Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.365
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 160(6): 1099-110, 2015 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-25768906

RESUMEN

Hepatitis C virus (HCV) uniquely requires the liver-specific microRNA-122 for replication, yet global effects on endogenous miRNA targets during infection are unexplored. Here, high-throughput sequencing and crosslinking immunoprecipitation (HITS-CLIP) experiments of human Argonaute (AGO) during HCV infection showed robust AGO binding on the HCV 5'UTR at known and predicted miR-122 sites. On the human transcriptome, we observed reduced AGO binding and functional mRNA de-repression of miR-122 targets during virus infection. This miR-122 "sponge" effect was relieved and redirected to miR-15 targets by swapping the miRNA tropism of the virus. Single-cell expression data from reporters containing miR-122 sites showed significant de-repression during HCV infection depending on expression level and site number. We describe a quantitative mathematical model of HCV-induced miR-122 sequestration and propose that such miR-122 inhibition by HCV RNA may result in global de-repression of host miR-122 targets, providing an environment fertile for the long-term oncogenic potential of HCV.


Asunto(s)
Hepacivirus/metabolismo , Hepatitis C/metabolismo , Hepatitis C/virología , MicroARNs/metabolismo , ARN Viral/metabolismo , Proteínas Argonautas/metabolismo , Secuencia de Bases , Línea Celular Tumoral , Factores Eucarióticos de Iniciación/metabolismo , Hepacivirus/genética , Humanos , Hígado/metabolismo , Hígado/virología , Datos de Secuencia Molecular , ARN Viral/química , Replicación Viral
2.
Cell ; 155(2): 384-96, 2013 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-24120137

RESUMEN

Hepatocellular carcinoma (HCC) is a slowly developing malignancy postulated to evolve from premalignant lesions in chronically damaged livers. However, it was never established that premalignant lesions actually contain tumor progenitors that give rise to cancer. Here, we describe isolation and characterization of HCC progenitor cells (HcPCs) from different mouse HCC models. Unlike fully malignant HCC, HcPCs give rise to cancer only when introduced into a liver undergoing chronic damage and compensatory proliferation. Although HcPCs exhibit a similar transcriptomic profile to bipotential hepatobiliary progenitors, the latter do not give rise to tumors. Cells resembling HcPCs reside within dysplastic lesions that appear several months before HCC nodules. Unlike early hepatocarcinogenesis, which depends on paracrine IL-6 production by inflammatory cells, due to upregulation of LIN28 expression, HcPCs had acquired autocrine IL-6 signaling that stimulates their in vivo growth and malignant progression. This may be a general mechanism that drives other IL-6-producing malignancies.


Asunto(s)
Comunicación Autocrina , Regulación Neoplásica de la Expresión Génica , Interleucina-6/metabolismo , Neoplasias Hepáticas/patología , Células Madre Neoplásicas/metabolismo , Animales , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Progresión de la Enfermedad , Hepacivirus , Hepatitis C/genética , Hepatitis C/metabolismo , Hepatitis C/patología , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Ratones , Ratones Endogámicos C57BL
3.
EMBO J ; 41(16): e110581, 2022 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-35822879

RESUMEN

Hepatitis C virus mRNA contains an internal ribosome entry site (IRES) that mediates end-independent translation initiation, requiring a subset of eukaryotic initiation factors (eIFs). Biochemical studies revealed that direct binding of the IRES to the 40S ribosomal subunit places the initiation codon into the P site, where it base pairs with eIF2-bound Met-tRNAiMet forming a 48S initiation complex. Subsequently, eIF5 and eIF5B mediate subunit joining, yielding an elongation-competent 80S ribosome. Initiation can also proceed without eIF2, in which case Met-tRNAiMet is recruited directly by eIF5B. However, the structures of initiation complexes assembled on the HCV IRES, the transitions between different states, and the accompanying conformational changes have remained unknown. To fill these gaps, we now obtained cryo-EM structures of IRES initiation complexes, at resolutions up to 3.5 Å, that cover all major stages from the initial ribosomal association, through eIF2-containing 48S initiation complexes, to eIF5B-containing complexes immediately prior to subunit joining. These structures provide insights into the dynamic network of 40S/IRES contacts, highlight the role of IRES domain II, and reveal conformational changes that occur during the transition from eIF2- to eIF5B-containing 48S complexes and prepare them for subunit joining.


Asunto(s)
Hepacivirus , Hepatitis C , Factor 2 Eucariótico de Iniciación/metabolismo , Hepacivirus/genética , Hepacivirus/metabolismo , Hepatitis C/metabolismo , Humanos , Sitios Internos de Entrada al Ribosoma , Biosíntesis de Proteínas , ARN Viral/genética , ARN Viral/metabolismo , Ribosomas/metabolismo
4.
J Biol Chem ; 300(5): 107286, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38636657

RESUMEN

Hepatitis C virus (HCV) infection is tightly connected to the lipid metabolism with lipid droplets (LDs) serving as assembly sites for progeny virions. A previous LD proteome analysis identified annexin A3 (ANXA3) as an important HCV host factor that is enriched at LDs in infected cells and required for HCV morphogenesis. To further characterize ANXA3 function in HCV, we performed proximity labeling using ANXA3-BioID2 as bait in HCV-infected cells. Two of the top proteins identified proximal to ANXA3 during HCV infection were the La-related protein 1 (LARP1) and the ADP ribosylation factor-like protein 8B (ARL8B), both of which have been previously described to act in HCV particle production. In follow-up experiments, ARL8B functioned as a pro-viral HCV host factor without localizing to LDs and thus likely independent of ANXA3. In contrast, LARP1 interacts with HCV core protein in an RNA-dependent manner and is translocated to LDs by core protein. Knockdown of LARP1 decreased HCV spreading without altering HCV RNA replication or viral titers. Unexpectedly, entry of HCV particles and E1/E2-pseudotyped lentiviral particles was reduced by LARP1 depletion, whereas particle production was not altered. Using a recombinant vesicular stomatitis virus (VSV)ΔG entry assay, we showed that LARP1 depletion also decreased entry of VSV with VSV, MERS, and CHIKV glycoproteins. Therefore, our data expand the role of LARP1 as an HCV host factor that is most prominently involved in the early steps of infection, likely contributing to endocytosis of viral particles through the pleiotropic effect LARP1 has on the cellular translatome.


Asunto(s)
Anexina A3 , Hepacivirus , Hepatitis C , Antígeno SS-B , Internalización del Virus , Humanos , Anexina A3/metabolismo , Anexina A3/genética , Autoantígenos/metabolismo , Autoantígenos/genética , Células HEK293 , Hepacivirus/metabolismo , Hepacivirus/fisiología , Hepatitis C/metabolismo , Hepatitis C/virología , Hepatitis C/genética , Interacciones Huésped-Patógeno , Gotas Lipídicas/metabolismo , Gotas Lipídicas/virología , Ribonucleoproteínas/metabolismo , Ribonucleoproteínas/genética , Proteínas del Núcleo Viral/metabolismo , Proteínas del Núcleo Viral/genética , Proteínas del Envoltorio Viral/metabolismo , Proteínas del Envoltorio Viral/genética
5.
J Virol ; 98(3): e0163823, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38353536

RESUMEN

Reverse genetics systems have played a central role in developing recombinant viruses for a wide spectrum of virus research. The circular polymerase extension reaction (CPER) method has been applied to studying positive-strand RNA viruses, allowing researchers to bypass molecular cloning of viral cDNA clones and thus leading to the rapid generation of recombinant viruses. However, thus far, the CPER protocol has only been established using cap-dependent RNA viruses. Here, we demonstrate that a modified version of the CPER method can be successfully applied to positive-strand RNA viruses that use cap-independent, internal ribosomal entry site (IRES)-mediated translation. As a proof-of-concept, we employed mammalian viruses with different types (classes I, II, and III) of IRES to optimize the CPER method. Using the hepatitis C virus (HCV, class III), we found that inclusion in the CPER assembly of an RNA polymerase I promoter and terminator, instead of those from polymerase II, allowed greater viral production. This approach was also successful in generating recombinant bovine viral diarrhea virus (class III) following transfection of MDBK/293T co-cultures to overcome low transfection efficiency. In addition, we successfully generated the recombinant viruses from clinical specimens. Our modified CPER could be used for producing hepatitis A virus (HAV, type I) as well as de novo generation of encephalomyocarditis virus (type II). Finally, we generated recombinant HCV and HAV reporter viruses that exhibited replication comparable to that of the wild-type parental viruses. The recombinant HAV reporter virus helped evaluate antivirals. Taking the findings together, this study offers methodological advances in virology. IMPORTANCE: The lack of versatility of reverse genetics systems remains a bottleneck in viral research. Especially when (re-)emerging viruses reach pandemic levels, rapid characterization and establishment of effective countermeasures using recombinant viruses are beneficial in disease control. Indeed, numerous studies have attempted to establish and improve the methods. The circular polymerase extension reaction (CPER) method has overcome major obstacles in generating recombinant viruses. However, this method has not yet been examined for positive-strand RNA viruses that use cap-independent, internal ribosome entry site-mediated translation. Here, we engineered a suitable gene cassette to expand the CPER method for all positive-strand RNA viruses. Furthermore, we overcame the difficulty of generating recombinant viruses because of low transfection efficiency. Using this modified method, we also successfully generated reporter viruses and recombinant viruses from a field sample without virus isolation. Taking these findings together, our adapted methodology is an innovative technology that could help advance virologic research.


Asunto(s)
Hepatitis C , Biosíntesis de Proteínas , Genética Inversa , Animales , Hepatitis C/metabolismo , Sitios Internos de Entrada al Ribosoma/genética , Mamíferos/genética , Virus ARN Monocatenarios Positivos/genética , Virus ARN Monocatenarios Positivos/metabolismo , Genética Inversa/métodos , ARN Viral/genética
6.
PLoS Pathog ; 19(8): e1011591, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37585449

RESUMEN

Hepatitis C virus (HCV) is a pathogen characterized not only by its persistent infection leading to the development of cirrhosis and hepatocellular carcinoma (HCC), but also by metabolic disorders such as lipid and iron dysregulation. Elevated iron load is commonly observed in the livers of patients with chronic hepatitis C, and hepatic iron overload is a highly profibrogenic and carcinogenic factor that increases the risk of HCC. However, the underlying mechanisms of elevated iron accumulation in HCV-infected livers remain to be fully elucidated. Here, we observed iron accumulation in cells and liver tissues under HCV infection and in mice expressing viral proteins from recombinant adenoviruses. We established two molecular mechanisms that contribute to increased iron load in cells caused by HCV infection. One is the transcriptional induction of hepcidin, the key hormone for modulating iron homeostasis. The transcription factor cAMP-responsive element-binding protein hepatocyte specific (CREBH), which was activated by HCV infection, not only directly recognizes the hepcidin promoter but also induces bone morphogenetic protein 6 (BMP6) expression, resulting in an activated BMP-SMAD pathway that enhances hepcidin promoter activity. The other is post-translational regulation of the iron-exporting membrane protein ferroportin 1 (FPN1), which is cleaved between residues Cys284 and Ala285 in the intracytoplasmic loop region of the central portion mediated by HCV NS3-4A serine protease. We propose that host transcriptional activation triggered by endoplasmic reticulum stress and FPN1 cleavage by viral protease work in concert to impair iron efflux, leading to iron accumulation in HCV-infected cells.


Asunto(s)
Carcinoma Hepatocelular , Hepatitis C , Neoplasias Hepáticas , Animales , Ratones , Hepacivirus/fisiología , Hepatitis C/metabolismo , Hepcidinas/genética , Hepcidinas/metabolismo , Hierro/metabolismo , Activación Transcripcional , Regulación hacia Arriba
7.
PLoS Pathog ; 19(8): e1011552, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37540723

RESUMEN

Host protein HuR translocation from nucleus to cytoplasm following infection is crucial for the life cycle of several RNA viruses including hepatitis C virus (HCV), a major causative agent of hepatocellular carcinoma. HuR assists the assembly of replication-complex on the viral-3'UTR, and its depletion hampers viral replication. Although cytoplasmic HuR is crucial for HCV replication, little is known about how the virus orchestrates the mobilization of HuR into the cytoplasm from the nucleus. We show that two viral proteins, NS3 and NS5A, act co-ordinately to alter the equilibrium of the nucleo-cytoplasmic movement of HuR. NS3 activates protein kinase C (PKC)-δ, which in-turn phosphorylates HuR on S318 residue, triggering its export to the cytoplasm. NS5A inactivates AMP-activated kinase (AMPK) resulting in diminished nuclear import of HuR through blockade of AMPK-mediated phosphorylation and acetylation of importin-α1. Cytoplasmic retention or entry of HuR can be reversed by an AMPK activator or a PKC-δ inhibitor. Our findings suggest that efforts should be made to develop inhibitors of PKC-δ and activators of AMPK, either separately or in combination, to inhibit HCV infection.


Asunto(s)
Hepacivirus , Hepatitis C , Humanos , Hepacivirus/fisiología , Proteínas Quinasas Activadas por AMP/metabolismo , Proteína 1 Similar a ELAV/genética , Proteína 1 Similar a ELAV/metabolismo , Citoplasma/metabolismo , Hepatitis C/metabolismo , Línea Celular Tumoral , Replicación Viral , Proteínas no Estructurales Virales/metabolismo
8.
PLoS Pathog ; 19(12): e1011887, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38157366

RESUMEN

The multi-step process of hepatitis C virus (HCV) entry is facilitated by various host factors, including epidermal growth factor receptor (EGFR) and the tight junction proteins claudin-1 (CLDN1) and occludin (OCLN), which are thought to function at later stages of the HCV entry process. Using single particle imaging of HCV infection of polarized hepatoma spheroids, we observed that EGFR performs multiple functions in HCV entry, both phosphorylation-dependent and -independent. We previously observed, and in this study confirmed, that EGFR is not required for HCV migration to the tight junction. EGFR is required for the recruitment of clathrin to HCV in a phosphorylation-independent manner. EGFR phosphorylation is required for virion internalization at a stage following the recruitment of clathrin. HCV entry activates the RAF-MEK-ERK signaling pathway downstream of EGFR phosphorylation. This signaling pathway regulates the sorting and maturation of internalized HCV into APPL1- and EEA1-associated early endosomes, which form the site of virion uncoating. The tight junction proteins, CLDN1 and OCLN, function at two distinct stages of HCV entry. Despite its appreciated function as a "late receptor" in HCV entry, CLDN1 is required for efficient HCV virion accumulation at the tight junction. Huh-7.5 cells lacking CLDN1 accumulate HCV virions primarily at the initial basolateral surface. OCLN is required for the late stages of virion internalization. This study produced further insight into the unusually complex HCV endocytic process.


Asunto(s)
Claudina-1 , Hepacivirus , Hepatitis C , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Clatrina , Claudina-1/genética , Claudina-1/metabolismo , Receptores ErbB , Hepacivirus/fisiología , Hepatitis C/metabolismo , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Ocludina/metabolismo , Internalización del Virus
9.
EMBO Rep ; 24(11): e56614, 2023 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-37789674

RESUMEN

ATPase family AAA domain-containing protein 1 (ATAD1) maintains mitochondrial homeostasis by removing mislocalized tail-anchored (TA) proteins from the mitochondrial outer membrane (MOM). Hepatitis C virus (HCV) infection induces mitochondrial fragmentation, and viral NS5B protein is a TA protein. Here, we investigate whether ATAD1 plays a role in regulating HCV infection. We find that HCV infection has no effect on ATAD1 expression, but knockout of ATAD1 significantly enhances HCV infection; this enhancement is suppressed by ATAD1 complementation. NS5B partially localizes to mitochondria, dependent on its transmembrane domain (TMD), and induces mitochondrial fragmentation, which is further enhanced by ATAD1 knockout. ATAD1 interacts with NS5B, dependent on its three internal domains (TMD, pore-loop 1, and pore-loop 2), and induces the proteasomal degradation of NS5B. In addition, we provide evidence that ATAD1 augments the antiviral function of MAVS upon HCV infection. Taken together, we show that the mitochondrial quality control exerted by ATAD1 can be extended to a novel antiviral function through the extraction of the viral TA-protein NS5B from the mitochondrial outer membrane.


Asunto(s)
Hepacivirus , Hepatitis C , Humanos , Hepacivirus/metabolismo , Proteínas Virales/metabolismo , Hepatitis C/metabolismo , Mitocondrias/metabolismo , Antivirales , Proteínas no Estructurales Virales/genética , Proteínas no Estructurales Virales/metabolismo
10.
Nucleic Acids Res ; 51(22): 12397-12413, 2023 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-37941151

RESUMEN

Hepatitis C virus (HCV) requires two cellular factors, microRNA-122 (miR-122) and poly(C) binding protein 2 (PCBP2), for optimal replication. These host factors compete for binding to the 5' end of the single-stranded RNA genome to regulate the viral replication cycle. To understand how they interact with the RNA, we measured binding affinities of both factors for an RNA probe representing the 5' 45 nucleotides of the HCV genome (HCV45). Isothermal titration calorimetry revealed two, unequal miR-122 binding sites in HCV45, high-affinity (S1) and low-affinity (S2), differing roughly 100-fold in binding affinity. PCBP2 binds a site overlapping S2 with affinity similar to miR-122 binding to S2. PCBP2 circularizes the genome by also binding to the 3' UTR, bridging the 5' and 3' ends of the genome. By competing with PCBP2 for binding at S2, miR-122 disrupts PCBP2-mediated genome circularization. We show that the viral RNA-dependent RNA polymerase, NS5B, also binds to HCV45, and that the binding affinity of NS5B is increased in the presence of miR-122, suggesting miR-122 promotes recruitment of the polymerase. We propose that competition between miR-122 and PCBP2 for HCV45 functions as a translation-to-replication switch, determining whether the RNA genome templates protein synthesis or RNA replication.


Asunto(s)
Hepacivirus , Hepatitis C , MicroARNs , Humanos , Regiones no Traducidas 5' , Proteínas Portadoras/genética , Hepacivirus/fisiología , Hepatitis C/metabolismo , Hepatitis C/virología , MicroARNs/genética , MicroARNs/metabolismo , ARN Viral/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Replicación Viral/genética
11.
Traffic ; 23(1): 63-80, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34729868

RESUMEN

Lipid droplets (LDs) are involved in viral infections, but exactly how remains unclear. Here, we study the hepatitis C virus (HCV) whose core capsid protein binds to LDs but is also involved in the assembly of virions at the endoplasmic reticulum (ER) bilayer. We found that the amphipathic helix-containing domain of core, D2, senses triglycerides (TGs) rather than LDs per se. In the absence of LDs, D2 can bind to the ER membrane but only if TG molecules are present in the bilayer. Accordingly, the pharmacological inhibition of the diacylglycerol O-acyltransferase enzymes, mediating TG synthesis in the ER, inhibits D2 association with the bilayer. We found that TG molecules enable D2 to fold into alpha helices. Sequence analysis reveals that D2 resembles the apoE lipid-binding region. Our data support that TG in LDs promotes the folding of core, which subsequently relocalizes to contiguous ER regions. During this motion, core may carry TG molecules to these regions where HCV lipoviroparticles likely assemble. Consistent with this model, the inhibition of Arf1/COPI, which decreases LD surface accessibility to proteins and ER-LD material exchange, severely impedes the assembly of virions. Altogether, our data uncover a critical function of TG in the folding of core and HCV replication and reveals, more broadly, how TG accumulation in the ER may provoke the binding of soluble amphipathic helix-containing proteins to the ER bilayer.


Asunto(s)
Retículo Endoplásmico , Hepatitis C , Retículo Endoplásmico/metabolismo , Hepacivirus/fisiología , Hepatitis C/metabolismo , Humanos , Gotas Lipídicas/metabolismo , Triglicéridos/metabolismo , Proteínas del Núcleo Viral/metabolismo
12.
J Virol ; 97(7): e0018023, 2023 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-37338368

RESUMEN

Although most of the early events of the hepatitis C virus (HCV) life cycle are well characterized, our understanding of HCV egress is still unclear. Some reports implicate the conventional endoplasmic reticulum (ER)-Golgi route, while some propose noncanonical secretory routes. Initially, the envelopment of HCV nucleocapsid occurs by budding into the ER lumen. Subsequently, the HCV particle exit from the ER is assumed to be mediated by coat protein complex II (COPII) vesicles. COPII vesicle biogenesis also involves the recruitment of cargo to the site of vesicle biogenesis via interaction with COPII inner coat proteins. We investigated the modulation and the specific role of the individual components of the early secretory pathway in HCV egress. We observed that HCV inhibits cellular protein secretion and triggers the reorganization of the ER exit sites and ER-Golgi intermediate compartments (ERGIC). Gene-specific knockdown of the components of this pathway such as SEC16A, TFG, ERGIC-53, and COPII coat proteins demonstrated the functional significance of these components and the distinct role played by these proteins in various aspects of the HCV life cycle. SEC16A is essential for multiple steps in the HCV life cycle, whereas TFG is specifically involved in HCV egress and ERGIC-53 is crucial for HCV entry. Overall, our study establishes that the components of the early secretory pathway are essential for HCV propagation and emphasize the importance of the ER-Golgi secretory route in this process. Surprisingly, these components are also required for the early stages of the HCV life cycle due to their role in overall intracellular trafficking and homeostasis of the cellular endomembrane system. IMPORTANCE The virus life cycle involves entry into the host, replication of the genome, assembly of infectious progeny, and their subsequent release. Different aspects of the HCV life cycle, including entry, genome replication, and assembly, are well characterized; however, our understanding of the HCV release is still not clear and subject to debate due to varied findings. Here, we attempted to address this controversy and enhance our understanding of HCV egress by evaluating the role of the different components of the early secretory pathway in the HCV life cycle. To our surprise, we found that the components of the early secretory pathway are not only essential for HCV release but also contribute to many other earlier events of the HCV life cycle. This study emphasizes the importance of the early secretory pathway for the establishment of productive HCV infection in hepatocytes.


Asunto(s)
Retículo Endoplásmico , Hepatitis C , Humanos , Animales , Retículo Endoplásmico/metabolismo , Aparato de Golgi/metabolismo , Vías Secretoras , Hepacivirus/metabolismo , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo , Transporte de Proteínas , Hepatitis C/metabolismo , Estadios del Ciclo de Vida , Vesículas Cubiertas por Proteínas de Revestimiento/metabolismo
13.
PLoS Pathog ; 18(10): e1010895, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36215335

RESUMEN

The hepatitis C virus (HCV) life cycle is highly regulated and characterized by a step-wise succession of interactions between viral and host cell proteins resulting in the assembly of macromolecular complexes, which catalyse genome replication and/or virus production. Non-structural (NS) protein 3, comprising a protease and a helicase domain, is involved in orchestrating these processes by undergoing protein interactions in a temporal fashion. Recently, we identified a multifunctional NS3 protease surface patch promoting pivotal protein-protein interactions required for early steps of the HCV life cycle, including NS3-mediated NS2 protease activation and interactions required for replicase assembly. In this work, we extend this knowledge by identifying further NS3 surface determinants important for NS5A hyperphosphorylation, replicase assembly or virion morphogenesis, which map to protease and helicase domain and form a contiguous NS3 surface area. Functional interrogation led to the identification of phylogenetically conserved amino acid positions exerting a critical function in virion production without affecting RNA replication. These findings illustrate that NS3 uses a multipurpose protein surface to orchestrate the step-wise assembly of functionally distinct multiprotein complexes. Taken together, our data provide a basis to dissect the temporal formation of viral multiprotein complexes required for the individual steps of the HCV life cycle.


Asunto(s)
Hepacivirus , Hepatitis C , Humanos , Hepacivirus/fisiología , Proteínas no Estructurales Virales/metabolismo , Ensamble de Virus/genética , Replicación Viral/fisiología , Línea Celular , Virión/metabolismo , Hepatitis C/metabolismo , Morfogénesis , Péptido Hidrolasas/metabolismo
14.
PLoS Pathog ; 18(1): e1010210, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-35085375

RESUMEN

In the course of experiments aimed at deciphering the inhibition mechanism of mycophenolic acid and ribavirin in hepatitis C virus (HCV) infection, we observed an inhibitory effect of the nucleoside guanosine (Gua). Here, we report that Gua, and not the other standard nucleosides, inhibits HCV replication in human hepatoma cells. Gua did not directly inhibit the in vitro polymerase activity of NS5B, but it modified the intracellular levels of nucleoside di- and tri-phosphates (NDPs and NTPs), leading to deficient HCV RNA replication and reduction of infectious progeny virus production. Changes in the concentrations of NTPs or NDPs modified NS5B RNA polymerase activity in vitro, in particular de novo RNA synthesis and template switching. Furthermore, the Gua-mediated changes were associated with a significant increase in the number of indels in viral RNA, which may account for the reduction of the specific infectivity of the viral progeny, suggesting the presence of defective genomes. Thus, a proper NTP:NDP balance appears to be critical to ensure HCV polymerase fidelity and minimal production of defective genomes.


Asunto(s)
Guanosina/metabolismo , Hepacivirus/metabolismo , Mutación INDEL/fisiología , Nucleótidos/metabolismo , Replicación Viral/fisiología , Línea Celular Tumoral , Guanosina/farmacología , Hepatitis C/metabolismo , Humanos , ARN Viral/genética , Replicación Viral/efectos de los fármacos
15.
Proc Natl Acad Sci U S A ; 118(17)2021 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-33888584

RESUMEN

Older age at the time of infection with hepatitis viruses is associated with an increased risk of liver fibrosis progression. We hypothesized that the pace of fibrosis progression may reflect changes in gene expression within the aging liver. We compared gene expression in liver specimens from 54 adult donors without evidence of fibrosis, including 36 over 40 y old and 18 between 18 and 40 y old. Chitinase 3-like 1 (CHI3L1), which encodes chitinase-like protein YKL-40/CHI3L1, was identified as the gene with the greatest age-dependent increase in expression in liver tissue. We investigated the cellular source of CHI3L1 in the liver and its function using liver tissue specimens and in vitro models. CHI3L1 expression was significantly higher in livers of patients with cirrhosis of diverse etiologies compared with controls represented by patients who underwent liver resection for hemangioma. The highest intrahepatic CHI3L1 expression was observed in cirrhosis due to hepatitis D virus, followed by hepatitis C virus, hepatitis B virus, and alcohol-induced cirrhosis. In situ hybridization of CHI3L1 messenger RNA (mRNA) identified hepatocytes as the major producers of CHI3L1 in normal liver and in cirrhotic tissue, wherein hepatocytes adjacent to fibrous septa showed higher CHI3L1 expression than did those in more distal areas. In vitro studies showed that recombinant CHI3L1 promotes proliferation and activation of primary human hepatic stellate cells (HSCs), the major drivers of liver fibrosis. These findings collectively demonstrate that CHI3L1 promotes liver fibrogenesis through a direct effect on HSCs and support a role for CHI3L1 in the increased susceptibility of aging livers to fibrosis progression.


Asunto(s)
Proteína 1 Similar a Quitinasa-3/metabolismo , Cirrosis Hepática/metabolismo , Cirrosis Hepática/patología , Adolescente , Adulto , Envejecimiento/fisiología , Biomarcadores/metabolismo , Proteína 1 Similar a Quitinasa-3/fisiología , Quitinasas/metabolismo , Femenino , Expresión Génica/genética , Hepacivirus/patogenicidad , Células Estrelladas Hepáticas/patología , Hepatitis C/metabolismo , Hepatocitos/metabolismo , Hepatocitos/virología , Humanos , Hígado/citología , Masculino
16.
J Biol Chem ; 298(6): 101983, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35483451

RESUMEN

miRNAs are short, noncoding RNAs that negatively and specifically regulate protein expression, the cumulative effects of which can result in broad changes to cell systems and architecture. The miRNA miR-27b is known to regulate lipid regulatory pathways in the human liver and is also induced by the hepatitis C virus (HCV). However, the functional targets of miR-27b are not well established. Herein, an activity-based protein profiling method using a serine hydrolase probe, coupled with stable isotope labeling and mass spectrometry identified direct and indirect targets of miR-27b. The hepatic lipase C (LIPC) stood out as both highly dependent on miR-27b and as a major modulator of lipid pathway misregulation. Modulation of miR-27b using both exogenous miRNA mimics and inhibitors demonstrated that transcription factors Jun, PPARα, and HNF4α, all of which also influence LIPC levels and activity, are regulated by miR-27b. LIPC was furthermore shown to affect the progress of the life cycle of HCV and to decrease levels of intracellular triglycerides, upon which HCV is known to depend. In summary, this work has demonstrated that miR-27b mediates HCV infection by downregulating LIPC, thereby reducing triglyceride degradation, which in turn increases cellular lipid levels.


Asunto(s)
Hepatitis C , MicroARNs , Hepacivirus/fisiología , Hepatitis C/metabolismo , Humanos , Lipasa/genética , Lípidos , MicroARNs/genética , MicroARNs/metabolismo , Triglicéridos
17.
J Biol Chem ; 298(11): 102486, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36108740

RESUMEN

Hepatitis C virus (HCV) is a major cause of liver-related diseases and hepatocellular carcinoma. The helicase domain of one of the nonstructural proteins of HCV, NS3 (nonstructural protein 3), is essential for viral replication; however, its specific biological role is still under investigation. Here, we set out to determine the interaction between a purified recombinant full length NS3 and synthetic guanine-rich substrates that represent the conserved G-quadruplex (G4)-forming sequences in the HCV-positive and HCV-negative strands. We performed fluorescence anisotropy binding, G4 reporter duplex unwinding, and G4RNA trapping assays to determine the binding and G4 unfolding activity of NS3. Our data suggest that NS3 can unfold the conserved G4 structures present within the genome and the negative strand of HCV. Additionally, we found the activity of NS3 on a G4RNA was reduced significantly in the presence of a G4 ligand. The ability of NS3 to unfold HCV G4RNA could imply a novel biological role of the viral helicase in replication.


Asunto(s)
Hepatitis C , Neoplasias Hepáticas , Humanos , Proteínas no Estructurales Virales/metabolismo , Hepacivirus/genética , Hepacivirus/metabolismo , ARN Viral/genética , ARN Viral/metabolismo , Hepatitis C/metabolismo , ARN Helicasas/metabolismo
18.
Mol Med ; 29(1): 71, 2023 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-37280507

RESUMEN

BACKGROUND: Hepatitis C virus (HCV) infection is a global public health problem and Egypt has the highest HCV prevalence worldwide. Hence, global efforts target to eliminate HCV by 2030. Sofosbuvir is a nucleotide analogue inhibitor of HCV polymerase essential for viral replication. Animal studies prove that Sofosbuvir metabolites cross the placenta and are excreted in the milk of nursing animals. We aimed to investigate the possible effects of preconception maternal exposure to Sofosbuvir on mitochondrial biogenesis in prenatal fetal liver, skeletal muscle, and placental tissues. METHODS: The study was conducted on 20 female albino rats divided into a control group receiving a placebo and an exposed group receiving 4 mg/kg orally/day for 3 months of Sofosbuvir. At the end of the treatment period, pregnancy was induced in both groups by mating with healthy male rats overnight. At gestational day 17, all pregnant female rats were sacrificed. Each fetus was dissected to obtain the fetal liver, skeletal muscle, and placental tissues. RESULTS: The results of our study indicated that the exposure of young female rats to Sofosbuvir affects pregnancy outcomes. Fetal liver and muscle showed lower mitochondrial DNA-copy number (mtDNA-CN) by about 24% and 29% respectively, peroxisome proliferator-activated receptor-gamma coactivator-1 alpha and its downstream targets; nuclear respiratory factor-1 and mitochondrial transcription factor A. While the placental tissues showed different patterns, particularly elevated in mtDNA-CN by about 43%. CONCLUSIONS: The study provides preliminary evidence of the detrimental effects of Sofosbuvir on the pregnancy outcomes of the exposed females and may impair the placental and fetal organs' development. These effects may be mediated through modulating mitochondrial homeostasis and functions.


Asunto(s)
Hepatitis C , Sofosbuvir , Humanos , Femenino , Embarazo , Masculino , Ratas , Animales , Sofosbuvir/farmacología , Sofosbuvir/uso terapéutico , Placenta/metabolismo , Exposición Materna/efectos adversos , Biogénesis de Organelos , ADN Mitocondrial/metabolismo , ADN Mitocondrial/farmacología , Feto , Hepatitis C/tratamiento farmacológico , Hepatitis C/metabolismo , Genotipo
19.
J Virol ; 96(22): e0099722, 2022 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-36314819

RESUMEN

Modification of the hepatitis C virus (HCV) positive-strand RNA genome by N6-methyladenosine (m6A) regulates the viral life cycle. This life cycle takes place solely in the cytoplasm, while m6A addition on cellular mRNA takes place in the nucleus. Thus, the mechanisms by which m6A is deposited on the viral RNA have been unclear. In this work, we find that m6A modification of HCV RNA by the m6A-methyltransferase proteins methyltransferase-like 3 and 14 (METTL3 and METTL14) is regulated by Wilms' tumor 1-associating protein (WTAP). WTAP, a predominantly nuclear protein, is an essential member of the cellular mRNA m6A-methyltransferase complex and known to target METTL3 to mRNA. We found that HCV infection induces localization of WTAP to the cytoplasm. Importantly, we found that WTAP is required for both METTL3 interaction with HCV RNA and m6A modification across the viral RNA genome. Further, we found that WTAP, like METTL3 and METTL14, negatively regulates the production of infectious HCV virions, a process that we have previously shown is regulated by m6A. Excitingly, WTAP regulation of both HCV RNA m6A modification and virion production was independent of its ability to localize to the nucleus. Together, these results reveal that WTAP is critical for HCV RNA m6A modification by METTL3 and METTL14 in the cytoplasm. IMPORTANCE Positive-strand RNA viruses such as HCV represent a significant global health burden. Previous work has described that HCV RNA contains the RNA modification m6A and how this modification regulates viral infection. Yet, how this modification is targeted to HCV RNA has remained unclear due to the incompatibility of the nuclear cellular processes that drive m6A modification with the cytoplasmic HCV life cycle. In this study, we present evidence for how m6A modification is targeted to HCV RNA in the cytoplasm by a mechanism in which WTAP recruits the m6A-methyltransferase METTL3 to HCV RNA. This targeting strategy for m6A modification of cytoplasmic RNA viruses is likely relevant for other m6A-modified positive-strand RNA viruses with cytoplasmic life cycles such as enterovirus 71 and SARS-CoV-2 and provides an exciting new target for potential antiviral therapies.


Asunto(s)
Proteínas de Ciclo Celular , Hepatitis C , Metiltransferasas , Factores de Empalme de ARN , Humanos , Proteínas de Ciclo Celular/metabolismo , Núcleo Celular/metabolismo , Hepacivirus/genética , Hepacivirus/metabolismo , Hepatitis C/genética , Hepatitis C/metabolismo , Metiltransferasas/genética , Metiltransferasas/metabolismo , Factores de Empalme de ARN/metabolismo , ARN Mensajero/genética , ARN Viral/genética , ARN Viral/metabolismo
20.
PLoS Pathog ; 17(9): e1009889, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34492079

RESUMEN

Hepatitis C virus (HCV) infection induces the degradation and decreases the secretion of apolipoprotein B (ApoB). Impaired production and secretion of ApoB-containing lipoprotein is associated with an increase in hepatic steatosis. Therefore, HCV infection-induced degradation of ApoB may contribute to hepatic steatosis and decreased lipoprotein secretion, but the mechanism of HCV infection-induced ApoB degradation has not been completely elucidated. In this study, we found that the ApoB level in HCV-infected cells was regulated by proteasome-associated degradation but not autophagic degradation. ApoB was degraded by the 20S proteasome in a ubiquitin-independent manner. HCV induced the oxidation of ApoB via oxidative stress, and oxidized ApoB was recognized by the PSMA5 and PSMA6 subunits of the 20S proteasome for degradation. Further study showed that ApoB was degraded at endoplasmic reticulum (ER)-associated lipid droplets (LDs) and that the retrotranslocation and degradation of ApoB required Derlin-1 but not gp78 or p97. Moreover, we found that knockdown of ApoB before infection increased the cellular lipid content and enhanced HCV assembly. Overexpression of ApoB-50 inhibited lipid accumulation and repressed viral assembly in HCV-infected cells. Our study reveals a novel mechanism of ApoB degradation and lipid accumulation during HCV infection and might suggest new therapeutic strategies for hepatic steatosis.


Asunto(s)
Apolipoproteínas B/metabolismo , Hígado Graso/virología , Hepacivirus/metabolismo , Hepatitis C/patología , Línea Celular , Hígado Graso/metabolismo , Hepatitis C/metabolismo , Humanos , Oxidación-Reducción , Estrés Oxidativo/fisiología , Complejo de la Endopetidasa Proteasomal/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA