Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 10.610
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 187(8): 1907-1921.e16, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38552624

RESUMEN

Hydroxyproline-rich glycoproteins (HRGPs) are a ubiquitous class of protein in the extracellular matrices and cell walls of plants and algae, yet little is known of their native structures or interactions. Here, we used electron cryomicroscopy (cryo-EM) to determine the structure of the hydroxyproline-rich mastigoneme, an extracellular filament isolated from the cilia of the alga Chlamydomonas reinhardtii. The structure demonstrates that mastigonemes are formed from two HRGPs (a filament of MST1 wrapped around a single copy of MST3) that both have hyperglycosylated poly(hydroxyproline) helices. Within the helices, O-linked glycosylation of the hydroxyproline residues and O-galactosylation of interspersed serine residues create a carbohydrate casing. Analysis of the associated glycans reveals how the pattern of hydroxyproline repetition determines the type and extent of glycosylation. MST3 possesses a PKD2-like transmembrane domain that forms a heteromeric polycystin-like cation channel with PKD2 and SIP, explaining how mastigonemes are tethered to ciliary membranes.


Asunto(s)
Chlamydomonas reinhardtii , Cilios , Glicoproteínas , Cilios/química , Glicoproteínas/química , Glicosilación , Hidroxiprolina/química , Plantas/metabolismo , Chlamydomonas reinhardtii/química
2.
Plant J ; 114(2): 371-389, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36775989

RESUMEN

Arabinogalactan-proteins (AGPs) are hydroxyproline-rich glycoproteins containing a high sugar content and are widely distributed in the plant kingdom. AGPs have long been suggested to play important roles in sexual plant reproduction. The synthesis of their complex carbohydrates is initiated by a family of hydroxyproline galactosyltransferase (Hyp-GALT) enzymes which add the first galactose to Hyp residues in the protein backbone. Eight Hyp-GALT enzymes have been identified so far, and in the present work a mutant affecting five of these enzymes (galt2galt5galt7galt8galt9) was analyzed regarding the reproductive process. The galt25789 mutant presented a low seed set, and reciprocal crosses indicated a significant female gametophytic contribution to this mutant phenotype. Mutant ovules revealed abnormal callose accumulation inside the embryo sac and integument defects at the micropylar region culminating in defects in pollen tube reception. In addition, immunolocalization and biochemical analyses allowed the detection of a reduction in the amount of glucuronic acid in mutant ovary AGPs. Dramatically low amounts of high-molecular-weight Hyp-O-glycosides obtained following size exclusion chromatography of base-hydrolyzed mutant AGPs compared to the wild type indicated the presence of underglycosylated AGPs in the galt25789 mutant, while the monosaccharide composition of these Hyp-O-glycosides displayed no significant changes compared to the wild-type Hyp-O-glycosides. The present work demonstrates the functional importance of the carbohydrate moieties of AGPs in ovule development and pollen-pistil interactions.


Asunto(s)
Arabidopsis , Arabidopsis/genética , Hidroxiprolina/metabolismo , Galactosiltransferasas/genética , Galactosiltransferasas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Mucoproteínas/genética , Mucoproteínas/metabolismo , Flores/genética , Polen/metabolismo , Glicósidos/metabolismo
3.
J Am Chem Soc ; 146(34): 23663-23668, 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-38980938

RESUMEN

The interactions between glycosaminoglycans (GAGs) and proteins are essential in numerous biochemical processes that involve ion-pair interactions. However, there is no evidence of direct and specific interactions between GAGs and collagen proteins in native cartilage. The resolution of solid-state NMR (ssNMR) can offer such information but the detection of GAG interactions in cartilage is limited by the sensitivity of the experiments when 13C and 15N isotopes are at natural abundance. In this communication, this limitation is overcome by taking advantage of dynamic nuclear polarization (DNP)-enhanced magic-angle spinning (MAS) experiments to obtain two-dimensional (2D) 15N-13C and 13C-13C correlations on native samples at natural abundance. These experiments unveiled inter-residue correlations in the aliphatic regions of the collagen protein previously unobserved. Additionally, our findings provide direct evidence of charge-pair salt-bridge interactions between negatively charged GAGs and positively charged arginine (Arg) residues of collagen protein. We also identified potential hydrogen bonding interactions between hydroxyproline (Hyp) and GAGs, offering atomic insights into the biochemical interactions within the extracellular matrix of native cartilage. Our approach may provide a new avenue for the structural characterization of other native systems.


Asunto(s)
Cartílago , Colágeno , Glicosaminoglicanos , Resonancia Magnética Nuclear Biomolecular , Colágeno/química , Colágeno/metabolismo , Glicosaminoglicanos/química , Glicosaminoglicanos/metabolismo , Cartílago/metabolismo , Cartílago/química , Animales , Hidroxiprolina/química , Enlace de Hidrógeno , Sales (Química)/química
4.
Anal Biochem ; 689: 115506, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38460899

RESUMEN

Prolidase (EC.3.4.13.9) is a dipeptidase known nowadays to play a pivotal role in several physiological and pathological processes. More in particular, this enzyme is involved in the cleavage of proline- and hydroxyproline-containing dipeptides (imidodipeptides), thus finely regulating the homeostasis of free proline and hydroxyproline. Abnormally high or low levels of prolidase have been found in numerous acute and chronic syndromes affecting humans (chronic liver fibrosis, viral and acute hepatitis, cancer, neurological disorders, inflammation, skin diseases, intellectual disability, respiratory infection, and others) for which the content of proline is well recognized as a clinical marker. As a consequence, the accurate analytical determination of prolidase activity is of greatly significant importance in clinical diagnosis and therapy. Apart from the Chinard's assay, some other more sensitive and well validated methodologies have been published. These include colorimetric and spectrophotometric determinations of free proline produced by enzymatic reactions, capillary electrophoresis, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry, electrochemoluminescence, thin layer chromatography, and HPLC. The aim of this comprehensive review is to make a detailed survey of the in so far reported analytical techniques, highlighting their general features, as well as their advantages and possible drawbacks, providing in the meantime suggestions to stimulate further research in this intriguing field.


Asunto(s)
Dipeptidasas , Pruebas de Enzimas , Humanos , Colorimetría , Dipeptidasas/análisis , Dipeptidasas/química , Fibrosis , Hidroxiprolina , Prolina/análisis , Pruebas de Enzimas/métodos
5.
Amino Acids ; 56(1): 21, 2024 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-38461423

RESUMEN

Metformin (N,N-dimethylbiguanide), an inhibitor of gluconeogenesis and insulin sensitizer, is widely used for the treatment of type 2 diabetes. In some patients with renal insufficiency, metformin can accumulate and cause lactic acidosis, known as metformin-associated lactic acidosis (MALA, defined as lactate ≥ 5 mM, pH < 7.35, and metformin concentration > 38.7 µM). Here, we report on the post-translational modification (PTM) of proline (Pro) to 4-hydroxyproline (OH-Pro) in metformin-associated lactic acidosis and in metformin-treated patients with Becker muscular dystrophy (BMD). Pro and OH-Pro were measured simultaneously by gas chromatography-mass spectrometry before, during, and after renal replacement therapy in a patient admitted to the intensive care unit (ICU) because of MALA. At admission to the ICU, plasma metformin concentration was 175 µM, with a corresponding lactate concentration of 20 mM and a blood pH of 7.1. Throughout ICU admission, the Pro concentration was lower compared to healthy controls. Renal excretion of OH-Pro was initially high and decreased over time. Moreover, during the first 12 h of ICU admission, OH-Pro seems to be renally secreted while thereafter, it was reabsorbed. Our results suggest that MALA is associated with hyper-hydroxyprolinuria due to elevated PTM of Pro to OH-Pro by prolyl-hydroxylase and/or inhibition of OH-Pro metabolism in the kidneys. In BMD patients, metformin, at the therapeutic dose of 3 × 500 mg per day for 6 weeks, increased the urinary excretion of OH-Pro suggesting elevation of Pro hydroxylation to OH-Pro. Our study suggests that metformin induces specifically the expression/activity of prolyl-hydroxylase in metformin intoxication and BMD.


Asunto(s)
Acidosis Láctica , Diabetes Mellitus Tipo 2 , Metformina , Distrofia Muscular de Duchenne , Humanos , Metformina/efectos adversos , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Acidosis Láctica/inducido químicamente , Acidosis Láctica/terapia , Hidroxiprolina , Cromatografía de Gases y Espectrometría de Masas , Prolina , Hidroxilación , Distrofia Muscular de Duchenne/tratamiento farmacológico , Ácido Láctico , Oxigenasas de Función Mixta/uso terapéutico , Hipoglucemiantes/efectos adversos
6.
Plant Cell Rep ; 43(8): 202, 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39073636

RESUMEN

KEY MESSAGE: E1 holoenzyme was extensively Hyp-O-glycosylated at the proline rich linker region in plants, which substantially increased the molecular size and improved the enzymatic digestibility of the biomass of transgenic plants. Thermophilic E1 endo-1,4-ß-glucanase derived from Acidothermus cellulolyticus has been frequently expressed in planta to reconstruct the plant cell wall to overcome biomass recalcitrance. However, the expressed holoenzyme exhibited a larger molecular size (~ 100 kDa) than the theoretical one (57 kDa), possibly due to posttranslational modifications in the recombinant enzyme within plant cells. This study investigates the glycosylation of the E1 holoenzyme expressed in tobacco plants and determines its impact on enzyme activity and biomass digestibility. The E1 holoenzyme, E1 catalytic domain (E1cd) and E1 linker (E1Lk) were each expressed in tobacco plants and suspension cells. The accumulation of holoenzyme was 2.0- to 2.3- times higher than that of E1cd. The proline-rich E1Lk region was extensively hydroxyproline-O-glycosylated with arabinogalactan polysaccharides. Compared with E1cd, the holoenzyme displayed a broader optimal temperature range (70 to 85 ºC). When grown in greenhouse, the expression of E1 holoenzyme induced notable phenotypic changes in plants, including delayed flowering and leaf variegation post-flowering. However, the final yield of plant biomass was not significantly affected. Finally, plant biomass engineering with E1 holoenzyme showed 1.7- to 1.8-fold higher saccharification efficiency than the E1cd lines and 2.4- to 2.7-fold higher than the wild-type lines, which was ascribed to the synergetic action of the E1Lk and cellulose binding module in reducing cell wall recalcitrance.


Asunto(s)
Biomasa , Celulasa , Hidroxiprolina , Nicotiana , Plantas Modificadas Genéticamente , Glicosilación , Celulasa/metabolismo , Celulasa/genética , Nicotiana/genética , Nicotiana/metabolismo , Hidroxiprolina/metabolismo , Pared Celular/metabolismo , Celulosa/metabolismo , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/genética , Caldicellulosiruptor/genética , Caldicellulosiruptor/metabolismo
7.
Skin Res Technol ; 30(8): e13896, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39128890

RESUMEN

BACKGROUND: Dorema aucheri gum (DAG) is a bitter flavonoid gum widely used for numerous medicinal purposes including wound recovery. The present work investigates the acute toxicity and wound-healing effects of DAG in excisional skin injury in rats. MATERIALS AND METHODS: Sprague Dawley rats (24) were clustered into four groups, each rat had a full-thickness excisional dorsal neck injury (2.00 cm) and addressed with 0.2 mL of the following treatments for 15 days: Group A (vehicle), rats addressed with normal saline; Group B, rats received intrasite gel; C and D, rats addressed with 250 and 500 mg/kg of DAG, respectively. RESULTS: The results revealed the absence of any toxic signs in rats who received oral dosages of 2 and 5 g/kg of DAG. Wound healing was significantly accelerated following DAG treatments indicated by smaller open areas and higher wound contraction percentages compared to vehicle rats. Histological evaluation revealed higher fibroblast formation, collagen deposition, and noticeably lower inflammatory cell infiltration in granulated skin tissues of DAG-addressed rats compared to vehicle rats. DAG treatment caused significant modulation of immunohistochemical proteins (decreased Bax and increased HSP 70) and inflammatory mediators (reduced TNF-α, IL-6, and magnified IL-10), which were significantly varied compared to vehicle rats. Moreover, topical DAG treatment led to significant upregulation of the hydroxyproline (HDX) (collagen) and antioxidant content. At the same time, decreased the lipid peroxidation (MDA) levels in healed tissues obtained from DAG-treated rats. CONCLUSION: The present wound contraction by DAG might be linked with the modulatory effect of its phytochemicals (polysaccharides, flavonoids, and phenolic) on the cellular mechanisms, which justify their folkloric use and provokes further investigation as therapeutic drug additives for wound contraction.


Asunto(s)
Flavonoides , Piel , Cicatrización de Heridas , Proteína X Asociada a bcl-2 , Animales , Masculino , Ratas , Proteína X Asociada a bcl-2/metabolismo , Flavonoides/farmacología , Proteínas HSP70 de Choque Térmico/metabolismo , Hidroxiprolina/metabolismo , Gomas de Plantas/farmacología , Ratas Sprague-Dawley , Piel/efectos de los fármacos , Piel/lesiones , Piel/patología , Piel/metabolismo , Cicatrización de Heridas/efectos de los fármacos
8.
BMC Pulm Med ; 24(1): 457, 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39285370

RESUMEN

BACKGROUND: Idiopathic pulmonary fibrosis (IPF) is an age-related disease severely affecting life quality with its prevalence rising as the population ages, yet there is still no effective treatment available. Cell therapy has emerged as a promising option for IPF, however, the absence of mature and stable animal models for IPF immunodeficiency hampers preclinical evaluations of human cell therapies, primarily due to rapid immune clearance of administered cells. This study aims to establish a reliable pulmonary fibrosis (PF) model in immunodeficient mice that supports autologous cell therapy and to investigate underlying mechanism. METHODS: We utilized thirty 5-week-old male NOD/SCID mice, categorizing them into three age groups: 12weeks, 32 weeks and 43 weeks, with 6 mice euthanized randomly from each cohort for lung tissue analysis. We assessed fibrosis using HE staining, Masson's trichrome staining, α-SMA immunohistochemistry and hydroxyproline content measurement. Further, ß-galactosidase staining and gene expression analysis of MMP9, TGF-ß1, TNF-α, IL-1ß, IL-6, IL-8, SOD1, SOD2, NRF2, SIRT1, and SIRT3 were performed. ELISA was employed to quantify protein levels of TNF-α, TGF-ß1, and IL-8. RESULTS: When comparing lung tissues from 32-week-old and 43-week-old mice to those from 12-week-old mice, we noted a marked increase in inflammatory infiltration, fibrosis severity, and hydroxyproline content, alongside elevated expression levels of α-SMA and MMP9. Notably, the degree of fibrosis intensified with age. Additionally, ß-galactosidase staining became more pronounced in older mice. Quantitative PCR analyses revealed age-related, increases in the expression of senescence markers (GLB1, P16, P21), and proinflammatory genes (TGF-ß1, TNF-α, IL-1ß, IL-6, and IL-8). Conversely, the expression of anti-oxidative stress-related genes (SOD1, SOD2, NRF2, SIRT1, and SIRT3) declined, showing statistically significant differences (*P < 0.05, **P < 0.01, ***P < 0.001). ELISA results corroborated these findings, indicating a progressive rise in the protein levels of TGF-ß1, TNF-α, and IL-8 as the mice aged. CONCLUSIONS: The findings suggest that NOD/SCID mice aged 32 weeks and 43 weeks effectively model pulmonary fibrosis in an elderly context, with the disease pathogenesis likely driven by age-associated inflammation and oxidative stress.


Asunto(s)
Envejecimiento , Modelos Animales de Enfermedad , Ratones Endogámicos NOD , Ratones SCID , Sirtuina 1 , Animales , Ratones , Masculino , Sirtuina 1/metabolismo , Sirtuina 1/genética , Pulmón/patología , Pulmón/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Factor de Crecimiento Transformador beta1/genética , Metaloproteinasa 9 de la Matriz/metabolismo , Metaloproteinasa 9 de la Matriz/genética , Factor de Necrosis Tumoral alfa/metabolismo , Factor de Necrosis Tumoral alfa/genética , Factor 2 Relacionado con NF-E2/metabolismo , Factor 2 Relacionado con NF-E2/genética , Fibrosis Pulmonar Idiopática/genética , Fibrosis Pulmonar Idiopática/patología , Fibrosis Pulmonar Idiopática/metabolismo , Interleucina-8/metabolismo , Interleucina-8/genética , Superóxido Dismutasa-1/genética , Superóxido Dismutasa-1/metabolismo , Superóxido Dismutasa/metabolismo , Superóxido Dismutasa/genética , Sirtuina 3/genética , Sirtuina 3/metabolismo , Hidroxiprolina/metabolismo , Interleucina-6/metabolismo , Interleucina-6/genética , Actinas/metabolismo , Actinas/genética , Interleucina-1beta/metabolismo , Interleucina-1beta/genética , Fibrosis Pulmonar/genética , Fibrosis Pulmonar/patología , Fibrosis Pulmonar/metabolismo
9.
Adv Exp Med Biol ; 1446: 135-154, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38625527

RESUMEN

The hair and skin of domestic cats or dogs account for 2% and 12-24% of their body weight, respectively, depending on breed and age. These connective tissues contain protein as the major constituent and provide the first line of defense against external pathogens and toxins. Maintenance of the skin and hair in smooth and elastic states requires special nutritional support, particularly an adequate provision of amino acids (AAs). Keratin (rich in cysteine, serine and glycine) is the major protein both in the epidermis of the skin and in the hair. Filaggrin [rich in some AAs (e.g., serine, glutamate, glutamine, glycine, arginine, and histidine)] is another physiologically important protein in the epidermis of the skin. Collagen and elastin (rich in glycine and proline plus 4-hydroxyproline) are the predominant proteins in the dermis and hypodermis of the skin. Taurine and 4-hydroxyproline are abundant free AAs in the skin of dogs and cats, and 4-hydroxyproline is also an abundant free AA in their hair. The epidermis of the skin synthesizes melanin (the pigment in the skin and hair) from tyrosine and produces trans-urocanate from histidine. Qualitative requirements for proteinogenic AAs are similar between cats and dogs but not identical. Both animal species require the same AAs to nourish the hair and skin but the amounts differ. Other factors (e.g., breeds, coat color, and age) may affect the requirements of cats or dogs for nutrients. The development of a healthy coat, especially a black coat, as well as healthy skin critically depends on AAs [particularly arginine, glycine, histidine, proline, 4-hydroxyproline, and serine, sulfur AAs (methionine, cysteine, and taurine), phenylalanine, and tyrosine] and creatine. Although there are a myriad of studies on AA nutrition in cats and dogs, there is still much to learn about how each AA affects the growth, development and maintenance of the hair and skin. Animal-sourced foodstuffs (e.g., feather meal and poultry by-product meal) are excellent sources of the AAs that are crucial to maintain the normal structure and health of the skin and hair in dogs and cats.


Asunto(s)
Enfermedades de los Gatos , Enfermedades de los Perros , Gatos , Perros , Animales , Aminoácidos , Histidina , Cisteína , Hidroxiprolina , Cabello , Glicina , Tirosina , Taurina , Serina , Prolina , Arginina
10.
Int J Cosmet Sci ; 46(2): 297-306, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38013225

RESUMEN

OBJECTIVE: Advanced glycation end-products (AGEs) represent a large group of compounds generated by a non-enzymatic reaction between reducing sugars and amino groups. The formation and accumulation of AGEs in the skin lead to protein crosslinking, dermal stiffening and yellowing, which ultimately contribute to cutaneous ageing. Amino acids have been described to exhibit anti-glycation effects. The objective of this study was to understand the inhibitory role of the amino acid derivative N-acetyl-L-hydroxyproline (NAHP) as an anti-glycation active for human skin. METHODS: A cell-free assay investigating the inhibition of glycation of serum albumin by NAHP was used to determine the capability of NAHP to decrease AGE formation. Also, by assessing the amount of the AGE N-(carboxymethyl)lysine (CML) the anti-glycation abilities of NAHP were investigated utilizing dot blot analysis. The improvement of cell-matrix interaction by NAHP was determined in vitro using a glycated fibroblast-populated collagen lattice (FPCL) dermis model. In skin biopsies, AGE autofluorescence was determined after treatment with NAHP and/or glucose ex vivo. RESULTS: NAHP significantly and dose-dependently inhibited levels of AGEs, which were induced by the glycation of a protein solution. This decrease could be visualized by showing that the brownish appearance as well as the AGE-specific fluorescence of glucose-treated samples were reduced after the application of increasing amounts of NAHP. Also, CML formation was dose-dependently inhibited by NAHP. In FPCLs, the contractile capacity of fibroblasts was significantly disturbed after glycation. This could be prevented by the addition of NAHP. Compared to glyoxal-treated samples, the co-application of NAHP significantly decreased the diameter as well as the weight of glycated FPCLs. Ex vivo application of glucose to skin explants showed a higher AGE fluorescence signal compared to control explants. Co-treatment with NAHP and glucose decreased the level of AGE fluorescence in comparison to glucose-treated explants. CONCLUSION: These data provide clear evidence that under glycation stress conditions treatment with NAHP inhibited AGE formation in vitro and ex vivo and prevented the loss of cellular contractile forces in a glycated dermis model. Thus, NAHP obviously provides a beneficial treatment option to counteract AGE-related changes in human skin such as dermal stiffening and yellowish skin appearance.


OBJECTIF: Les produits finis de glycation avancée (AGE) représentent un grand groupe de composés générés par une réaction non enzymatique entre des sucres réduits et des groupes amino. La formation et l'accumulation d'AGE dans la peau entraînent une réticulation protéique, un raidissement de la peau et un jaunissement, qui finissent par contribuer au vieillissement cutané. Les acides aminés ont été décrits comme ayant des effets d'anti­glycation. L'objectif de cette étude était de comprendre le rôle inhibiteur du dérivé d'acide aminé N­acétyl­L­hydroxyproline (NAHP) en tant qu'actif anti­glycation pour la peau humaine. MÉTHODES: Un test acellulaire étudiant l'inhibition de la glycation de l'albumine sérique par la NAHP a été utilisé pour déterminer la capacité de la NAHP à diminuer la formation d'AGE. En évaluant la quantité de l'AGE N­(carboxyméthyl)lysine (CML), les capacités d'anti­glycation de la NAHP ont également été étudiées à l'aide d'une analyse par dot blot. L'amélioration de l'interaction cellule­matrice par la NAHP a été déterminée in vitro à l'aide d'un modèle de derme de lattices de collagène composées de fibroblastes glyqués. Dans des biopsies cutanées, l'autofluorescence des AGE a été déterminée après un traitement par NAHP et/ou glucose ex vivo. RÉSULTATS: La NAHP a inhibé de manière significative et dose­dépendante les taux d'AGE induits par la glycation d'une solution protéique. Cette diminution a pu être visualisée en montrant que l'aspect brunâtre ainsi que la fluorescence spécifique aux AGE des échantillons traités par glucose ont été réduits après l'application de quantités croissantes de NAHP. En outre, la formation de CML était inhibée de manière dose­dépendante par la NAHP. Dans des lattices de collagène composées de fibroblastes, la capacité contractile des fibroblastes était significativement perturbée après la glycation. Cela a pu être évité par l'ajout de NAHP. Par rapport aux échantillons traités au glyoxal, la co­application de NAHP a significativement réduit le diamètre ainsi que le poids des lattices de collagène composées de fibroblastes glyquées. L'application ex vivo de glucose sur les explants de peau a montré un signal de fluorescence des AGE plus élevé que les explants témoins. Le traitement concomitant par NAHP et glucose a réduit le niveau de fluorescence des AGE par rapport aux explants traités par glucose. CONCLUSION: Ces données fournissent des preuves évidentes que, dans des conditions de stress par glycation, le traitement par NAHP a inhibé la formation d'AGE in vitro et ex vivo, et a prévenu la perte des forces contractiles cellulaires dans un modèle de derme glyqué. Ainsi, la NAHP constitue manifestement une option de traitement bénéfique pour contrer les changements liés aux AGE dans la peau humaine, tels que le raidissement du derme et l'aspect jaunâtre de la peau.


Asunto(s)
Productos Finales de Glicación Avanzada , Reacción de Maillard , Nitrosaminas , Humanos , Hidroxiprolina , Productos Finales de Glicación Avanzada/metabolismo , Envejecimiento , Glucosa
11.
BMC Oral Health ; 24(1): 505, 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38684974

RESUMEN

BACKGROUND: The stability of resin-dentin interfaces is still highly questionable. The aim of this study was to evaluate the effect of Salvadora persica on resin-dentin bond durability. MATERIALS AND METHODS: Extracted human third molars were used to provide mid-coronal dentin, which was treated with 20% Salvadora persica extract for 1 min after acid-etching. Microtensile bond strength and interfacial nanoleakage were evaluated after 24 h and 6 months. A three-point flexure test was used to measure the stiffness of completely demineralized dentin sticks before and after treatment with Salvadora persica extract. The hydroxyproline release test was also used to measure collagen degradation by endogenous dentin proteases. Statistical analysis was performed using two-way ANOVA followed by post hoc Bonferroni test and unpaired t-test. P-values < 0.05 were considered statistically significant. RESULTS: The use of Salvadora persica as an additional primer with etch-and-rinse adhesive did not affect the immediate bond strengths and nanoleakage (p > 0.05). After 6 months, the bond strength of the control group decreased (p = 0.007), and nanoleakage increased (p = 0.006), while Salvadora persica group showed no significant difference in bond strength and nanoleakage compared to their 24 h groups (p > 0.05). Salvadora persica increased dentin stiffness and decreased collagen degradation (p < 0.001) compared to their controls. CONCLUSION: Salvadora persica extract pretreatment of acid-etched dentin preserved resin-dentin bonded interface for 6 months. CLINICAL SIGNIFICANCE: Durability of resin-dentin bonded interfaces is still highly questionable. Endogenous dentinal matrix metalloproteinases play an important role in degradation of dentinal collagen within such interfaces. Salvadora persica may preserve resin-dentin interfaces for longer periods of time contributing to greater clinical success and longevity of resin composite restorations.


Asunto(s)
Grabado Ácido Dental , Recubrimiento Dental Adhesivo , Filtración Dental , Dentina , Extractos Vegetales , Salvadoraceae , Resistencia a la Tracción , Humanos , Dentina/efectos de los fármacos , Extractos Vegetales/farmacología , Recubrimiento Dental Adhesivo/métodos , Colágeno , Recubrimientos Dentinarios/química , Ensayo de Materiales , Hidroxiprolina , Análisis del Estrés Dental , Resinas Compuestas/química , Factores de Tiempo , Cementos de Resina/química
12.
J Biol Chem ; 298(8): 102109, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35679897

RESUMEN

Collagenase from the gram-negative bacterium Grimontia hollisae strain 1706B (Ghcol) degrades collagen more efficiently even than clostridial collagenase, the most widely used industrial collagenase. However, the structural determinants facilitating this efficiency are unclear. Here, we report the crystal structures of ligand-free and Gly-Pro-hydroxyproline (Hyp)-complexed Ghcol at 2.2 and 2.4 Å resolution, respectively. These structures revealed that the activator and peptidase domains in Ghcol form a saddle-shaped structure with one zinc ion and four calcium ions. In addition, the activator domain comprises two homologous subdomains, whereas zinc-bound water was observed in the ligand-free Ghcol. In the ligand-complexed Ghcol, we found two Gly-Pro-Hyp molecules, each bind at the active site and at two surfaces on the duplicate subdomains of the activator domain facing the active site, and the nucleophilic water is replaced by the carboxyl oxygen of Hyp at the P1 position. Furthermore, all Gly-Pro-Hyp molecules bound to Ghcol have almost the same conformation as Pro-Pro-Gly motif in model collagen (Pro-Pro-Gly)10, suggesting these three sites contribute to the unwinding of the collagen triple helix. A comparison of activities revealed that Ghcol exhibits broader substrate specificity than clostridial collagenase at the P2 and P2' positions, which may be attributed to the larger space available for substrate binding at the S2 and S2' sites in Ghcol. Analysis of variants of three active-site Tyr residues revealed that mutation of Tyr564 affected catalysis, whereas mutation of Tyr476 or Tyr555 affected substrate recognition. These results provide insights into the substrate specificity and mechanism of G. hollisae collagenase.


Asunto(s)
Proteínas Bacterianas , Colágeno , Colagenasas , Vibrionaceae , Proteínas Bacterianas/química , Colágeno/química , Colagenasas/química , Hidroxiprolina/química , Especificidad por Sustrato , Vibrionaceae/enzimología , Agua/química , Zinc/química
13.
J Biol Chem ; 298(3): 101708, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35150746

RESUMEN

Early studies revealed that chicken embryos incubated with a rare analog of l-proline, 4-oxo-l-proline, showed increased levels of the metabolite 4-hydroxy-l-proline. In 1962, 4-oxo-l-proline reductase, an enzyme responsible for the reduction of 4-oxo-l-proline, was partially purified from rabbit kidneys and characterized biochemically. However, only recently was the molecular identity of this enzyme solved. Here, we report the purification from rat kidneys, identification, and biochemical characterization of 4-oxo-l-proline reductase. Following mass spectrometry analysis of the purified protein preparation, the previously annotated mammalian cytosolic type 2 (R)-ß-hydroxybutyrate dehydrogenase (BDH2) emerged as the only candidate for the reductase. We subsequently expressed rat and human BDH2 in Escherichia coli, then purified it, and showed that it catalyzed the reversible reduction of 4-oxo-l-proline to cis-4-hydroxy-l-proline via chromatographic and tandem mass spectrometry analysis. Specificity studies with an array of compounds carried out on both enzymes showed that 4-oxo-l-proline was the best substrate, and the human enzyme acted with 12,500-fold higher catalytic efficiency on 4-oxo-l-proline than on (R)-ß-hydroxybutyrate. In addition, human embryonic kidney 293T (HEK293T) cells efficiently metabolized 4-oxo-l-proline to cis-4-hydroxy-l-proline, whereas HEK293T BDH2 KO cells were incapable of producing cis-4-hydroxy-l-proline. Both WT and KO HEK293T cells also produced trans-4-hydroxy-l-proline in the presence of 4-oxo-l-proline, suggesting that the latter compound might interfere with the trans-4-hydroxy-l-proline breakdown in human cells. We conclude that BDH2 is a mammalian 4-oxo-l-proline reductase that converts 4-oxo-l-proline to cis-4-hydroxy-l-proline and not to trans-4-hydroxy-l-proline, as originally thought. We also hypothesize that this enzyme may be a potential source of cis-4-hydroxy-l-proline in mammalian tissues.


Asunto(s)
Aminoácido Oxidorreductasas , Hidroxibutirato Deshidrogenasa , Aminoácido Oxidorreductasas/química , Aminoácido Oxidorreductasas/metabolismo , Animales , Embrión de Pollo , Escherichia coli/metabolismo , Células HEK293 , Humanos , Hidroxibutirato Deshidrogenasa/química , Hidroxibutirato Deshidrogenasa/metabolismo , Hidroxiprolina/química , Hidroxiprolina/metabolismo , Mamíferos/metabolismo , Prolina/análogos & derivados , Prolina/metabolismo , Conejos , Ratas
14.
Am J Physiol Lung Cell Mol Physiol ; 325(2): L215-L232, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37310758

RESUMEN

Vanadium is available as a dietary supplement and also is known to be toxic if inhaled, yet little information is available concerning the effects of vanadium on mammalian metabolism when concentrations found in food and water. Vanadium pentoxide (V+5) is representative of the most common dietary and environmental exposures, and prior research shows that low-dose V+5 exposure causes oxidative stress measured by glutathione oxidation and protein S-glutathionylation. We examined the metabolic impact of V+5 at relevant dietary and environmental doses (0.01, 0.1, and 1 ppm for 24 h) in human lung fibroblasts (HLFs) and male C57BL/6J mice (0.02, 0.2, and 2 ppm in drinking water for 7 mo). Untargeted metabolomics using liquid chromatography-high-resolution mass spectrometry (LC-HRMS) showed that V+5 induced significant metabolic perturbations in both HLF cells and mouse lungs. We noted 30% of the significantly altered pathways in HLF cells, including pyrimidines and aminosugars, fatty acids, mitochondrial and redox pathways, showed similar dose-dependent patterns in mouse lung tissues. Alterations in lipid metabolism included leukotrienes and prostaglandins involved in inflammatory signaling, which have been associated with the pathogenesis of idiopathic pulmonary fibrosis (IPF) and other disease processes. Elevated hydroxyproline levels and excessive collagen deposition were also present in lungs from V+5-treated mice. Taken together, these results show that oxidative stress from environmental V+5, ingested at low levels, could alter metabolism to contribute to common human lung diseases.NEW & NOTEWORTHY We used relevant dietary and environmental doses of Vanadium pentoxide (V+5) to examine its metabolic impact in vitro and in vivo. Using liquid chromatography-high-resolution mass spectrometry (LC-HRMS), we found significant metabolic perturbations, with similar dose-dependent patterns observed in human lung fibroblasts and male mouse lungs. Alterations in lipid metabolism included inflammatory signaling, elevated hydroxyproline levels, and excessive collagen deposition were present in V+5-treated lungs. Our findings suggest that low levels of V+5 could trigger pulmonary fibrotic signaling.


Asunto(s)
Fibrosis Pulmonar Idiopática , Vanadio , Masculino , Humanos , Ratones , Animales , Hidroxiprolina/metabolismo , Hidroxiprolina/farmacología , Vanadio/toxicidad , Vanadio/metabolismo , Ratones Endogámicos C57BL , Pulmón/metabolismo , Fibrosis Pulmonar Idiopática/patología , Inflamación/patología , Mamíferos
15.
Chembiochem ; 24(5): e202200637, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36579407

RESUMEN

In plant cell walls, the hydroxyproline-rich glycoproteins (HRGPs) such as extensin contain oligoarabinofuranoside linked to a hydroxyproline (Hyp) residue. The mature arabinooligosaccharide was revealed to be a tetrasaccharide (α-l-Araf-(1→3)-ß-l-Araf-(1→2)-ß-l-Araf-(1→2)-ß-l-Araf, l-Araf4 ), whose linkages are targets of the bifidobacterial and Xanthomonas arabinooligosaccharide-degrading enzymes. The l-Araf4 motif was cleaved by GH43 α-l-arabinofuranosidase (Arafase) and converted to an l-Araf3 -linked structure. The latter is then cleaved by GH121 ß-l-arabinobiosidase (HypBA2), producing ß-l-Araf-(1→2)-l-Ara (ß-l-arabinobiose) and mono-ß-l-Araf linked to the HRGP backbone. In bifidobacteria, the ß-l-arabinobiose is then hydrolyzed by GH127 ß-l-Arafase (Bll1HypBA1), a mechanistically unique cysteine glycosidase. We recently identified the distantly related homologue from Xanthomonas euvesicatoria as GH146 ß-l-Arafase along with paralogues from Bifidobacterium longum, one of which, Bll4HypBA1 (BLLJ_0089), can degrade l-Araf1 -Hyp in a similar way to that of GH146. As the chemical synthesis of the extensin hydrophilic motif 1 a, which possesses three distinct linkages that connect four oligoAraf residues [Hyp(l-Arafn ) (n=4, 3, 1)], was achieved previously, we precisely monitored the step-wise enzymatic cleavage of 1 a in addition to that of potato lectin. The results unequivocally revealed that this enzyme specifically degrades the Hyp(l-Araf1 ) motif.


Asunto(s)
Bifidobacterium , Glicósido Hidrolasas , Bifidobacterium/metabolismo , Hidroxiprolina , Glicósido Hidrolasas/metabolismo , Glicoproteínas
16.
Hum Reprod ; 38(11): 2187-2195, 2023 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-37697661

RESUMEN

STUDY QUESTION: Is the abundance of certain biochemical compounds in human cumulus cells (CCs) related to oocyte quality? SUMMARY ANSWER: Malonate, 5-oxyproline, and erythronate were positively associated with pregnancy potential. WHAT IS KNOWN ALREADY: CCs are removed and discarded prior to ICSI, thereby constituting an interesting biological material on which to perform molecular analysis aimed to predict oocyte developmental competence. Mitochondrial DNA content and transcriptional analyses in CC have been shown to provide a poor predictive value of oocyte competence, but the untargeted analysis of biochemical compounds (metabolomics) has been unexplored. STUDY DESIGN, SIZE, DURATION: CCs were obtained from three groups of cumulus-oocyte complexes (COCs) of known developmental potential: oocytes not developing to blastocyst following ICSI (Bl-); oocytes developing to blastocyst but failing to establish pregnancy following embryo transfer (P-); and oocytes developing to blastocyst able to establish a pregnancy (P+). Metabolomics analyses were performed on 12 samples per group, each sample comprising the CC recovered from a single COC. PARTICIPANTS/MATERIALS, SETTING, METHODS: Human CC samples were obtained from IVF treatments. Only unfrozen oocytes and embryos not submitted to preimplantation genetic testing were included in the analysis. Metabolomics analysis was performed by ultra-high performance liquid chromatography-tandem mass spectroscopy. MAIN RESULTS AND THE ROLE OF CHANCE: The analysis identified 98 compounds, five of which were differentially abundant (P < 0.05) between groups: asparagine, proline, and malonate were less abundant in P- compared to Bl-, malonate and 5-oxoproline were less abundant in P- group compared to P+, and erythronate was less abundant in Bl- group compared to P+. No significant association between the abundance of the compounds identified and donor age or BMI was noted. LIMITATIONS, REASONS FOR CAUTION: Data dispersion and the lack of coherence between developmental groups preclude the direct use of metabolic markers in clinical practice, where the uterine environment plays a major role in pregnancy outcome. The abundance of other compounds not detected by the analysis may be associated with oocyte competence. As donors were lean (only two with BMI > 30 kg/m2) and young (<34 years old), a possible effect of obesity or advanced age on the CC metabolome could not be determined. WIDER IMPLICATIONS OF THE FINDINGS: The abundance of malonate, 5-oxyproline, and erythronate in CC was significantly higher in COCs ultimately establishing pregnancy, providing clues on the pathways required for oocyte competence. The untargeted analysis uncovered the presence of compounds that were not expected in CC, such as ß-citrylglutamate and the neurotransmitter N-acetyl-aspartyl-glutamate, which may play roles in chromatin remodeling and signaling, respectively. STUDY FUNDING/COMPETING INTEREST(S): Research was supported by the Industrial Doctorate Project IND2017/BIO-7748 funded by Madrid Region Government. The authors declare no competing interest. TRIAL REGISTRATION NUMBER: N/A.


Asunto(s)
Células del Cúmulo , Oocitos , Femenino , Humanos , Embarazo , Adulto , Células del Cúmulo/metabolismo , Hidroxiprolina/metabolismo , Hidroxiprolina/farmacología , Oocitos/metabolismo , Oogénesis , Malonatos/metabolismo , Malonatos/farmacología
17.
Arch Biochem Biophys ; 743: 109663, 2023 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-37290701

RESUMEN

OBJECTIVE: This study aimed to investigate the regulatory role of the PI3K/AKT/ERK signaling pathway in retinal fibrosis in -6.0 diopter (D) lens-induced myopic (LIM) guinea pigs. METHODS: Biological measurements of eye tissues were performed on guinea pigs to obtain their refraction, axial length, retinal thickness, physiological function, and fundus retinal status. In addition, Masson staining and immunohistochemical (IHC) assay were further done to explore the changes in retinal morphology after myopic induction. Meanwhile, hydroxyproline (HYP) content was measured to evaluate the degree of retinal fibrosis. Moreover, the levels of the PI3K/AKT/ERK signaling pathway and fibrosis-related molecules in retinal tissues including matrix metalloproteinase 2(MMP2), collagen type I (Collagen I), and α-smooth muscle actin (α-SMA) were detected by real-time quantitative PCR (qPCR) and Western blot. RESULTS: The LIM guinea pigs showed a significant myopic shift in refractive error and an increase in axial length compared with those of the normal control (NC) group. Masson staining, hydroxyproline content determination, and IHC showed an increase in retinal fibrosis. After myopic induction, qPCR and western blot analyses showed that phosphatidylinositol-3-kinase catalytic subunit α (PIK3CA), protein kinase B (AKT), extracellular regulated protein kinase 1/2 (ERK1/2), MMP2, Collagen I, and α-SMA were consistently elevated in the LIM group than those in the NC group. CONCLUSION: The PI3K/AKT/ERK signaling pathway was activated in the retinal tissues of myopic guinea pigs, which exaggerated fibrotic lesions and reduced retinal thickness, ultimately leading to retinal physiological dysfunctions in myopic guinea pigs.


Asunto(s)
Metaloproteinasa 2 de la Matriz , Miopía , Animales , Cobayas , Metaloproteinasa 2 de la Matriz/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Hidroxiprolina , Miopía/metabolismo , Transducción de Señal , Fibrosis , Colágeno
18.
Amino Acids ; 55(11): 1655-1664, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37782378

RESUMEN

Vitamin C plays a very important role in the repair of connective tissue, especially for sports whose training causes the most damage to this tissue. Therefore, many people believe that L-ascorbic acid (C6H8O6: vitamin C) reduces the recovery time between sports exercises. The most abundant form of structural protein in the body is collagen. Collagen is characterized by a high concentration of the three amino acids glycine (Gly), proline (Pro), and hydroxyproline (Hyp), which creates its characteristic triple helix structure. Therefore, in this study, the effect of vitamin C presence on the sequence, interaction, and orientation of amino acids for collagen formation is investigated using computational simulation. This study aimed to investigate the mechanism of action of vitamin C in terms of thermodynamics and structure of the reaction. The calculations are performed using density function theory (DFT) by the base set of B3LYP/6-311++G (p,d). The results show that the presence of vitamin C is effective in the formation of collagen protein for this interaction and the mechanism of amino acid sequence (Gly-Hyp-Pro) is better in the formation of collagen protein in the presence of vitamin C. The presence of Vit-C in the formation and direction of hydroxyproline (Hyp) causes its separation from the prolyl 5-hydroxylase enzyme. In the absence of vitamin C, the reaction stops at this stage and proline cannot be converted into hydroxyproline. The computational data shows vitamin C prevents unwanted interactions and directs amino acid reactions to repair connective tissue (collagen). Therefore, vitamin C acts as a cofactor in the Prolyl 5-Hydroxylase enzyme and causes it to convert proline to hydroxyl.


Asunto(s)
Aminoácidos , Prolina , Humanos , Hidroxiprolina/química , Estructura Secundaria de Proteína , Prolina/química , Colágeno/química , Glicina , Ácido Ascórbico , Oxigenasas de Función Mixta
19.
Biomacromolecules ; 24(11): 4653-4662, 2023 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-37656903

RESUMEN

Collagen is one of the most studied proteins due to its fundamental role in creating fibrillar structures and supporting tissues in our bodies. Accordingly, collagen is also one of the most used proteins for making tissue-engineered scaffolds for various types of tissues. To date, the high abundance of hydroxyproline (Hyp) within collagen is commonly ascribed to the structure and stability of collagen. Here, we hypothesize a new role for the presence of Hyp within collagen, which is to support proton transport (PT) across collagen fibrils. For this purpose, we explore here three different collagen-based hydrogels: the first is prepared by the self-assembly of natural collagen fibrils, and the second and third are based on covalently linking between collagen via either a self-coupling method or with an additional cross-linker. Following the formation of the hydrogel, we introduce here a two-step reaction, involving (1) attaching methanesulfonyl to the -OH group of Hyp, followed by (2) removing the methanesulfonyl, thus reverting Hyp to proline (Pro). We explore the PT efficiency at each step of the reaction using electrical measurements and show that adding the methanesulfonyl group vastly enhances PT, while reverting Hyp to Pro significantly reduces PT efficiency (compared with the initial point) with different efficiencies for the various collagen-based hydrogels. The role of Hyp in supporting the PT can assist in our understanding of the physiological roles of collagen. Furthermore, the capacity to modulate conductivity across collagen is very important to the use of collagen in regenerative medicine.


Asunto(s)
Prolina , Protones , Hidroxiprolina/química , Prolina/química , Colágeno/química , Hidrogeles
20.
Microb Cell Fact ; 22(1): 240, 2023 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-37986164

RESUMEN

BACKGROUND: trans-4-Hydroxyproline (T-4-HYP) is a promising intermediate in the synthesis of antibiotic drugs. However, its industrial production remains challenging due to the low production efficiency of T-4-HYP. This study focused on designing the key nodes of anabolic pathway to enhance carbon flux and minimize carbon loss, thereby maximizing the production potential of microbial cell factories. RESULTS: First, a basic strain, HYP-1, was developed by releasing feedback inhibitors and expressing heterologous genes for the production of trans-4-hydroxyproline. Subsequently, the biosynthetic pathway was strengthened while branching pathways were disrupted, resulting in increased metabolic flow of α-ketoglutarate in the Tricarboxylic acid cycle. The introduction of the NOG (non-oxidative glycolysis) pathway rearranged the central carbon metabolism, redirecting glucose towards acetyl-CoA. Furthermore, the supply of NADPH was enhanced to improve the acid production capacity of the strain. Finally, the fermentation process of T-4-HYP was optimized using a continuous feeding method. The rate of sugar supplementation controlled the dissolved oxygen concentrations during fermentation, and Fe2+ was continuously fed to supplement the reduced iron for hydroxylation. These modifications ensured an effective supply of proline hydroxylase cofactors (O2 and Fe2+), enabling efficient production of T-4-HYP in the microbial cell factory system. The strain HYP-10 produced 89.4 g/L of T-4-HYP in a 5 L fermenter, with a total yield of 0.34 g/g, the highest values reported by microbial fermentation, the yield increased by 63.1% compared with the highest existing reported yield. CONCLUSION: This study presents a strategy for establishing a microbial cell factory capable of producing T-4-HYP at high levels, making it suitable for large-scale industrial production. Additionally, this study provides valuable insights into regulating synthesis of other compounds with α-ketoglutaric acid as precursor.


Asunto(s)
Vías Biosintéticas , Escherichia coli , Hidroxiprolina , Escherichia coli/genética , Escherichia coli/metabolismo , Prolil Hidroxilasas/genética , Prolil Hidroxilasas/metabolismo , Ciclo del Ácido Cítrico , Ingeniería Metabólica/métodos , Carbono/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA