Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.083
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 164(1-2): 233-245, 2016 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-26724867

RESUMEN

Sun-loving plants have the ability to detect and avoid shading through sensing of both blue and red light wavelengths. Higher plant cryptochromes (CRYs) control how plants modulate growth in response to changes in blue light. For growth under a canopy, where blue light is diminished, CRY1 and CRY2 perceive this change and respond by directly contacting two bHLH transcription factors, PIF4 and PIF5. These factors are also known to be controlled by phytochromes, the red/far-red photoreceptors; however, transcriptome analyses indicate that the gene regulatory programs induced by the different light wavelengths are distinct. Our results indicate that CRYs signal by modulating PIF activity genome wide and that these factors integrate binding of different plant photoreceptors to facilitate growth changes under different light conditions.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Criptocromos/metabolismo , Arabidopsis/crecimiento & desarrollo , Arabidopsis/efectos de la radiación , Expresión Génica , Hipocótilo/crecimiento & desarrollo , Luz , Fitocromo B/metabolismo
2.
Cell ; 163(1): 148-59, 2015 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-26406375

RESUMEN

Short- and long-distance circadian communication is essential for integration of temporal information. However, a major challenge in plant biology is to decipher how individual clocks are interconnected to sustain rhythms in the whole plant. Here we show that the shoot apex is composed of an ensemble of coupled clocks that influence rhythms in roots. Live-imaging of single cells, desynchronization of dispersed protoplasts, and mathematical analysis using barycentric coordinates for high-dimensional space show a gradation in the strength of circadian communication in different tissues, with shoot apex clocks displaying the highest coupling. The increased synchrony confers robustness of morning and evening oscillations and particular capabilities for phase readjustments. Rhythms in roots are altered by shoot apex ablation and micrografting, suggesting that signals from the shoot apex are able to synchronize distal organs. Similarly to the mammalian suprachiasmatic nucleus, shoot apexes play a dominant role within the plant hierarchical circadian structure.


Asunto(s)
Arabidopsis/fisiología , Relojes Circadianos , Animales , Ritmo Circadiano , Hipocótilo/fisiología , Mamíferos/fisiología , Células Vegetales/fisiología , Raíces de Plantas/fisiología , Brotes de la Planta/fisiología
3.
Nature ; 602(7896): 280-286, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34937943

RESUMEN

Grafting is possible in both animals and plants. Although in animals the process requires surgery and is often associated with rejection of non-self, in plants grafting is widespread, and has been used since antiquity for crop improvement1. However, in the monocotyledons, which represent the second largest group of terrestrial plants and include many staple crops, the absence of vascular cambium is thought to preclude grafting2. Here we show that the embryonic hypocotyl allows intra- and inter-specific grafting in all three monocotyledon groups: the commelinids, lilioids and alismatids. We show functional graft unions through histology, application of exogenous fluorescent dyes, complementation assays for movement of endogenous hormones, and growth of plants to maturity. Expression profiling identifies genes that unify the molecular response associated with grafting in monocotyledons and dicotyledons, but also gene families that have not previously been associated with tissue union. Fusion of susceptible wheat scions to oat rootstocks confers resistance to the soil-borne pathogen Gaeumannomyces graminis. Collectively, these data overturn the consensus that monocotyledons cannot form graft unions, and identify the hypocotyl (mesocotyl in grasses) as a meristematic tissue that allows this process. We conclude that graft compatibility is a shared ability among seed-bearing plants.


Asunto(s)
Avena , Raíces de Plantas , Brotes de la Planta , Trasplantes , Triticum , Ascomicetos/patogenicidad , Avena/embriología , Avena/microbiología , Hipocótilo , Meristema , Raíces de Plantas/embriología , Raíces de Plantas/microbiología , Brotes de la Planta/embriología , Brotes de la Planta/microbiología , Triticum/embriología , Triticum/microbiología
4.
Plant Cell ; 36(10): 4426-4441, 2024 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-39039020

RESUMEN

The phytohormone gibberellic acid (GA) is critical for environmentally sensitive plant development including germination, skotomorphogenesis, and flowering. The Förster resonance energy transfer biosensor GIBBERELLIN PERCEPTION SENSOR1, which permits single-cell GA measurements in vivo, has been used to observe a GA gradient correlated with cell length in dark-grown, but not light-grown, hypocotyls. We sought to understand how light signaling integrates into cellular GA regulation. Here, we show how the E3 ligase CONSTITUTIVE PHOTOMORPHOGENESIS1 (COP1) and transcription factor ELONGATED HYPOCOTYL 5 (HY5) play central roles in directing cellular GA distribution in skoto- and photomorphogenic hypocotyls, respectively. We demonstrate that the expression pattern of the GA biosynthetic enzyme gene GA20ox1 is the key determinant of the GA gradient in dark-grown hypocotyls and is a target of COP1 signaling. We engineered a second generation GPS2 biosensor with improved orthogonality and reversibility. GPS2 revealed a previously undetectable cellular pattern of GA depletion during the transition to growth in the light. This GA depletion partly explains the resetting of hypocotyl growth dynamics during photomorphogenesis. Achieving cell-level resolution has revealed how GA distributions link environmental conditions with morphology and morphological plasticity. The GPS2 biosensor is an ideal tool for GA studies in many conditions, organs, and plant species.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Regulación de la Expresión Génica de las Plantas , Giberelinas , Hipocótilo , Luz , Ubiquitina-Proteína Ligasas , Giberelinas/metabolismo , Hipocótilo/crecimiento & desarrollo , Hipocótilo/genética , Hipocótilo/metabolismo , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Técnicas Biosensibles/métodos , Transducción de Señal , Plantas Modificadas Genéticamente
5.
Plant Cell ; 36(10): 4457-4471, 2024 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-38996075

RESUMEN

The phytochrome (phy) family of sensory photoreceptors modulates developmental programs in response to ambient light. Phys also control gene expression in part by directly interacting with the bHLH class of transcription factors, PHYTOCHROME-INTERACTING FACTORS (PIFs), and inducing their rapid phosphorylation and degradation. Several kinases have been shown to phosphorylate PIFs and promote their degradation. However, the phosphatases that dephosphorylate PIFs are less understood. In this study, we describe 4 regulatory subunits of the Arabidopsis (Arabidopsis thaliana) protein PHOSPHATASE 2A (PP2A) family (B'α, B'ß, B″α, and B″ß) that interact with PIF3 in yeast 2-hybrid, in vitro and in vivo assays. The pp2ab″αß and b″αß/b'αß mutants display short hypocotyls, while the overexpression of the B subunits induces longer hypocotyls compared with the wild type (WT) under red light. The light-induced degradation of PIF3 is faster in the b″αß/b'αß quadruple mutant compared with that in the WT. Consistently, immunoprecipitated PP2A A and B subunits directly dephosphorylate PIF3-MYC in vitro. An RNA-sequencing analysis shows that B″α and Bâ€³ß alter global gene expression in response to red light. PIFs (PIF1, PIF3, PIF4, and PIF5) are epistatic to these B subunits in regulating hypocotyl elongation under red light. Collectively, these data show an essential function of PP2A in dephosphorylating PIF3 to modulate photomorphogenesis in Arabidopsis.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Regulación de la Expresión Génica de las Plantas , Proteína Fosfatasa 2 , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Proteína Fosfatasa 2/metabolismo , Proteína Fosfatasa 2/genética , Fosforilación , Hipocótilo/crecimiento & desarrollo , Hipocótilo/genética , Hipocótilo/metabolismo , Luz , Mutación
6.
Plant Cell ; 36(10): 4535-4556, 2024 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-39102893

RESUMEN

Plants can perceive a slight upsurge in ambient temperature and respond by undergoing morphological changes, such as elongated hypocotyls and early flowering. The dynamic functioning of PHYTOCHROME INTERACTING FACTOR4 (PIF4) in thermomorphogenesis is well established, although the complete regulatory pathway involved in thermosensing remains elusive. We establish that an increase in temperature from 22 to 28 °C induces upregulation and activation of MITOGEN-ACTIVATED PROTEIN KINASE 4 (MPK4) in Arabidopsis (Arabidopsis thaliana), subsequently leading to the phosphorylation of PIF4. Phosphorylated PIF4 represses the expression of ACTIN-RELATED PROTEIN 6 (ARP6), which is required for mediating the deposition of histone variant H2A.Z at its target loci. Furthermore, we demonstrate that variations in ARP6 expression in PIF4 phosphor-null and phosphor-mimetic seedlings affect hypocotyl growth at 22 and 28 °C by modulating the regulation of ARP6-mediated H2A.Z deposition at the loci of genes involved in elongating hypocotyl cells. Interestingly, the expression of MPK4 is also controlled by H2A.Z deposition in a temperature-dependent manner. Taken together, these findings highlight the regulatory mechanism of thermosensing by which MPK4-mediated phosphorylation of PIF4 affects ARP6-mediated H2A.Z deposition at the genes involved in hypocotyl cell elongation.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Regulación de la Expresión Génica de las Plantas , Histonas , Proteínas Quinasas Activadas por Mitógenos , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Fosforilación , Histonas/metabolismo , Histonas/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Proteínas Quinasas Activadas por Mitógenos/genética , Hipocótilo/metabolismo , Hipocótilo/genética , Hipocótilo/crecimiento & desarrollo , Sensación Térmica/genética , Sensación Térmica/fisiología , Proteínas de Microfilamentos/metabolismo , Proteínas de Microfilamentos/genética , Temperatura
7.
Plant Cell ; 36(8): 2778-2797, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-38593049

RESUMEN

Phytochrome-interacting factors (PIFs) are basic helix-loop-helix transcription factors that regulate light responses downstream of phytochromes. In Arabidopsis (Arabidopsis thaliana), 8 PIFs (PIF1-8) regulate light responses, either redundantly or distinctively. Distinctive roles of PIFs may be attributed to differences in mRNA expression patterns governed by promoters or variations in molecular activities of proteins. However, elements responsible for the functional diversification of PIFs have yet to be determined. Here, we investigated the role of promoters and proteins in the functional diversification of PIF1 and PIF4 by analyzing transgenic lines expressing promoter-swapped PIF1 and PIF4, as well as chimeric PIF1 and PIF4 proteins. For seed germination, PIF1 promoter played a major role, conferring dominance to PIF1 gene with a minor contribution from PIF1 protein. Conversely, for hypocotyl elongation under red light, PIF4 protein was the major element conferring dominance to PIF4 gene with the minor contribution from PIF4 promoter. In contrast, both PIF4 promoter and PIF4 protein were required for the dominant role of PIF4 in promoting hypocotyl elongation at high ambient temperatures. Together, our results support that the functional diversification of PIF1 and PIF4 genes resulted from contributions of both promoters and proteins, with their relative importance varying depending on specific light responses.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Regulación de la Expresión Génica de las Plantas , Fitocromo , Plantas Modificadas Genéticamente , Regiones Promotoras Genéticas , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Regiones Promotoras Genéticas/genética , Fitocromo/metabolismo , Fitocromo/genética , Luz , Hipocótilo/genética , Hipocótilo/crecimiento & desarrollo , Germinación/genética
8.
Nature ; 599(7884): 278-282, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34707287

RESUMEN

The phytohormone auxin controls many processes in plants, at least in part through its regulation of cell expansion1. The acid growth hypothesis has been proposed to explain auxin-stimulated cell expansion for five decades, but the mechanism that underlies auxin-induced cell-wall acidification is poorly characterized. Auxin induces the phosphorylation and activation of the plasma membrane H+-ATPase that pumps protons into the apoplast2, yet how auxin activates its phosphorylation remains unclear. Here we show that the transmembrane kinase (TMK) auxin-signalling proteins interact with plasma membrane H+-ATPases, inducing their phosphorylation, and thereby promoting cell-wall acidification and hypocotyl cell elongation in Arabidopsis. Auxin induced interactions between TMKs and H+-ATPases in the plasma membrane within seconds, as well as TMK-dependent phosphorylation of the penultimate threonine residue on the H+-ATPases. Our genetic, biochemical and molecular evidence demonstrates that TMKs directly phosphorylate plasma membrane H+-ATPase and are required for auxin-induced H+-ATPase activation, apoplastic acidification and cell expansion. Thus, our findings reveal a crucial connection between auxin and plasma membrane H+-ATPase activation in regulating apoplastic pH changes and cell expansion through TMK-based cell surface auxin signalling.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Membrana Celular/metabolismo , Pared Celular/metabolismo , Ácidos Indolacéticos/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal , Ácidos , Arabidopsis/citología , Arabidopsis/enzimología , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Membrana Celular/enzimología , Activación Enzimática , Concentración de Iones de Hidrógeno , Hipocótilo/enzimología , Hipocótilo/crecimiento & desarrollo , Hipocótilo/metabolismo , Proteínas de la Membrana/genética , Fosforilación , Reguladores del Crecimiento de las Plantas/metabolismo , Proteínas Serina-Treonina Quinasas/deficiencia , Proteínas Serina-Treonina Quinasas/genética , ATPasas de Translocación de Protón/química , ATPasas de Translocación de Protón/metabolismo , Protones , Treonina/metabolismo
9.
Proc Natl Acad Sci U S A ; 121(33): e2404883121, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39102535

RESUMEN

Transcription factor ELONGATED HYPOCOTYL5 (HY5) is the central hub for seedling photomorphogenesis. E3 ubiquitin (Ub) ligase CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1) inhibits HY5 protein accumulation through ubiquitination. However, the process of HY5 deubiquitination, which antagonizes E3 ligase-mediated ubiquitination to maintain HY5 homeostasis has never been studied. Here, we identified that Arabidopsis thaliana deubiquitinating enzyme, Ub-SPECIFIC PROTEASE 14 (UBP14) physically interacts with HY5 and enhances its protein stability by deubiquitination. The da3-1 mutant lacking UBP14 function exhibited a long hypocotyl phenotype, and UBP14 deficiency led to the failure of rapid accumulation of HY5 during dark to light. In addition, UBP14 preferred to stabilize nonphosphorylated form of HY5 which is more readily bound to downstream target genes. HY5 promoted the expression and protein accumulation of UBP14 for positive feedback to facilitate photomorphogenesis. Our findings thus established a mechanism by which UBP14 stabilizes HY5 protein by deubiquitination to promote photomorphogenesis in A. thaliana.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico , Regulación de la Expresión Génica de las Plantas , Ubiquitinación , Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Proteasas Ubiquitina-Específicas/metabolismo , Proteasas Ubiquitina-Específicas/genética , Estabilidad Proteica/efectos de la radiación , Luz , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Hipocótilo/crecimiento & desarrollo , Hipocótilo/metabolismo , Hipocótilo/genética
10.
Proc Natl Acad Sci U S A ; 121(42): e2320187121, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-39382994

RESUMEN

Canopy shade enhances the activity of PHYTOCHROME INTERACTING FACTORs (PIFs) to boost auxin synthesis in the cotyledons. Auxin, together with local PIFs and their positive regulator CONSTITUTIVELY PHOTOMORPHOGENIC 1 (COP1), promotes hypocotyl growth to facilitate access to light. Whether shade alters the cellular redox status thereby affecting growth responses, remains unexplored. Here, we show that, under shade, high auxin levels increased reactive oxygen species and nitric oxide accumulation in the hypocotyl of Arabidopsis. This nitroxidative environment favored the promotion of hypocotyl growth by COP1 under shade. We demonstrate that COP1 is S-nitrosylated, particularly under shade. Impairing this redox regulation enhanced COP1 degradation by the proteasome and diminished the capacity of COP1 to interact with target proteins and to promote hypocotyl growth. Disabling this regulation also generated transversal asymmetries in hypocotyl growth, indicating poor coordination among different cells, which resulted in random hypocotyl bending and predictably low ability to compete with neighbors. These findings highlight the significance of redox signaling in the control of diffuse growth during shade avoidance.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Hipocótilo , Especies Reactivas de Oxígeno , Ubiquitina-Proteína Ligasas , Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Especies Reactivas de Oxígeno/metabolismo , Hipocótilo/crecimiento & desarrollo , Hipocótilo/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Óxido Nítrico/metabolismo , Ácidos Indolacéticos/metabolismo , Luz , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Oxidación-Reducción , Transducción de Señal
11.
Proc Natl Acad Sci U S A ; 121(36): e2403040121, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39190354

RESUMEN

ELONGATED HYPOCOTOYL5 (HY5) and PHYTOCHROME INTERACTING FACTORs (PIFs) are two types of important light-related regulators of plant growth, however, their interplay remains elusive. Here, we report that the activated tomato (Solanum lycopersicum) HY5 (SlHY5) triggers the transcription of a Calcium-dependent Protein Kinase SlCPK27. SlCPK27 interacts with and phosphorylates SlPIF4 at Ser-252 and Ser-308 phosphosites to promote its degradation. SlPIF4 promotes hypocotyl elongation mainly by activating the transcription of SlDWF, a key gene in brassinosteroid (BR) biosynthesis. Such a SlHY5-SlCPK27-SlPIF4-BR cascade not only plays a crucial role in photomorphogenesis but also regulates thermomorphogenesis. Our results uncover a previously unidentified mechanism that integrates Ca2+ signaling with the light signaling pathways to regulate plant growth by modulating BR biosynthesis in response to changes in ambient light and temperature.


Asunto(s)
Brasinoesteroides , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas , Proteínas Quinasas , Solanum lycopersicum , Solanum lycopersicum/metabolismo , Solanum lycopersicum/crecimiento & desarrollo , Solanum lycopersicum/genética , Brasinoesteroides/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas Quinasas/metabolismo , Proteínas Quinasas/genética , Luz , Fosforilación , Hipocótilo/metabolismo , Hipocótilo/crecimiento & desarrollo , Temperatura , Morfogénesis
12.
Development ; 150(23)2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37846593

RESUMEN

In concert with other phytohormones, auxin regulates plant growth and development. However, how auxin and other phytohormones coordinately regulate distinct processes is not fully understood. In this work, we uncover an auxin-abscisic acid (ABA) interaction module in Arabidopsis that is specific to coordinating activities of these hormones in the hypocotyl. From our forward genetics screen, we determine that ABA biosynthesis is required for the full effects of auxin on hypocotyl elongation. Our data also suggest that ABA biosynthesis is not required for the inhibitory effects of auxin treatment on root elongation. Our transcriptome analysis identified distinct auxin-responsive genes in root and shoot tissues, which is consistent with differential regulation of growth in these tissues. Further, our data suggest that many gene targets repressed upon auxin treatment require an intact ABA pathway for full repression. Our results support a model in which auxin stimulates ABA biosynthesis to fully regulate hypocotyl elongation.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Reguladores del Crecimiento de las Plantas/metabolismo , Ácidos Indolacéticos/metabolismo , Ácido Abscísico/metabolismo , Hipocótilo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas
13.
Plant Cell ; 35(5): 1304-1317, 2023 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-36724050

RESUMEN

Although many studies have elucidated the mechanisms by which different wavelengths of light (blue, red, far-red, or ultraviolet-B [UV-B]) regulate plant development, whether and how green light regulates plant development remains largely unknown. Previous studies reported that green light participates in regulating growth and development in land plants, but these studies have reported conflicting results, likely due to technical problems. For example, commercial green light-emitting diode light sources emit a little blue or red light. Here, using a pure green light source, we determined that unlike blue, red, far-red, or UV-B light, which inhibits hypocotyl elongation, green light promotes hypocotyl elongation in Arabidopsis thaliana and several other plants during the first 2-3 d after planting. Phytochromes, cryptochromes, and other known photoreceptors do not mediate green-light-promoted hypocotyl elongation, but the brassinosteroid (BR) signaling pathway is involved in this process. Green light promotes the DNA binding activity of BRI1-EMS-SUPPRESSOR 1 (BES1), a master transcription factor of the BR pathway, thus regulating gene transcription to promote hypocotyl elongation. Our results indicate that pure green light promotes elongation via BR signaling and acts as a shade signal to enable plants to adapt their development to a green-light-dominant environment under a canopy.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/metabolismo , Hipocótilo , Brasinoesteroides/metabolismo , Arabidopsis/metabolismo , Transducción de Señal , Regulación de la Expresión Génica de las Plantas
14.
Plant Cell ; 35(7): 2635-2653, 2023 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-36972404

RESUMEN

PHYTOCHROME KINASE SUBSTRATE (PKS) proteins are involved in light-modulated changes in growth orientation. They act downstream of phytochromes to control hypocotyl gravitropism in the light and act early in phototropin signaling. Despite their importance for plant development, little is known about their molecular mode of action, except that they belong to a protein complex comprising phototropins at the plasma membrane (PM). Identifying evolutionary conservation is one approach to revealing biologically important protein motifs. Here, we show that PKS sequences are restricted to seed plants and that these proteins share 6 motifs (A to F from the N to the C terminus). Motifs A and D are also present in BIG GRAIN, while the remaining 4 are specific to PKSs. We provide evidence that motif C is S-acylated on highly conserved cysteines, which mediates the association of PKS proteins with the PM. Motif C is also required for PKS4-mediated phototropism and light-regulated hypocotyl gravitropism. Finally, our data suggest that the mode of PKS4 association with the PM is important for its biological activity. Our work, therefore, identifies conserved cysteines contributing to PM association of PKS proteins and strongly suggests that this is their site of action to modulate environmentally regulated organ positioning.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Fitocromo , Fitocromo/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteína S/metabolismo , Luz , Fototropismo , Hipocótilo , Acilación
15.
Plant Cell ; 35(9): 3485-3503, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37335905

RESUMEN

Ambient light and the endogenous circadian clock play key roles in regulating Arabidopsis (Arabidopsis thaliana) seedling photomorphogenesis. PHYTOCHROME-INTERACTING FACTOR 4 (PIF4) acts downstream of both light and the circadian clock to promote hypocotyl elongation. Several members of the R2R3-MYB transcription factor (TF) family, the most common type of MYB TF family in Arabidopsis, have been shown to be involved in regulating photomorphogenesis. Nonetheless, whether R2R3-MYB TFs are involved in connecting the light and clock signaling pathways during seedling photomorphogenesis remains unknown. Here, we report that MYB112, a member of the R2R3-MYB family, acts as a negative regulator of seedling photomorphogenesis in Arabidopsis. The light signal promotes the transcription and protein accumulation of MYB112. myb112 mutants exhibit short hypocotyls in both constant light and diurnal cycles. MYB112 physically interacts with PIF4 to enhance the transcription of PIF4 target genes involved in the auxin pathway, including YUCCA8 (YUC8), INDOLE-3-ACETIC ACID INDUCIBLE 19 (IAA19), and IAA29. Furthermore, MYB112 directly binds to the promoter of LUX ARRHYTHMO (LUX), the central component of clock oscillators, to repress its expression mainly in the afternoon and relieve LUX-inhibited expression of PIF4. Genetic evidence confirms that LUX acts downstream of MYB112 in regulating hypocotyl elongation. Thus, the enhanced transcript accumulation and transcriptional activation activity of PIF4 by MYB112 additively promotes the expression of auxin-related genes, thereby increasing auxin synthesis and signaling and fine-tuning hypocotyl growth under diurnal cycles.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Relojes Circadianos , Fitocromo , Arabidopsis/metabolismo , Relojes Circadianos/genética , Hipocótilo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Plantones/genética , Fitocromo/genética , Fitocromo/metabolismo , Ácidos Indolacéticos/metabolismo , Regulación de la Expresión Génica de las Plantas , Luz
16.
Plant Cell ; 35(6): 2044-2061, 2023 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-36781395

RESUMEN

Hypocotyl elongation is an important morphological response during plant thermomorphogenesis. Multiple studies indicate that the transcription factor PHYTOCHROME-INTERACTING FACTOR 4 (PIF4) is a key regulator of high temperature-induced hypocotyl elongation. However, the underlying cellular mechanisms regarding PIF4-mediated hypocotyl elongation are largely unclear. In this study, we found that PIF4 regulates the PLANT U-BOX TYPE E3 UBIQUITIN LIGASE 31 (PUB31)-SPIRAL1 (SPR1) module and alters cortical microtubule reorganization to promote hypocotyl cell elongation during Arabidopsis thaliana (Arabidopsis) thermomorphogenesis. SPR1 loss-of-function mutants exhibit much shorter hypocotyls when grown at 28 °C, indicating a positive role for SPR1 in high ambient temperature-induced hypocotyl elongation. High ambient temperature induces SPR1 expression in a PIF4-dependent manner, and stabilizes SPR1 protein to mediate microtubule reorganization. Further investigation showed that PUB31 interacts with and ubiquitinates SPR1. In particular, the ubiquitinated effect on SPR1 was moderately decreased at high temperature, which was due to the direct binding of PIF4 to the PUB31 promoter and down-regulating its expression. Thus, this study reveals a mechanism in which PIF4 induces SPR1 expression and suppresses PUB31 expression, resulting in the accumulation and stabilization of SPR1 protein, and further promoting hypocotyl cell elongation by altering cortical microtubule organization during Arabidopsis thermomorphogenesis.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Fitocromo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Hipocótilo/metabolismo , Fitocromo/metabolismo , Temperatura , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Microtúbulos/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo
17.
PLoS Genet ; 19(5): e1010779, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37216398

RESUMEN

Integration of light and phytohormones is essential for plant growth and development. FAR-RED INSENSITIVE 219 (FIN219)/JASMONATE RESISTANT 1 (JAR1) participates in phytochrome A (phyA)-mediated far-red (FR) light signaling in Arabidopsis and is a jasmonate (JA)-conjugating enzyme for the generation of an active JA-isoleucine. Accumulating evidence indicates that FR and JA signaling integrate with each other. However, the molecular mechanisms underlying their interaction remain largely unknown. Here, the phyA mutant was hypersensitive to JA. The double mutant fin219-2phyA-211 showed a synergistic effect on seedling development under FR light. Further evidence revealed that FIN219 and phyA antagonized with each other in a mutually functional demand to modulate hypocotyl elongation and expression of light- and JA-responsive genes. Moreover, FIN219 interacted with phyA under prolonged FR light, and MeJA could enhance their interaction with CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1) in the dark and FR light. FIN219 and phyA interaction occurred mainly in the cytoplasm, and they regulated their mutual subcellular localization under FR light. Surprisingly, the fin219-2 mutant abolished the formation of phyA nuclear bodies under FR light. Overall, these data identified a vital mechanism of phyA-FIN219-COP1 association in response to FR light, and MeJA may allow the photoactivated phyA to trigger photomorphogenic responses.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Fitocromo , Fitocromo A/genética , Fitocromo A/metabolismo , Hipocótilo/genética , Hipocótilo/metabolismo , Proteínas de Arabidopsis/metabolismo , Fitocromo/genética , Mutación , Regulación de la Expresión Génica de las Plantas
18.
Plant J ; 119(2): 645-657, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38761364

RESUMEN

The interplay between microRNAs (miRNAs) and phytohormones allows plants to integrate multiple internal and external signals to optimize their survival of different environmental conditions. Here, we report that miR394 and its target gene LEAF CURLING RESPONSIVENESS (LCR), which are transcriptionally responsive to BR, participate in BR signaling to regulate hypocotyl elongation in Arabidopsis thaliana. Phenotypic analysis of various transgenic and mutant lines revealed that miR394 negatively regulates BR signaling during hypocotyl elongation, whereas LCR positively regulates this process. Genetically, miR394 functions upstream of BRASSINOSTEROID INSENSITIVE2 (BIN2), BRASSINAZOLEs RESISTANT1 (BZR1), and BRI1-EMS-SUPPRESSOR1 (BES1), but interacts with BRASSINOSTEROID INSENSITIVE1 (BRI1) and BRI1 SUPRESSOR PROTEIN (BSU1). RNA-sequencing analysis suggested that miR394 inhibits BR signaling through BIN2, as miR394 regulates a significant number of genes in common with BIN2. Additionally, miR394 increases the accumulation of BIN2 but decreases the accumulation of BZR1 and BES1, which are phosphorylated by BIN2. MiR394 also represses the transcription of PACLOBUTRAZOL RESISTANCE1/5/6 and EXPANSIN8, key genes that regulate hypocotyl elongation and are targets of BZR1/BES1. These findings reveal a new role for a miRNA in BR signaling in Arabidopsis.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Brasinoesteroides , Regulación de la Expresión Génica de las Plantas , Hipocótilo , MicroARNs , Transducción de Señal , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Brasinoesteroides/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Hipocótilo/crecimiento & desarrollo , Hipocótilo/genética , Hipocótilo/metabolismo , Plantas Modificadas Genéticamente , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Reguladores del Crecimiento de las Plantas/metabolismo , Proteínas Quinasas
19.
Plant J ; 118(6): 1815-1831, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38494883

RESUMEN

Rapid hypocotyl elongation allows buried seedlings to emerge, where light triggers de-etiolation and inhibits hypocotyl growth mainly by photoreceptors. Phosphorylation/dephosphorylation events regulate many aspects of plant development. Only recently we have begun to uncover the earliest phospho-signaling responders to light. Here, we reported a large-scale phosphoproteomic analysis and identified 20 proteins that changed their phosphorylation pattern following a 20 min light pulse compared to darkness. Microtubule-associated proteins were highly overrepresented in this group. Among them, we studied CIP7 (COP1-INTERACTING-PROTEIN 7), which presented microtubule (MT) localization in contrast to the previous description. An isoform of CIP7 phosphorylated at Serine915 was detected in etiolated seedlings but was undetectable after a light pulse in the presence of photoreceptors, while CIP7 transcript expression decays with long light exposure. The short hypocotyl phenotype and rearrangement of MTs in etiolated cip7 mutants are complemented by CIP7-YFP and the phospho-mimetic CIP7S915D-YFP, but not the phospho-null CIP7S915A-YFP suggesting that the phosphorylated S915CIP7 isoform promotes hypocotyl elongation through MT reorganization in darkness. Our evidence on Serine915 of CIP7 unveils phospho-regulation of MT-based processes during skotomorphogenic hypocotyl growth.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Oscuridad , Hipocótilo , Proteínas Asociadas a Microtúbulos , Hipocótilo/crecimiento & desarrollo , Hipocótilo/genética , Hipocótilo/metabolismo , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/efectos de la radiación , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Fosforilación , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas Asociadas a Microtúbulos/genética , Microtúbulos/metabolismo , Luz , Regulación de la Expresión Génica de las Plantas , Plantones/crecimiento & desarrollo , Plantones/genética , Plantones/metabolismo , Plantones/efectos de la radiación
20.
EMBO J ; 40(1): e104273, 2021 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-33264441

RESUMEN

Shade caused by the proximity of neighboring vegetation triggers a set of acclimation responses to either avoid or tolerate shade. Comparative analyses between the shade-avoider Arabidopsis thaliana and the shade-tolerant Cardamine hirsuta revealed a role for the atypical basic-helix-loop-helix LONG HYPOCOTYL IN FR 1 (HFR1) in maintaining the shade tolerance in C. hirsuta, inhibiting hypocotyl elongation in shade and constraining expression profile of shade-induced genes. We showed that C. hirsuta HFR1 protein is more stable than its A. thaliana counterpart, likely due to its lower binding affinity to CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1), contributing to enhance its biological activity. The enhanced HFR1 total activity is accompanied by an attenuated PHYTOCHROME INTERACTING FACTOR (PIF) activity in C. hirsuta. As a result, the PIF-HFR1 module is differently balanced, causing a reduced PIF activity and attenuating other PIF-mediated responses such as warm temperature-induced hypocotyl elongation (thermomorphogenesis) and dark-induced senescence. By this mechanism and that of the already-known of phytochrome A photoreceptor, plants might ensure to properly adapt and thrive in habitats with disparate light amounts.


Asunto(s)
Aclimatación/genética , Proteínas de Arabidopsis/genética , Arabidopsis/genética , Proteínas de Unión al ADN/genética , Regulación de la Expresión Génica de las Plantas/genética , Transcripción Genética/genética , Secuencia de Bases , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Hipocótilo/genética , Fitocromo/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA