Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.066
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 150(3): 521-32, 2012 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-22863006

RESUMEN

To accommodate the large cells following zygote formation, early blastomeres employ modified cell divisions. Karyomeres are one such modification, mitotic intermediates wherein individual chromatin masses are surrounded by nuclear envelope; the karyomeres then fuse to form a single mononucleus. We identified brambleberry, a maternal-effect zebrafish mutant that disrupts karyomere fusion, resulting in formation of multiple micronuclei. As karyomeres form, Brambleberry protein localizes to the nuclear envelope, with prominent puncta evident near karyomere-karyomere interfaces corresponding to membrane fusion sites. brambleberry corresponds to an unannotated gene with similarity to Kar5p, a protein that participates in nuclear fusion in yeast. We also demonstrate that Brambleberry is required for pronuclear fusion following fertilization in zebrafish. Our studies provide insight into the machinery required for karyomere fusion and suggest that specialized proteins are necessary for proper nuclear division in large dividing blastomeres.


Asunto(s)
Embrión no Mamífero/metabolismo , Membrana Nuclear/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/embriología , Secuencia de Aminoácidos , Animales , Blastómeros/metabolismo , Ciclo Celular , Embrión de Mamíferos/citología , Embrión de Mamíferos/metabolismo , Embrión no Mamífero/citología , Femenino , Humanos , Insectos/citología , Insectos/embriología , Insectos/metabolismo , Masculino , Mamíferos/embriología , Mamíferos/metabolismo , Proteínas de la Membrana/metabolismo , Datos de Secuencia Molecular , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Alineación de Secuencia , Huso Acromático/metabolismo , Pez Cebra/metabolismo , Cigoto/citología , Cigoto/metabolismo
2.
Nature ; 597(7874): 77-81, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34471275

RESUMEN

The amount of carbon stored in deadwood is equivalent to about 8 per cent of the global forest carbon stocks1. The decomposition of deadwood is largely governed by climate2-5 with decomposer groups-such as microorganisms and insects-contributing to variations in the decomposition rates2,6,7. At the global scale, the contribution of insects to the decomposition of deadwood and carbon release remains poorly understood7. Here we present a field experiment of wood decomposition across 55 forest sites and 6 continents. We find that the deadwood decomposition rates increase with temperature, and the strongest temperature effect is found at high precipitation levels. Precipitation affects the decomposition rates negatively at low temperatures and positively at high temperatures. As a net effect-including the direct consumption by insects and indirect effects through interactions with microorganisms-insects accelerate the decomposition in tropical forests (3.9% median mass loss per year). In temperate and boreal forests, we find weak positive and negative effects with a median mass loss of 0.9 per cent and -0.1 per cent per year, respectively. Furthermore, we apply the experimentally derived decomposition function to a global map of deadwood carbon synthesized from empirical and remote-sensing data, obtaining an estimate of 10.9 ± 3.2 petagram of carbon per year released from deadwood globally, with 93 per cent originating from tropical forests. Globally, the net effect of insects may account for 29 per cent of the carbon flux from deadwood, which suggests a functional importance of insects in the decomposition of deadwood and the carbon cycle.


Asunto(s)
Ciclo del Carbono , Bosques , Insectos/metabolismo , Árboles/metabolismo , Animales , Secuestro de Carbono , Clima , Ecosistema , Mapeo Geográfico , Cooperación Internacional
3.
Nature ; 597(7874): 126-131, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34349260

RESUMEN

Olfactory systems must detect and discriminate amongst an enormous variety of odorants1. To contend with this challenge, diverse species have converged on a common strategy in which odorant identity is encoded through the combinatorial activation of large families of olfactory receptors1-3, thus allowing a finite number of receptors to detect a vast chemical world. Here we offer structural and mechanistic insight into how an individual olfactory receptor can flexibly recognize diverse odorants. We show that the olfactory receptor MhOR5 from the jumping bristletail4 Machilis hrabei assembles as a homotetrameric odorant-gated ion channel with broad chemical tuning. Using cryo-electron microscopy, we elucidated the structure of MhOR5 in multiple gating states, alone and in complex with two of its agonists-the odorant eugenol and the insect repellent DEET. Both ligands are recognized through distributed hydrophobic interactions within the same geometrically simple binding pocket located in the transmembrane region of each subunit, suggesting a structural logic for the promiscuous chemical sensitivity of this receptor. Mutation of individual residues lining the binding pocket predictably altered the sensitivity of MhOR5 to eugenol and DEET and broadly reconfigured the receptor's tuning. Together, our data support a model in which diverse odorants share the same structural determinants for binding, shedding light on the molecular recognition mechanisms that ultimately endow the olfactory system with its immense discriminatory capacity.


Asunto(s)
Proteínas de Insectos/química , Proteínas de Insectos/metabolismo , Insectos/metabolismo , Activación del Canal Iónico , Odorantes/análisis , Receptores Odorantes/química , Receptores Odorantes/metabolismo , Animales , Sitios de Unión , Línea Celular , DEET/metabolismo , Eugenol/metabolismo , Proteínas de Insectos/genética , Insectos/genética , Canales Iónicos/química , Canales Iónicos/genética , Canales Iónicos/metabolismo , Modelos Moleculares , Mutación , Unión Proteica , Estructura Cuaternaria de Proteína , Receptores Odorantes/genética , Especificidad por Sustrato
4.
Proc Natl Acad Sci U S A ; 121(14): e2317254121, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38551840

RESUMEN

Pv11 is the only animal cell line that, when preconditioned with a high concentration of trehalose, can be preserved in the dry state at room temperature for more than one year while retaining the ability to resume proliferation. This extreme desiccation tolerance is referred to as anhydrobiosis. Here, we identified a transporter that contributes to the recovery of Pv11 cells from anhydrobiosis. In general, the solute carrier 5 (SLC5)-type secondary active transporters cotransport Na+ and carbohydrates including glucose. The heterologous expression systems showed that the transporter belonging to the SLC5 family, whose expression increases upon rehydration, exhibits Na+-dependent trehalose transport activity. Therefore, we named it STRT1 (sodium-ion trehalose transporter 1). We report an SLC5 family member that transports a naturally occurring disaccharide, such as trehalose. Knockout of the Strt1 gene significantly reduced the viability of Pv11 cells upon rehydration after desiccation. During rehydration, when intracellular trehalose is no longer needed, Strt1-knockout cells released the disaccharide more slowly than the parental cell line. During rehydration, Pv11 cells became roughly spherical due to osmotic pressure changes, but then returned to their original spindle shape after about 30 min. Strt1-knockout cells, however, required about 50 min to adopt their normal morphology. STRT1 probably regulates intracellular osmolality by releasing unwanted intracellular trehalose with Na+, thereby facilitating the recovery of normal cell morphology during rehydration. STRT1 likely improves the viability of dried Pv11 cells by rapidly alleviating the significant physical stresses that arise during rehydration.


Asunto(s)
Chironomidae , Desecación , Animales , Trehalosa/metabolismo , Larva/metabolismo , Chironomidae/genética , Insectos/metabolismo , Línea Celular
5.
Proc Natl Acad Sci U S A ; 120(4): e2217145120, 2023 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-36649415

RESUMEN

Entomopathogenic fungi infect insects by penetrating through the cuticle into the host body. To breach the host cuticle, some fungal pathogens produce specialized infection cells called appressoria, which develop enormous turgor pressure to allow cuticle penetration. However, regulatory mechanisms underlying appressorium turgor generation are poorly understood. Here, we show that the histone lysine methyltransferase ASH1 in the insecticidal fungus Metarhizium robertsii, which is strongly induced during infection of the mosquito cuticle, regulates appressorium turgor generation and cuticle penetration by activating the peroxin gene Mrpex16 via H3K36 dimethylation. MrPEX16 is required for the biogenesis of peroxisomes that participate in lipid catabolism and further promotes the hydrolysis of triacylglycerols stored in lipid droplets to produce glycerol for turgor generation, facilitating appressorium-mediated insect infection. Together, the ASH1-PEX16 pathway plays a pivotal role in regulating peroxisome biogenesis to promote lipolysis for appressorium turgor generation, providing insights into the molecular mechanisms underlying fungal pathogenesis.


Asunto(s)
Proteínas Fúngicas , Peroxisomas , Animales , Peroxisomas/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Insectos/metabolismo , Enfermedades de las Plantas/microbiología
6.
Proc Natl Acad Sci U S A ; 120(7): e2216640120, 2023 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-36745781

RESUMEN

The early embryo of the cockroach Blattella germanica exhibits high E93 expression. In general, E93 triggers adult morphogenesis during postembryonic development. Here we show that E93 is also crucial in early embryogenesis in the cockroach, as a significant number of E93-depleted embryos are unable to develop the germ band under maternal RNAi treatment targeting E93. Moreover, transcriptomic analysis indicates that E93 depletion results in important gene expression changes in the early embryo, and many of the differentially expressed genes are involved in development. Then, using public databases, we gathered E93 expression data in embryo and preadult stages, finding that embryonic expression of E93 is high in hemimetabolan species (whose juveniles, or nymphs, are similar to the adult) and low in holometabolans (whose juveniles, or larvae, are different from the adult). E93 expression is also low in Thysanoptera and in Hemiptera Sternorrhyncha, hemimetabolans with postembryonic quiescent stages, as well as in Odonata, the nymph of which is very different from the adult. In ametabolans, such as the Zygentoma Thermobia domestica, E93 transcript levels are very high in the early embryo, whereas during postembryonic development they are medium and relatively constant. We propose the hypothesis that during evolution, a reduction of E93 expression in the embryo of hemimetabolans facilitated the larval development and the emergence of holometaboly. Independent decreases of E93 transcripts in the embryo of Odonata, Thysanoptera, and different groups of Hemiptera Sternorrhyncha would have allowed the development of modified juvenile stages adapted to specific ecophysiological conditions.


Asunto(s)
Hemípteros , Insectos , Animales , Insectos/metabolismo , Metamorfosis Biológica/genética , Larva , Hemípteros/genética , Interferencia de ARN , Regulación del Desarrollo de la Expresión Génica , Proteínas de Insectos/genética
7.
PLoS Pathog ; 19(5): e1011330, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37141203

RESUMEN

Photorhabdus insect-related toxins A and B (PirA and PirB) were first recognized as insecticidal toxins from Photorhabdus luminescens. However, subsequent studies showed that their homologs from Vibrio parahaemolyticus also play critical roles in the pathogenesis of acute hepatopancreatic necrosis disease (AHPND) in shrimps. Based on the structural features of the PirA/PirB toxins, it was suggested that they might function in the same way as a Bacillus thuringiensis Cry pore-forming toxin. However, unlike Cry toxins, studies on the PirA/PirB toxins are still scarce, and their cytotoxic mechanism remains to be clarified. In this review, based on our studies of V. parahaemolyticus PirAvp/PirBvp, we summarize the current understanding of the gene locations, expression control, activation, and cytotoxic mechanism of this type of toxin. Given the important role these toxins play in aquatic disease and their potential use in pest control applications, we also suggest further topics for research. We hope the information presented here will be helpful for future PirA/PirB studies.


Asunto(s)
Toxinas Bacterianas , Penaeidae , Photorhabdus , Vibrio parahaemolyticus , Animales , Photorhabdus/metabolismo , Penaeidae/microbiología , Proteínas Bacterianas/metabolismo , Toxinas Bacterianas/metabolismo , Insectos/metabolismo , Vibrio parahaemolyticus/metabolismo
8.
Proc Natl Acad Sci U S A ; 119(41): e2211744119, 2022 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-36191219

RESUMEN

Most multicellular organisms are freeze sensitive, but the ability to survive freezing of the extracellular fluids evolved in several vertebrate ectotherms, some plants, and many insects. Here, we test the coupled hypotheses that are perpetuated in the literature: that irreversible denaturation of proteins and loss of biological membrane integrity are two ultimate molecular mechanisms of freezing injury in freeze-sensitive insects and that seasonally accumulated small cryoprotective molecules (CPs) stabilize proteins and membranes against injury in freeze-tolerant insects. Using the drosophilid fly, Chymomyza costata, we show that seven different soluble enzymes exhibit no or only partial loss of activity upon lethal freezing stress applied in vivo to whole freeze-sensitive larvae. In contrast, the enzymes lost activity when extracted and frozen in vitro in a diluted buffer solution. This loss of activity was fully prevented by adding low concentrations of a wide array of different compounds to the buffer, including C. costata native CPs, other metabolites, bovine serum albumin (BSA), and even the biologically inert artificial compounds HistoDenz and Ficoll. Next, we show that fat body plasma membranes lose integrity when frozen in vivo in freeze-sensitive but not in freeze-tolerant larvae. Freezing fat body cells in vitro, however, resulted in loss of membrane integrity in both freeze-sensitive and freeze-tolerant larvae. Different additives showed widely different capacities to protect membrane integrity when added to in vitro freezing media. A complete rescue of membrane integrity in freeze-tolerant larvae was observed with a mixture of proline, trehalose, and BSA.


Asunto(s)
Albúmina Sérica Bovina , Trehalosa , Aclimatación , Animales , Membrana Celular/metabolismo , Crioprotectores/farmacología , Ficoll , Congelación , Insectos/metabolismo , Larva/metabolismo , Prolina/metabolismo
9.
Proc Natl Acad Sci U S A ; 119(24): e2122808119, 2022 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-35666864

RESUMEN

Deploying toxins in complex mixtures is thought to be advantageous and is observed during antagonistic interactions in nature. Toxin mixtures are widely utilized in medicine and pest control, as they are thought to slow the evolution of detoxification counterresponses in the targeted organisms. Here we show that caterpillars rearrange key constituents of two distinct plant defense pathways to postingestively disable the defensive properties of both pathways. Specifically, phenolic esters of quinic acid, chlorogenic acids (CAs), potent herbivore and ultraviolet (UV) defenses, are reesterified to decorate particular sugars of 17-hydroxygeranyllinalool diterpene glycosides (HGL-DTGs) and prevent their respective anti­herbivore defense functions. This was discovered through the employment of comparative metabolomics of the leaves of Nicotiana attenuata and the frass of this native tobacco's specialist herbivore, Manduca sexta larvae. Feeding caterpillars on leaves of transgenic plants abrogated in each of the two pathways, separately and together, revealed that one of the fully characterized frass conjugates, caffeoylated HGL-DTG, originated from ingested CA and HGL-DTGs and that both had negative effects on the defensive function of the other compound class, as revealed by rates of larval mass gain. This negative defensive synergy was further explored in 183 N. attenuata natural accessions, which revealed a strong negative covariance between the two defense pathways. Further mapping analyses in a biparental recombinant inbred line (RIL) population imputed quantitative trait loci (QTLs) for the two pathways at distinct genomic locations. The postingestive repurposing of defense metabolism constituents reveals a downside of deploying toxins in mixtures, a downside which plants in nature have evolved to counter.


Asunto(s)
Manduca , Animales , Herbivoria , Insectos/metabolismo , Larva/metabolismo , Manduca/metabolismo , Proteínas de Plantas/metabolismo , Nicotiana/metabolismo
10.
Proc Natl Acad Sci U S A ; 119(48): e2215541119, 2022 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-36409882

RESUMEN

Juvenile hormones (JHs) control insect metamorphosis and reproduction. JHs act through a receptor complex consisting of methoprene-tolerant (Met) and taiman (Tai) proteins to induce transcription of specific genes. Among chemically diverse synthetic JH mimics (juvenoids), some of which serve as insecticides, unique peptidic juvenoids stand out as being highly potent yet exquisitely selective to a specific family of true bugs. Their mode of action is unknown. Here we demonstrate that, like established JH receptor agonists, peptidic juvenoids act upon the JHR Met to halt metamorphosis in larvae of the linden bug, Pyrrhocoris apterus. Peptidic juvenoids induced ligand-dependent dimerization between Met and Tai proteins from P. apterus but, consistent with their selectivity, not from other insects. A cell-based split-luciferase system revealed that the Met-Tai complex assembled within minutes of agonist presence. To explore the potential of juvenoid peptides, we synthesized 120 new derivatives and tested them in Met-Tai interaction assays. While many substituents led to loss of activity, improved derivatives active at sub-nanomolar range outperformed hitherto existing peptidic and classical juvenoids including fenoxycarb. Their potency in inducing Met-Tai interaction corresponded with the capacity to block metamorphosis in P. apterus larvae and to stimulate oogenesis in reproductively arrested adult females. Molecular modeling demonstrated that the high potency correlates with high affinity. This is a result of malleability of the ligand-binding pocket of P. apterus Met that allows larger peptidic ligands to maximize their contact surface. Our data establish peptidic juvenoids as highly potent and species-selective novel JHR agonists.


Asunto(s)
Hormonas Juveniles , Metopreno , Animales , Femenino , Hormonas Juveniles/metabolismo , Ligandos , Metopreno/metabolismo , Insectos/metabolismo , Reproducción , Larva , Péptidos/farmacología
11.
Dev Biol ; 498: 87-96, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36967076

RESUMEN

Signaling networks are redeployed across different developmental times and places to generate phenotypic diversity from a limited genetic toolkit. Hormone signaling networks in particular have well-studied roles in multiple developmental processes. In insects, the ecdysone pathway controls critical events in late embryogenesis and throughout post-embryonic development. While this pathway has not been shown to function in the earliest stage of embryonic development in the model insect Drosophila melanogaster, one component of the network, the nuclear receptor E75A, is necessary for proper segment generation in the milkweed bug Oncopeltus fasciatus. Published expression data from several other species suggests possible conservation of this role across hundreds of millions of years of insect evolution. Previous work also demonstrates a second nuclear receptor in the ecdysone pathway, Ftz-F1, plays a role in segmentation in multiple insect species. Here we report tightly linked expression patterns of ftz-F1 and E75A in two hemimetabolous insect species, the German cockroach Blattella germanica and the two-spotted cricket Gryllus bimaculatus. In both species, the genes are expressed segmentally in adjacent cells, but they are never co-expressed. Using parental RNAi, we show the two genes have distinct roles in early embryogenesis. E75A appears necessary for abdominal segmentation in B. germanica, while ftz-F1 is essential for proper germband formation. Our results suggest that the ecdysone network is critical for early embryogenesis in hemimetabolous insects.


Asunto(s)
Ecdisona , Heterópteros , Animales , Ecdisona/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Desarrollo Embrionario/genética , Insectos/genética , Insectos/metabolismo , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Regulación del Desarrollo de la Expresión Génica/genética
12.
BMC Genomics ; 25(1): 472, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38745159

RESUMEN

Caddisfly larvae produce silk containing heavy and light fibroins, similar to the silk of Lepidoptera, for the construction of underwater structures. We analyzed the silk of Limnephilus lunatus belonging to the case-forming suborder Integripalpia. We analyzed the transcriptome, mapped the transcripts to a reference genome and identified over 80 proteins using proteomic methods, and checked the specificity of their expression. For comparison, we also analyzed the transcriptome and silk proteome of Limnephilus flavicornis. Our results show that fibroins and adhesives are produced together in the middle and posterior parts of the silk glands, while the anterior part produces enzymes and an unknown protein AT24. The number of silk proteins of L. lunatus far exceeds that of the web-spinning Plectrocnemia conspersa, a previously described species from the suborder Annulipalpia. Our results support the idea of increasing the structural complexity of silk in rigid case builders compared to trap web builders.


Asunto(s)
Seda , Animales , Seda/metabolismo , Seda/química , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Transcriptoma , Insectos/metabolismo , Insectos/genética , Fibroínas/genética , Fibroínas/metabolismo , Fibroínas/química , Proteómica/métodos , Proteoma , Perfilación de la Expresión Génica
13.
Biochem Cell Biol ; 102(3): 238-251, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38408323

RESUMEN

Insects are the largest group of animals when it comes to the number and diversity of species. Yet, with the exception of Drosophila, no information is currently available on the primary structure of their sperm nuclear basic proteins (SNBPs). This paper represents the first attempt in this regard and provides information about six species of Neoptera: Poecillimon thessalicus, Graptosaltria nigrofuscata, Apis mellifera, Nasonia vitripennis, Parachauliodes continentalis, and Tribolium castaneum. The SNBPs of these species were characterized by acetic acid urea gel electrophoresis (AU-PAGE) and high-performance liquid chromatography fractionated. Protein sequencing was obtained using a combination of mass spectrometry sequencing, Edman N-terminal degradation sequencing and genome mining. While the SNBPs of several of these species exhibit a canonical arginine-rich protamine nature, a few of them exhibit a protamine-like composition. They appear to be the products of extensive cleavage processing from a precursor protein which are sometimes further processed by other post-translational modifications that are likely involved in the chromatin transitions observed during spermiogenesis in these organisms.


Asunto(s)
Secuencia de Aminoácidos , Protaminas , Animales , Masculino , Protaminas/metabolismo , Protaminas/química , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Proteínas de Insectos/metabolismo , Proteínas de Insectos/química , Proteínas de Insectos/genética , Insectos/metabolismo , Datos de Secuencia Molecular , Espermatozoides/metabolismo
14.
J Cell Sci ; 135(20)2022 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-36226637

RESUMEN

Myofibrils are the intracellular structures formed by actin and myosin filaments. They are paracrystalline contractile cables with unusually well-defined dimensions. The sliding of actin past myosin filaments powers contractions, and the entire system is held in place by a structure called the Z-disc, which anchors the actin filaments. Myosin filaments, in turn, are anchored to another structure called the M-line. Most of the complex architecture of myofibrils can be reduced to studying the Z-disc, and recently, important advances regarding the arrangement and function of Z-discs in insects have been published. On a very small scale, we have detailed protein structure information. At the medium scale, we have cryo-electron microscopy maps, super-resolution microscopy and protein-protein interaction networks, while at the functional scale, phenotypic data are available from precise genetic manipulations. All these data aim to answer how the Z-disc works and how it is assembled. Here, we summarize recent data from insects and explore how it fits into our view of the Z-disc, myofibrils and, ultimately, muscles.


Asunto(s)
Actinas , Sarcómeros , Actinas/metabolismo , Animales , Biología , Microscopía por Crioelectrón , Insectos/metabolismo , Miofibrillas/química , Miofibrillas/genética , Miofibrillas/metabolismo , Miosinas/metabolismo
15.
PLoS Pathog ; 18(5): e1010506, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35533206

RESUMEN

Viruses can hijack autophagosomes as the nonlytic release vehicles in cultured host cells. However, how autophagosome-mediated viral spread occurs in infected host tissues or organs in vivo remains poorly understood. Here, we report that an important rice reovirus, rice gall dwarf virus (RGDV) hijacks autophagosomes to traverse multiple insect membrane barriers in the midgut and salivary gland of leafhopper vector to enhance viral spread. Such virus-containing double-membraned autophagosomes are prevented from degradation, resulting in increased viral propagation. Mechanistically, viral nonstructural protein Pns11 induces autophagy and embeds itself in the autophagosome membranes. The autophagy-related protein 5 (ATG5)-ATG12 conjugation is essential for initial autophagosome membrane biogenesis. RGDV Pns11 specifically interacts with ATG5, both in vitro and in vivo. Silencing of ATG5 or Pns11 expression suppresses ATG8 lipidation, autophagosome formation, and efficient viral propagation. Thus, Pns11 could directly recruit ATG5-ATG12 conjugation to induce the formation of autophagosomes, facilitating viral spread within the insect bodies. Furthermore, Pns11 potentially blocks autophagosome degradation by directly targeting and mediating the reduced expression of N-glycosylated Lamp1 on lysosomal membranes. Taken together, these results highlight how RGDV remodels autophagosomes to benefit viral propagation in its insect vector.


Asunto(s)
Orthoreovirus , Oryza , Reoviridae , Animales , Autofagosomas/metabolismo , Autofagia , Insectos Vectores , Insectos/metabolismo , Oryza/metabolismo , Reoviridae/metabolismo , Proteínas no Estructurales Virales/genética , Proteínas no Estructurales Virales/metabolismo , Replicación Viral
16.
Insect Mol Biol ; 33(1): 41-54, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37740676

RESUMEN

Caddisworms (Trichoptera) spin adhesive silks to construct a variety of underwater composite structures. Many studies have focused on the fibroin heavy chain of caddisworm silk and found that it contains heavy phosphorylation to maintain a stable secondary structure. Besides fibroins, recent studies have also identified some new silk proteins within caddisworm silk. To better understand the silk composition and its secretion process, this study reports the silk gland proteome of a retreat-building caddisworm, Stenopsyche angustata Martynov (Trichoptera, Stenopsychidae). Using liquid chromatography tandem mass spectrometry (LC-MS/MS), 2389 proteins were identified in the silk gland of S. angustata, among which 192 were predicted as secreted silk proteins. Twenty-nine proteins were found to be enriched in the front silk gland, whereas 109 proteins were enriched in the caudal silk gland. The fibroin heavy chain and nine uncharacterized silk proteins were identified as phosphorylated proteins. By analysing the sequence of the fibroin heavy chain, we found that it contains 13 Gly/Thr/Pro-rich regions, 12 Val/Ser/Arg-rich regions and a Gly/Arg/Thr-rich region. Three uncharacterized proteins were identified as sericin-like proteins due to their larger molecular weights, signal peptides and repetitive motifs rich in serine. This study provides valuable information for further clarifying the secretion and adhesion of underwater caddisworm silk.


Asunto(s)
Bombyx , Fibroínas , Animales , Seda/química , Fibroínas/genética , Fibroínas/química , Insectos/metabolismo , Larva/metabolismo , Proteoma/metabolismo , Cromatografía Liquida , Espectrometría de Masas en Tándem , Bombyx/metabolismo , Proteínas de Insectos/metabolismo
17.
Arch Insect Biochem Physiol ; 115(1): e22071, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38288483

RESUMEN

The single domain von Willebrand factor type C (SVWC) appears in small secreted peptides that are arthropod-specific and are produced following environmental stress or pathogen exposure. Most research has focused on proteins with SVWC domain that are induced after virus infection and are hypothesized to function as "cytokines" to regulate the innate immune response. The expansion of SVWC genes in insect species indicates that many other functions remain to be discovered. Research in shrimp has elucidated the adaptability of Vago-like peptides in the innate immune response against bacteria, fungi and viruses after activation by Jak-STAT and/or Toll/Imd pathways in which they can act as pathogen-recognition receptors or cytokine-like signaling molecules. SVWC factors also appear in scorpion venoms and tick saliva, underlining their versatility to acquire new functions. This review discusses the discovery and function of SVWC peptides from insects to crustaceans and chelicerates and reveals the enormous gaps in knowledge that remain to be filled to understand this enigmatic group of secreted peptides.


Asunto(s)
Citocinas , Factor de von Willebrand , Animales , Factor de von Willebrand/metabolismo , Insectos/metabolismo , Inmunidad Innata , Péptidos
18.
Arch Insect Biochem Physiol ; 115(2): e22089, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38409869

RESUMEN

Insecticide mode of action studies provide insights into how new insecticidal actives function and contribute to assessing safety to humans and nontarget organisms. Insect cell lines that express potential target sites can serve as valuable tools in this effort. In this paper, we report on the influence of two signaling molecules on protein expression in a nervous system cell line established from Spodoptera frugiperda (Bayer/BCIRL-SfNS2-0714-TR). We selected this line because we established it in our laboratory and we are experienced in using it. Cells were exposed to the insect developmental hormone (1 µg/mL 20-hydroxyecdysone, 20E) and/or a cyclooxygenase (COX) inhibitor (25 µM indomethacin, INDO; inhibits prostaglandin [PG] biosynthesis) for 24 h (Day 2), 72 h (Day 4), or 120 h (Day 6). We selected a PG biosynthesis inhibitor because PGs act in many aspects of insect biology, such as embryonic development, immunity, and protein phosphorylation. We selected the developmental hormone, 20E, because it also acts in fundamental aspects of insect biology. We identified specific proteins via in silico analysis. Changes in protein expression levels were determined using liquid chromatography-mass spectrometry (MS) + MS-MS. The largest number of changes in protein expression occurred on Day 2. The combination of 20E plus INDO led to 222 differentially expressed proteins, which documents the deep significance of PGs and 20E in insect biology. 20E and, separately, INDO led to changes in 30 proteins each (p value < 0.01; >2X or <0.5X-fold changes). We recorded changes in the expression of 9 or 12 proteins (20E), 10 or 6 proteins (INDO), and 21 or 20 proteins (20E + INDO) on D4 and D6, respectively. While the cell line was established from neuronal tissue, the differentially expressed proteins act in a variety of fundamental cell processes. In this paper, we moved beyond a list of proteins by providing detailed, Gene Ontology term analyses and enrichment, which offers an in-depth understanding of the influence of these treatments on the SfNS2 cells. Because proteins are active components of cell physiology in their roles as enzymes, receptors, elements of signaling transduction pathways, and cellular structures, changes in their expression levels under the influence of signaling molecules provide insights into their function in insect cell physiology.


Asunto(s)
Ecdisterona , Indometacina , Humanos , Animales , Ecdisterona/farmacología , Ecdisterona/metabolismo , Spodoptera/metabolismo , Insectos/metabolismo , Línea Celular , Hormonas , Sistema Nervioso/metabolismo , Proteínas de Insectos/metabolismo
19.
Arch Insect Biochem Physiol ; 115(4): e22111, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38628055

RESUMEN

In insects, the expression of 20E response genes that initiate metamorphosis is triggered by a pulse of 20-hydroxyecdysone (20E). The 20E pulse is generated through two processes: synthesis, which increases its level, and inactivation, which decreases its titer. CYP18A1 functions as an ecdysteroid 26-hydroxylase and plays a role in 20E removal in several representative insects. However, applying 20E degradation activity of CYP18A1 to other insects remains a significant challenge. In this study, we discovered high levels of Hvcyp18a1 during the larval and late pupal stages, particularly in the larval epidermis and fat body of Henosepilachna vigintioctopunctata, a damaging Coleopteran pest of potatoes. RNA interference (RNAi) targeting Hvcyp18a1 disrupted the pupation. Approximately 75% of the Hvcyp18a1 RNAi larvae experienced developmental arrest and remained as stunted prepupae. Subsequently, they gradually turned black and eventually died. Among the Hvcyp18a1-depleted animals that successfully pupated, around half became malformed pupae with swollen elytra and hindwings. The emerged adults from these deformed pupae appeared misshapen, with shriveled elytra and hindwings, and were wrapped in the pupal exuviae. Furthermore, RNAi of Hvcyp18a1 increased the expression of a 20E receptor gene (HvEcR) and four 20E response transcripts (HvE75, HvHR3, HvBrC, and HvαFTZ-F1), while decreased the transcription of HvßFTZ-F1. Our findings confirm the vital role of CYP18A1 in the pupation, potentially involved in the degradation of 20E in H. vigintioctopunctata.


Asunto(s)
Escarabajos , Proteínas de Insectos , Animales , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Escarabajos/genética , Larva/genética , Larva/metabolismo , Insectos/metabolismo , Metamorfosis Biológica , Ecdisterona/metabolismo , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Interferencia de ARN , Pupa/genética , Pupa/metabolismo
20.
Proc Natl Acad Sci U S A ; 118(44)2021 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-34711682

RESUMEN

Immune priming in Anopheles gambiae is mediated by the systemic release of a hemocyte differentiation factor (HDF), a complex of lipoxin A4 bound to Evokin, a lipid carrier. HDF increases the proportion of circulating granulocytes and enhances mosquito cellular immunity. Here, we show that Evokin is present in hemocytes and fat-body cells, and messenger RNA (mRNA) expression increases significantly after immune priming. The double peroxidase (DBLOX) enzyme, present in insects but not in vertebrates, is essential for HDF synthesis. DBLOX is highly expressed in oenocytes in the fat-body tissue, and these cells increase in number in primed mosquitoes. We provide direct evidence that the histone acetyltransferase AgTip60 (AGAP001539) is also essential for a sustained increase in oenocyte numbers, HDF synthesis, and immune priming. We propose that oenocytes may function as a population of cells that are reprogrammed, and orchestrate and maintain a broad, systemic, and long-lasting state of enhanced immune surveillance in primed mosquitoes.


Asunto(s)
Culicidae/inmunología , Histona Acetiltransferasas/metabolismo , Memoria Inmunológica/inmunología , Animales , Anopheles/inmunología , Anopheles/metabolismo , Culicidae/metabolismo , Femenino , Granulocitos/metabolismo , Hemocitos/inmunología , Inmunidad Innata/inmunología , Proteínas de Insectos/genética , Insectos/metabolismo , Lipoxinas/metabolismo , Malaria/inmunología , Masculino , Peroxidasa/metabolismo , Plasmodium/metabolismo , Plasmodium berghei/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA