone to user bias artifacts. Here we establish a morphology based classification scheme to identify two naturally arising sRBC subpopulations-deformable and non-deformable sRBCs-utilizing novel visual markers that link to underlying cell biomechanical properties and hold promise for clinically relevant insights. We then set up a standardized, reproducible, and fully automated image analysis workflow designed to carry out this classification. This relies on a two part deep neural network architecture that works in tandem for segmentation of channel images and classification of adhered cells into subtypes. Network training utilized an extensive data set of images generated by the SCD BioChip, a microfluidic assay which injects clinical whole blood samples into protein-functionalized microchannels, mimicking physiological conditions in the microvasculature. Here we carried out the assay with the sub-endothelial protein laminin. The machine learning approach segmented the resulting channel images with 99.1±0.3% mean IoU on the validation set across 5 k-folds, classified detected sRBCs with 96.0±0.3% mean accuracy on the validation set across 5 k-folds, and matched trained personnel in overall characterization of whole channel images with R2 = 0.992, 0.987 and 0.834 for total, deformable and non-deformable sRBC counts respectively. Average analysis time per channel image was also improved by two orders of magnitude (∼ 2 minutes vs ∼ 2-3 hours) over manual characterization. Finally, the network results show an order of magnitude less variance in counts on repeat trials than humans. This kind of standardization is a prerequisite for the viability of any diagnostic technology, making our system suitable for affordable and high throughput disease monitoring.


Asunto(s)
Anemia de Células Falciformes/sangre , Aprendizaje Profundo , Eritrocitos Anormales/clasificación , Microfluídica/estadística & datos numéricos , Anemia de Células Falciformes/diagnóstico por imagen , Fenómenos Biofísicos , Biología Computacional , Diagnóstico por Computador/estadística & datos numéricos , Deformación Eritrocítica/fisiología , Eritrocitos Anormales/patología , Eritrocitos Anormales/fisiología , Hemoglobina Falciforme/química , Hemoglobina Falciforme/metabolismo , Ensayos Analíticos de Alto Rendimiento/estadística & datos numéricos , Humanos , Interpretación de Imagen Asistida por Computador/estadística & datos numéricos , Técnicas In Vitro , Dispositivos Laboratorio en un Chip/estadística & datos numéricos , Laminina/metabolismo , Redes Neurales de la Computación , Multimerización de Proteína
8.
Proc Natl Acad Sci U S A ; 116(50): 25236-25242, 2019 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-31767751

RESUMEN

Sickle cell disease (SCD) is caused by a variant hemoglobin molecule that polymerizes inside red blood cells (RBCs) in reduced oxygen tension. Treatment development has been slow for this typically severe disease, but there is current optimism for curative gene transfer strategies to induce expression of fetal hemoglobin or other nonsickling hemoglobin isoforms. All SCD morbidity and mortality arise directly or indirectly from polymer formation in individual RBCs. Identifying patients at highest risk of complications and treatment candidates with the greatest curative potential therefore requires determining the amount of polymer in individual RBCs under controlled oxygen. Here, we report a semiquantitative measurement of hemoglobin polymer in single RBCs as a function of oxygen. The method takes advantage of the reduced oxygen affinity of hemoglobin polymer to infer polymer content for thousands of RBCs from their overall oxygen saturation. The method enables approaches for SCD treatment development and precision medicine.


Asunto(s)
Anemia de Células Falciformes/metabolismo , Eritrocitos/metabolismo , Hemoglobina Falciforme/metabolismo , Hemoglobinas/metabolismo , Ensayos Analíticos de Alto Rendimiento/métodos , Oxígeno/metabolismo , Eritrocitos/química , Eritrocitos/citología , Hemoglobina Falciforme/química , Hemoglobinas/química , Humanos , Cinética , Oxígeno/química , Análisis de la Célula Individual
9.
Transfusion ; 61(7): 2008-2013, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33929058

RESUMEN

BACKGROUND: Minority RBC donors are important to support the transfusion needs of patients with sickle cell disease. Testing of donors for sickle cell trait (SCT) is performed to avoid transfusion of hemoglobin S+ (HbS+) RBCs to specific patient groups and to investigate leukoreduction failures. A screening assay based on hemoglobin solubility is commonly used. The purpose of this study was to validate a DNA approach for HbS screening. METHODS: Hemoglobin solubility screening (Pacific Hemostasis or SICKLEDEX) and PreciseType human erythrocyte antigen (HEA)-HbS (Immucor) targeting c.20A>T in the ß-globin gene were performed according to manufacturer's directions. Resolution of differences in results included gene sequencing and high-performance liquid chromatography (HPLC). RESULTS: Initial validation of HEA-HbS performed by testing 60 known samples, 20 HbS/A, A/A, and S/S, gave expected results. However, in the subsequent parallel testing phase, 4/58 samples HbS+ by solubility assay tested negative by HEA-HbS; the negative results were confirmed by ß-globin gene sequencing. Samples from donors self-identifying as White testing HbS+ by solubility assay (n = 60) were retested by HEA-HbS and HPLC. The HEA-HbS assay was concordant with HPLC which is recognized as the gold standard for hemoglobin variation. CONCLUSION: A DNA-based approach is an alternative to screen donors for SCT, found in approximately 7% of Black and 1.7% of our random donors. HEA-HbS correlated with HPLC results in all samples tested, supporting the use of HEA-HbS as the test of record. The method allows higher throughput screening and testing at the donor center allows association of the screening result with the donor record to avoid repeat testing.


Asunto(s)
Donantes de Sangre , ADN/genética , Selección de Donante/métodos , Etnicidad/genética , Rasgo Drepanocítico/diagnóstico , Adulto , Cromatografía Líquida de Alta Presión , ADN/sangre , Femenino , Hemoglobina Falciforme/análisis , Hemoglobina Falciforme/química , Humanos , Masculino , Grupos Minoritarios , Ciudad de Nueva York/epidemiología , Estudios Retrospectivos , Análisis de Secuencia de ADN , Rasgo Drepanocítico/etnología , Rasgo Drepanocítico/genética , Solubilidad , Globinas beta/genética
10.
Soft Matter ; 16(2): 421-427, 2020 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-31799559

RESUMEN

Abnormal shapes of red blood cells (RBC) have been associated with various diseases. Diverse RBC shapes have also been intriguing for membrane biophysics. Here we focus on sickle shaped RBC which form due to abnormal growth of semi-rigid hemoglobin (HbS) fibers confined in RBC. Using the area difference elasticity (ADE) model for RBC and worm-like chain model for the confined HbS fibers, we explore shape deformations at equilibrium using Monte-Carlo simulations. We show that while a single HbS fiber is not rigid enough to produce sickle like deformation, a fiber bundle can do so. We also consider multiple disjoint filaments and find that confinement can generate multipolar RBC shapes and can even promote helical filament conformations which have not been discussed before. We show that the same model, when applied to microtubules confined in phospholipid vesicles, predicts vesicle tubulation. In addition we reproduce the tube collapse transition and tennis racket type vesicle shapes, as reported in experiments. We conclude that with a decrease in the surface area to volume ratio, and membrane rigidity, the vesicles prefer tubulation over sickling. The highlight of this work is several important non-axisymmetric RBC and vesicle shapes, which have never been explored in simulations.


Asunto(s)
Anemia de Células Falciformes/fisiopatología , Vesículas Citoplasmáticas/química , Eritrocitos/química , Eritrocitos/citología , Anemia de Células Falciformes/metabolismo , Forma de la Célula , Vesículas Citoplasmáticas/metabolismo , Elasticidad , Eritrocitos/metabolismo , Hemoglobina Falciforme/química , Humanos , Método de Montecarlo , Fosfolípidos/metabolismo
11.
Bioconjug Chem ; 30(3): 568-571, 2019 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-30794381

RESUMEN

The pathophysiology associated with sickle cell disease (SCD) includes hemolytic anemia, vaso-occlusive events, and ultimately end organ damage set off by the polymerization of deoxygenated hemoglobin S (HbS) into long fibers and sickling of red blood cells (RBCs). One approach toward mitigating HbS polymerization is to pharmacologically stabilize the oxygenated (R) conformation of HbS and thereby reduce sickling frequency and SCD pathology. GBT440 is an α-subunit-specific modifying agent that has recently been reported to increase HbS oxygen binding affinity and consequently delay in vitro polymerization. In addition, animal model studies have demonstrated the potential for GBT440 to be a suitable therapeutic for daily oral dosing in humans. Here, we report an optimized method for detecting GBT440 intermediates in human patient hemolysate using a combination of HPLC and mass spectrometry analysis. First, oxygen dissociation curves (ODCs) analyzed from patient blood showed that oxygen affinity increased in a dose dependent manner. Second, HPLC and integrated mass spectrometric analysis collectively confirmed that GBT440 labeling was specific to the α N-terminus thereby ruling out other potential ligand binding sites. Finally, the results from this optimized analytical approach allowed us to detect a stable α-specific GBT440 adduct in the patient's hemolysate in a dose dependent manner. The results and methods presented in this report could therefore potentially help therapeutic monitoring of GBT440 induced oxygen affinity and reveal critical insight into the biophysical properties of GBT440 Hb complexes.


Asunto(s)
Anemia de Células Falciformes/tratamiento farmacológico , Antidrepanocíticos/farmacología , Benzaldehídos/farmacología , Hemoglobina Falciforme/metabolismo , Pirazinas/farmacología , Pirazoles/farmacología , Anemia de Células Falciformes/metabolismo , Anemia de Células Falciformes/patología , Antidrepanocíticos/uso terapéutico , Benzaldehídos/uso terapéutico , Eritrocitos/efectos de los fármacos , Eritrocitos/metabolismo , Eritrocitos/patología , Hemoglobina Falciforme/química , Humanos , Simulación del Acoplamiento Molecular , Oxígeno/metabolismo , Pirazinas/uso terapéutico , Pirazoles/uso terapéutico
12.
Haematologica ; 104(9): 1720-1730, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31399526

RESUMEN

The complex, frequently devastating, multi-organ pathophysiology of sickle cell disease has a single root cause: polymerization of deoxygenated sickle hemoglobin. A logical approach to disease modification is, therefore, to interdict this root cause. Ideally, such interdiction would utilize small molecules that are practical and accessible for worldwide application. Two types of such small molecule strategies are actively being evaluated in the clinic. The first strategy intends to shift red blood cell precursor hemoglobin manufacturing away from sickle hemoglobin and towards fetal hemoglobin, which inhibits sickle hemoglobin polymerization by a number of mechanisms. The second strategy intends to chemically modify sickle hemoglobin directly in order to inhibit its polymerization. Important lessons have been learnt from the pre-clinical and clinical evaluations to date. Open questions remain, but this review summarizes the valuable experience and knowledge already gained, which can guide ongoing and future efforts for molecular mechanism-based, practical and accessible disease modification of sickle cell disease.


Asunto(s)
Anemia de Células Falciformes/tratamiento farmacológico , Anemia de Células Falciformes/fisiopatología , Hemoglobina Fetal/efectos de los fármacos , Hemoglobina Falciforme/efectos de los fármacos , Antidrepanocíticos/uso terapéutico , Metilación de ADN , Diseño de Fármacos , Epigénesis Genética , Hemoglobina Fetal/química , Hemoglobina Fetal/metabolismo , Hemoglobina Falciforme/química , Hemoglobina Falciforme/metabolismo , Histona Desacetilasas/metabolismo , Humanos , Hidroxiurea/uso terapéutico , Polimerizacion , gamma-Globinas/metabolismo
13.
Biochem J ; 475(13): 2153-2166, 2018 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-29858275

RESUMEN

In sickle cell anemia, polymerization of hemoglobin in its deoxy state leads to the formation of insoluble fibers that result in sickling of red blood cells. Stereo-specific binding of isopropyl group of ßVal6, the mutated amino-acid residue of a tetrameric sickle hemoglobin molecule (HbS), with hydrophobic groove of another HbS tetramer initiates the polymerization. Glutathionylation of ßCys93 in HbS was reported to inhibit the polymerization. However, the mechanism of inhibition in polymerization is unknown to date. In our study, the molecular insights of inhibition in polymerization were investigated by monitoring the conformational dynamics in solution phase using hydrogen/deuterium exchange-based mass spectrometry. The conformational rigidity imparted due to glutathionylation of HbS results in solvent shielding of ßVal6 and perturbation in the conformation of hydrophobic groove of HbS. Additionally, molecular dynamics simulation trajectory showed that the stereo-specific localization of glutathione moiety in the hydrophobic groove across the globin subunit interface of tetrameric HbS might contribute to inhibition in polymerization. These conformational insights in the inhibition of HbS polymerization upon glutathionylation might be translated in the molecularly targeted therapeutic approaches for sickle cell anemia.


Asunto(s)
Medición de Intercambio de Deuterio , Hemoglobina Falciforme/química , Espectrometría de Masas , Simulación de Dinámica Molecular , Multimerización de Proteína , Glutatión/química , Humanos
14.
Int J Mol Sci ; 20(22)2019 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-31744112

RESUMEN

The presence of hemoglobin A-S (HbAS) in erythrocytes has been related to the high production of reactive oxygen species (ROS) and an increased in intracellular oxidative stress that affects the progress of Plasmodium erythrocytic cycle life and attenuates its serious clinical symptoms. Nevertheless, oxidative effects on P. falciparum proteome across the intraerythrocytic cycle in the presence of HbAS traits have not been described yet. Here, an immune dot-blot assay was used to quantify the carbonyl index (C.I) on P. falciparum 3D7 proteome at the different asexual erythrocytic stages. Protein carbonylation on parasites cultivated in erythrocytes from two donors with HbAS increased 5.34 ± 1.42 folds at the ring stage compared to control grown in hemoglobin A-A (HbAA) red blood cells. Whereas at trophozoites and schizonts stages were augmented 2.80 ± 0.52 and 3.05 ± 0.75 folds, respectively. Besides proteins involved in processes of the stress response, recognition and invasion were identified from schizonts carbonylated bands by combining SDS-PAGE with MALDI-TOF-TOF analysis. Our results reinforce the hypothesis that such oxidative modifications do not appear to happen randomly, and the sickle cell trait affects mainly a small fraction of parasite proteins particularly sensitive to ROS.


Asunto(s)
Eritrocitos/metabolismo , Plasmodium falciparum/crecimiento & desarrollo , Proteoma/análisis , Rasgo Drepanocítico/patología , Electroforesis en Gel de Poliacrilamida , Eritrocitos/parasitología , Hemoglobina A/química , Hemoglobina A/metabolismo , Hemoglobina Falciforme/química , Hemoglobina Falciforme/metabolismo , Humanos , Estadios del Ciclo de Vida , Estrés Oxidativo , Plasmodium falciparum/metabolismo , Plasmodium falciparum/patogenicidad , Carbonilación Proteica , Proteoma/metabolismo , Proteínas Protozoarias/análisis , Proteínas Protozoarias/metabolismo , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
15.
Am J Hematol ; 93(10): 1227-1235, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30033564

RESUMEN

Although homozygous sickle cell disease is often clinically severe, the corresponding heterozygous state, sickle cell trait, is almost completely benign despite the fact that there is only a modest difference in sickle hemoglobin levels between the two conditions. In both conditions, hypoxia can lead to polymerization of sickle hemoglobin, changes in red cell mechanical properties, and impaired blood flow. Here, we test the hypothesis that differences in the oxygen-dependent rheological properties in the two conditions might help explain the difference in clinical phenotypes. We use a microfluidic platform that permits quantification of blood rheology under defined oxygen conditions in physiologically sized microchannels and under physiologic shear rates. We find that, even with its lower sickle hemoglobin concentration, sickle trait blood apparent viscosity increases with decreasing oxygen tension and may stop flowing under completely anoxic conditions, though far less readily than the homozygous condition. Sickle cell trait blood flow becomes impaired at significantly lower oxygen tension than sickle cell disease. We also demonstrate how sickle cell trait can serve as a benchmark for sickle cell disease therapies. We characterize the rheological effects of exchange transfusion therapy by mixing sickle blood with nonsickle blood and quantifying the transfusion targets for sickle hemoglobin composition below which the rheological response resembles sickle trait. These studies quantify the differences in blood flow phenotypes of sickle cell disease and sickle cell trait, and they provide a potentially powerful new benchmark for evaluating putative therapies in vitro.


Asunto(s)
Anemia de Células Falciformes/sangre , Oxígeno/farmacología , Anemia de Células Falciformes/terapia , Benchmarking , Velocidad del Flujo Sanguíneo , Viscosidad Sanguínea , Diseño de Equipo , Recambio Total de Sangre , Hemoglobina Falciforme/química , Humanos , Técnicas In Vitro , Dispositivos Laboratorio en un Chip , Oxígeno/sangre , Fenotipo , Resistencia al Corte , Rasgo Drepanocítico/sangre
16.
Biophys J ; 113(1): 48-59, 2017 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-28700924

RESUMEN

Understanding of intracellular polymerization of sickle hemoglobin (HbS) and subsequent interaction with the membrane of a red blood cell (RBC) is important to predict the altered morphologies and mechanical properties of sickle RBCs in sickle cell anemia. However, modeling the integrated processes of HbS nucleation, polymerization, HbS fiber interaction, and subsequent distortion of RBCs is challenging as they occur at multispatial scales, ranging from nanometers to micrometers. To make progress toward simulating the integrated processes, we propose a hybrid HbS fiber model, which couples fine-grained and coarse-grained HbS fiber models through a mesoscopic adaptive resolution scheme (MARS). To this end, we apply a microscopic model to capture the dynamic process of polymerization of HbS fibers, while maintaining the mechanical properties of polymerized HbS fibers by the mesoscopic model, thus providing a means of bridging the subcellular and cellular phenomena in sickle cell disease. At the subcellular level, this model can simulate HbS polymerization with preexisting HbS nuclei. At the cellular level, if combined with RBC models, the generated HbS fibers could be applied to study the morphologies and membrane stiffening of sickle RBCs. One important feature of the MARS is that it can be easily employed in other particle-based multiscale simulations where a dynamic coarse-graining and force-blending method is required. As demonstrations, we first apply the hybrid HbS fiber model to simulate the interactions of two growing fibers and find that their final configurations depend on the orientation and interaction distance between two fibers, in good agreement with experimental observations. We also model the formation of fiber bundles and domains so that we explore the mechanism that causes fiber branching.


Asunto(s)
Hemoglobina Falciforme/metabolismo , Modelos Moleculares , Anemia de Células Falciformes/sangre , Anemia de Células Falciformes/metabolismo , Anemia de Células Falciformes/patología , Simulación por Computador , Eritrocitos/metabolismo , Eritrocitos/patología , Hemoglobina Falciforme/química , Humanos , Polimerizacion
17.
J Struct Biol ; 199(1): 76-83, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28465180

RESUMEN

Sickle hemoglobin (HbS) polymerization initiates in the deoxy state with the binding of hydrophobic patch formed by the isopropyl group of ßVal6 residue of a hemoglobin tetramer with the hydrophobic pocket of another tetramer, whose hydrophobic patch binds to the hydrophobic groove of a third molecule. Subsequent elongation of a single stranded polymer followed by the formation of a double strand and finally combination of seven such pairs of double strands results in a fourteen stranded fibrous polymer. Precipitation of this fiber inside the erythrocytes results in sickling of red blood cells. Surprisingly, the polymerization does not occur in the oxy state of HbS. Due to the unavailability of crystal structure of oxy form of HbS, the molecular basis of inhibition of polymerization in the oxy state is unknown to date. In the present study, we have attempted to understand the molecular mechanism of inhibition of polymerization by exploiting the exchange of backbone amide hydrogens of HbS with deuterated solvent. Hydrogen/deuterium exchange kinetics of peptide amide hydrogens of both oxy and deoxy form of HbS were monitored through ESI mass spectrometry. Upon oxygenation changes in the conformational flexibility across different regions of α and ß globin chains in the tetrameric HbS molecule were investigated. It was observed that oxygenation led to perturbation in the conformation of several residues around the hydrophobic patch, groove of a tetramer and axial, lateral contacts across the double strands that are involved in HbS polymerization.


Asunto(s)
Hemoglobina Falciforme/química , Espectrometría de Masas/métodos , Oxígeno/química , Polimerizacion , Recolección de Muestras de Sangre , Medición de Intercambio de Deuterio/métodos , Humanos , Conformación Proteica
18.
Biophys J ; 110(9): 2085-93, 2016 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-27166816

RESUMEN

Polymerization of sickle hemoglobin (HbS) is the primary pathogenic event of sickle cell disease. For insight into the nature of the HbS polymer fiber formation, we develop a particle model-resembling a coarse-grained molecular model-constructed to match the intermolecular contacts between HbS molecules. We demonstrate that the particle model predicts the formation of HbS polymer fibers by attachment of monomers to rough fiber ends and the growth rate increases linearly with HbS concentration. We show that the characteristic 14-molecule fiber cross section is preserved during growth. We also correlate the asymmetry of the contact sites on the HbS molecular surface with the structure of the polymer fiber composed of seven helically twisted double strands. Finally, we show that the same asymmetry mediates the mechanical and structural properties of the HbS polymer fiber.


Asunto(s)
Hemoglobina Falciforme/química , Simulación de Dinámica Molecular , Multimerización de Proteína , Fenómenos Biomecánicos , Estructura Cuaternaria de Proteína
19.
J Struct Biol ; 194(3): 446-50, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27085422

RESUMEN

The fundamental pathophysiology of sickle cell disease is predicated by the polymerization of deoxygenated (T-state) sickle hemoglobin (Hb S) into fibers that distort red blood cells into the characteristic sickle shape. The crystal structure of deoxygenated Hb S (DeoxyHb S) and other studies suggest that the polymer is initiated by a primary interaction between the mutation ßVal6 from one Hb S molecule, and a hydrophobic acceptor pocket formed by the residues ßAla70, ßPhe85 and ßLeu88 of an adjacent located Hb S molecule. On the contrary, oxygenated or liganded Hb S does not polymerize or incorporate in the polymer. In this paper we present the crystal structure of carbonmonoxy-ligated sickle Hb (COHb S) in the quaternary classical R-state at 1.76Å. The overall structure and the pathological donor and acceptor environments of COHb S are similar to those of the isomorphous CO-ligated R-state normal Hb (COHb A), but differ significantly from DeoxyHb S as expected. More importantly, the packing of COHb S molecules does not show the typical pathological interaction between ßVal6 and the ßAla70, ßPhe85 and ßLeu88 hydrophobic acceptor pocket observed in DeoxyHb S crystal. The structural analysis of COHb S, COHb A and DeoxyHb S provides atomic level insight into why liganded hemoglobin does not form a polymer.


Asunto(s)
Carboxihemoglobina/química , Hemoglobina Falciforme/química , Aminoácidos , Cristalografía por Rayos X , Hemoglobinas/química , Humanos , Ligandos , Polimerizacion , Estructura Cuaternaria de Proteína
20.
J Biol Chem ; 290(35): 21762-72, 2015 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-26187468

RESUMEN

The unliganded tetrameric Hb S has axial and lateral contacts with neighbors and can polymerize in solution. Novel recombinants of Hb S with single amino acid substitutions at the putative axial (recombinant Hb (rHb) (ßE6V/αH20R) and rHb (ßE6V/αH20Q)) or lateral (rHb (ßE6V/αH50Q)) or double amino acid substitutions at both the putative axial and lateral (rHb (ßE6V/αH20R/αH50Q) and rHb (ßE6V/αH20Q/αH50Q)) contact sites were expressed in Escherichia coli and purified for structural and functional studies. The (1)H NMR spectra of the CO and deoxy forms of these mutants indicate that substitutions at either αHis-20 or αHis-50 do not change the subunit interfaces or the heme pockets of the proteins. The double mutants show only slight structural alteration in the ß-heme pockets. All mutants have similar cooperativity (n50), alkaline Bohr effect, and autoxidation rate as Hb S. The oxygen binding affinity (P50) of the single mutants is comparable with that of Hb S. The double mutants bind oxygen with slightly higher affinity than Hb S under the acidic conditions. In high salt, rHb (ßE6V/αH20R) is the only mutant that has a shorter delay time of polymerization and forms polymers more readily than Hb S with a dextran-Csat value of 1.86 ± 0.20 g/dl. Hb S, rHb (ßE6V/αH20Q), rHb (ßE6V/αH50Q), rHb (ßE6V/αH20R/αH50Q), and rHb (ßE6V/αH20Q/αH50Q) have dextran-Csat values of 2.95 ± 0.10, 3.04 ± 0.17, 11.78 ± 0.59, 7.11 ± 0.66, and 10.89 ± 0.83 g/dl, respectively. rHb (ßE6V/αH20Q/αH50Q) is even more stable than Hb S under elevated temperature (60 °C).


Asunto(s)
Hemoglobina Falciforme/genética , Hemoglobina Falciforme/metabolismo , Mutación/genética , Hemoglobina Falciforme/química , Histidina/genética , Humanos , Cinética , Oxidación-Reducción , Oxígeno/metabolismo , Polimerizacion , Espectroscopía de Protones por Resonancia Magnética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Solubilidad , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA