Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.502
Filtrar
Más filtros

Intervalo de año de publicación
1.
Immunity ; 56(7): 1431-1433, 2023 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-37437533

RESUMEN

Interleukin-3 (IL-3) induces emergency hematopoiesis in settings of acute inflammation. In this issue of Immunity, Kiss et al. find that IL-3 derived from astrocytes and CD4+ T cells is a key regulatory cytokine of the central nervous system, and increased IL-3 signaling exacerbates neuroinflammation.


Asunto(s)
Encéfalo , Interleucina-3 , Sistema Nervioso Central , Astrocitos , Citocinas
2.
Immunity ; 56(7): 1502-1514.e8, 2023 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-37160117

RESUMEN

Glial cells and central nervous system (CNS)-infiltrating leukocytes contribute to multiple sclerosis (MS). However, the networks that govern crosstalk among these ontologically distinct populations remain unclear. Here, we show that, in mice and humans, CNS-resident astrocytes and infiltrating CD44hiCD4+ T cells generated interleukin-3 (IL-3), while microglia and recruited myeloid cells expressed interleukin-3 receptor-ɑ (IL-3Rɑ). Astrocytic and T cell IL-3 elicited an immune migratory and chemotactic program by IL-3Rɑ+ myeloid cells that enhanced CNS immune cell infiltration, exacerbating MS and its preclinical model. Multiregional snRNA-seq of human CNS tissue revealed the appearance of IL3RA-expressing myeloid cells with chemotactic programming in MS plaques. IL3RA expression by plaque myeloid cells and IL-3 amount in the cerebrospinal fluid predicted myeloid and T cell abundance in the CNS and correlated with MS severity. Our findings establish IL-3:IL-3RA as a glial-peripheral immune network that prompts immune cell recruitment to the CNS and worsens MS.


Asunto(s)
Esclerosis Múltiple , Animales , Humanos , Ratones , Sistema Nervioso Central , Interleucina-3 , Microglía , Neuroglía/metabolismo
3.
Mol Cell ; 84(10): 1995-2005.e7, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38614096

RESUMEN

Cytokines regulate immune responses by binding to cell surface receptors, including the common subunit beta (ßc), which mediates signaling for GM-CSF, IL-3, and IL-5. Despite known roles in inflammation, the structural basis of IL-5 receptor activation remains unclear. We present the cryo-EM structure of the human IL-5 ternary receptor complex, revealing architectural principles for IL-5, GM-CSF, and IL-3. In mammalian cell culture, single-molecule imaging confirms hexameric IL-5 complex formation on cell surfaces. Engineered chimeric receptors show that IL-5 signaling, as well as IL-3 and GM-CSF, can occur through receptor heterodimerization, obviating the need for higher-order assemblies of ßc dimers. These findings provide insights into IL-5 and ßc receptor family signaling mechanisms, aiding in the development of therapies for diseases involving deranged ßc signaling.


Asunto(s)
Microscopía por Crioelectrón , Factor Estimulante de Colonias de Granulocitos y Macrófagos , Interleucina-3 , Multimerización de Proteína , Receptores de Interleucina-5 , Transducción de Señal , Humanos , Sitios de Unión , Subunidad beta Común de los Receptores de Citocinas/metabolismo , Subunidad beta Común de los Receptores de Citocinas/genética , Subunidad beta Común de los Receptores de Citocinas/química , Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo , Factor Estimulante de Colonias de Granulocitos y Macrófagos/química , Factor Estimulante de Colonias de Granulocitos y Macrófagos/genética , Células HEK293 , Interleucina-3/metabolismo , Interleucina-3/química , Interleucina-3/genética , Interleucina-5/metabolismo , Modelos Moleculares , Unión Proteica , Receptores de Interleucina-5/metabolismo , Receptores de Interleucina-5/genética , Receptores de Interleucina-5/química , Imagen Individual de Molécula , Relación Estructura-Actividad
4.
Nat Immunol ; 24(6): 886, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37217708
5.
Immunity ; 50(4): 796-811, 2019 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-30995500

RESUMEN

The ß common chain cytokines GM-CSF, IL-3, and IL-5 regulate varied inflammatory responses that promote the rapid clearance of pathogens but also contribute to pathology in chronic inflammation. Therapeutic interventions manipulating these cytokines are approved for use in some cancers as well as allergic and autoimmune disease, and others show promising early clinical activity. These approaches are based on our understanding of the inflammatory roles of these cytokines; however, GM-CSF also participates in the resolution of inflammation, and IL-3 and IL-5 may also have such properties. Here, we review the functions of the ß common cytokines in health and disease. We discuss preclinical and clinical data, highlighting the potential inherent in targeting these cytokine pathways, the limitations, and the important gaps in understanding of the basic biology of this cytokine family.


Asunto(s)
Factor Estimulante de Colonias de Granulocitos y Macrófagos/inmunología , Inflamación/inmunología , Interleucina-3/inmunología , Interleucina-5/inmunología , Animales , Enfermedades Autoinmunes/inmunología , Factor Estimulante de Colonias de Granulocitos y Macrófagos/deficiencia , Factor Estimulante de Colonias de Granulocitos y Macrófagos/genética , Factor Estimulante de Colonias de Granulocitos y Macrófagos/uso terapéutico , Hematopoyesis/inmunología , Humanos , Inflamación/terapia , Interleucina-3/antagonistas & inhibidores , Interleucina-3/deficiencia , Interleucina-3/genética , Interleucina-5/antagonistas & inhibidores , Interleucina-5/deficiencia , Interleucina-5/genética , Ratones , Ratones Noqueados , Familia de Multigenes , Neoplasias/inmunología , Neoplasias/terapia , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos/genética , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos/inmunología , Receptores de Interleucina-3/genética , Receptores de Interleucina-3/inmunología , Receptores de Interleucina-5/genética , Receptores de Interleucina-5/inmunología , Proteínas Recombinantes/inmunología , Proteínas Recombinantes/uso terapéutico , Transducción de Señal , Relación Estructura-Actividad , Vacunación , Cicatrización de Heridas/inmunología
6.
Nature ; 595(7869): 701-706, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34262178

RESUMEN

Communication within the glial cell ecosystem is essential for neuronal and brain health1-3. The influence of glial cells on the accumulation and clearance of ß-amyloid (Aß) and neurofibrillary tau in the brains of individuals with Alzheimer's disease (AD) is poorly understood, despite growing awareness that these are therapeutically important interactions4,5. Here we show, in humans and mice, that astrocyte-sourced interleukin-3 (IL-3) programs microglia to ameliorate the pathology of AD. Upon recognition of Aß deposits, microglia increase their expression of IL-3Rα-the specific receptor for IL-3 (also known as CD123)-making them responsive to IL-3. Astrocytes constitutively produce IL-3, which elicits transcriptional, morphological, and functional programming of microglia to endow them with an acute immune response program, enhanced motility, and the capacity to cluster and clear aggregates of Aß and tau. These changes restrict AD pathology and cognitive decline. Our findings identify IL-3 as a key mediator of astrocyte-microglia cross-talk and a node for therapeutic intervention in AD.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Astrocitos/fisiología , Interleucina-3/metabolismo , Microglía/fisiología , Animales , Comunicación Celular , Células Cultivadas , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Células-Madre Neurales/fisiología
7.
Semin Immunol ; 54: 101510, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-34756806

RESUMEN

The ß common chain (ßc) cytokine family includes granulocyte-macrophage colony-stimulating factor (GM-CSF), interleukin-3 (IL-3) and IL-5, all of which use ßc as key signaling receptor subunit. GM-CSF, IL-3 and IL-5 have specific roles as hematopoietic growth factors. IL-3 binds with high affinity to the IL-3 receptor α (IL-3Rα/CD123) and then associates with the ßc subunit. IL-3 is mainly synthesized by different subsets of T cells, but is also produced by several other immune [basophils, dendritic cells (DCs), mast cells, etc.] and non-immune cells (microglia and astrocytes). The IL-3Rα is also expressed by immune (basophils, eosinophils, mast cells, DCs, monocytes, and megacaryocytes) and non-immune cells (endothelial cells and neuronal cells). IL-3 is the most important growth and activating factor for human and mouse basophils, primary effector cells of allergic disorders. IL-3-activated basophils and mast cells are also involved in different chronic inflammatory disorders, infections, and several types of cancer. IL-3 induces the release of cytokines (i.e., IL-4, IL-13, CXCL8) from human basophils and preincubation of basophils with IL-3 potentiates the release of proinflammatory mediators and cytokines from IgE- and C5a-activated basophils. IL-3 synergistically potentiates IL-33-induced mediator release from human basophils. IL-3 plays a pathogenic role in several hematologic cancers and may contribute to autoimmune and cardiac disorders. Several IL-3Rα/CD123 targeting molecules have shown some efficacy in the treatment of hematologic malignancies.


Asunto(s)
Basófilos , Interleucina-3 , Animales , Células Endoteliales , Eosinófilos , Humanos , Interleucina-3/metabolismo , Interleucina-3/farmacología , Interleucina-5/metabolismo , Interleucina-5/farmacología , Ratones
8.
J Allergy Clin Immunol ; 153(1): 132-145, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37783432

RESUMEN

BACKGROUND: Basophils are rare but important effector cells in many allergic disorders. Contrary to their early progenitors, the terminal developmental processes of basophils in which they gain their unique functional properties are unknown. OBJECTIVE: We sought to identify a novel late-stage basophil precursor and a transcription factor regulating the terminal maturation of basophils. METHODS: Using flow cytometry, transcriptome analysis, and functional assays, we investigated the identification and functionality of the basophil precursors as well as basophil development. We generated mice with basophil-specific deletion of nuclear factor IL-3 (NFIL3)/E4BP4 and analyzed the functional impairment of NFIL3/E4BP4-deficient basophils in vitro and in vivo using an oxazolone-induced murine model of allergic dermatitis. RESULTS: We report a new mitotic transitional basophil precursor population (referred to as transitional basophils) that expresses the FcεRIα chain at higher levels than mature basophils. Transitional basophils are less responsive to IgE-linked degranulation but produce more cytokines in response to IL-3, IL-33, or IgE cross-linking than mature basophils. In particular, we found that the expression of NFIL3/E4BP4 gradually rises as cells mature from the basophil progenitor stage. Basophil-specific deletion of NFIL3/E4BP4 reduces the expression of genes necessary for basophil function and impairs IgE receptor signaling, cytokine secretion, and degranulation in the context of murine atopic dermatitis. CONCLUSIONS: We discovered transitional basophils, a novel late-stage mitotic basophil precursor cell population that exists between basophil progenitors and postmitotic mature basophils. We demonstrated that NFIL3/E4BP4 augments the IgE-mediated functions of basophils, pointing to a potential therapeutic regulator for allergic diseases.


Asunto(s)
Factores de Transcripción con Cremalleras de Leucina de Carácter Básico , Basófilos , Animales , Ratones , Basófilos/citología , Basófilos/metabolismo , Dermatitis Atópica/metabolismo , Hipersensibilidad/metabolismo , Inmunoglobulina E/metabolismo , Interleucina-3/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo
9.
Immunology ; 171(4): 609-617, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38226657

RESUMEN

Basophils are rare granulocytes in circulation which home to tissues in a process depending on rolling, adhesion and cytokine exposure. However, it is still unclear how these steps affect basophil degranulation. Our aim was to imitate these processes associated with homing by sequential crosslinking of adhesion molecules and cytokine exposure and evaluate the effect on basophil piecemeal (PMD) and anaphylactic degranulation (AND). Blood donors with or without allergic asthma were recruited from an ongoing cohort study. Basophils were subjected to CD62L-, CD49d- or CD11b crosslinking and IL-3 or IL-33 stimulation in different orders followed by anti-IgE and fMLP stimulation. Basophil CD203c and CD63 expression were analysed by flow cytometry to determine PMD and AND, respectively. IL-3 induced PMD in basophils and combined with CD62L- or CD11b crosslinking, IL-3 potentiated the degranulation regardless of sequential order. IL-3 priming followed by adhesion molecule crosslinking induced AND and potentiated the effect of anti-IgE. CD62L- and CD11b crosslinking did not further potentiate this effect. CD49d crosslinking followed by IL-3 increased CD63 expression following anti-IgE. IL-3 potentiated the effect of fMLP on AND while adhesion molecule crosslinking did not. IL-33 had impact on PMD only when followed by adhesion molecule crosslinking but did not potentiate neither IgE-dependent nor IgE-independent degranulation. Our data indicate that sequential interactions between basophils, cytokines and adhesion molecule ligands have a decisive effect on basophil degranulation and that these interactions are operational for fine-tuning the activity of tissue dwelling basophils. These data should be considered when the effect of different pharmaceutical on basophil function is studied.


Asunto(s)
Basófilos , Interleucina-33 , Humanos , Interleucina-33/metabolismo , Receptores de Citocinas/metabolismo , Interleucina-3/farmacología , Estudios de Cohortes , Moléculas de Adhesión Celular , Citocinas/metabolismo , Inmunoglobulina E
10.
Growth Factors ; 42(2): 49-61, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38299881

RESUMEN

Breast cancer represents a collection of pathologies with different molecular subtypes, histopathology, risk factors, clinical behavior, and responses to treatment. "Basal-like" breast cancers predominantly lack the receptors for estrogen and progesterone (ER/PR), lack amplification of human epidermal growth factor receptor 2 (HER2) but account for 10-15% of all breast cancers, are largely insensitive to targeted treatment and represent a disproportionate number of metastatic cases and deaths. Analysis of interleukin (IL)-3 and the IL-3 receptor subunits (IL-3RA + CSF2RB) reveals elevated expression in predominantly the basal-like group. Further analysis suggests that IL-3 itself, but not the IL-3 receptor subunits, associates with poor patient outcome. Histology on patient-derived xenografts supports the notion that breast cancer cells are a significant source of IL-3 that may promote disease progression. Taken together, these observations suggest that IL-3 may be a useful marker in solid tumors, particularly triple negative breast cancer, and warrants further investigation into its contribution to disease pathogenesis.


Asunto(s)
Neoplasias de la Mama , Interleucina-3 , Humanos , Femenino , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Interleucina-3/metabolismo , Animales , Pronóstico , Ratones , Línea Celular Tumoral
11.
Genes Cells ; 28(3): 226-236, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36637417

RESUMEN

Basophils produce interleukins (IL)-4 in response to various stimuli and may contribute to type 2 immune responses to various infections and allergens. We found that resting basophils freshly isolated from mice produce IL-4 in response to IL-3 but not to high-affinity Fc receptor (FcεRI) cross-linking (CL), yet both required the immunoreceptor tyrosine-based activation motif (ITAM) containing adaptor Fc receptor γ-chain (FcRγ), while basophils activated in vitro by IL-3 become responsive to FcεRI CL. Acquisition of responsiveness to FcεRI CL occurred upon infection with Trichinella spiralis or administration of superantigen. Because cultured basophils return to a quiescent state upon starvation with IL-3 with surface FcεRI levels unchanged, this acquisition is reversible and probably reflects intracellular events requiring protein synthesis. Interestingly, similar activation-associated acquisition was observed for responsiveness to other stimuli, including CD200R3 CL, which is known to signal via DAP-12, and the allergen protease papain. This acquisition of responsiveness to FcεRI CL was inhibited by Jak inhibitor. Thus, the IL-3 signal bifurcates downstream of Jak, into two distinct pathway, one leading to IL-4 production and the other to render basophils competent to respond to stimuli dependent on ITAM-containing adaptors DAP12 and FcRγ for IL-4 production.


Asunto(s)
Basófilos , Interleucina-3 , Ratones , Animales , Interleucina-3/metabolismo , Interleucina-3/farmacología , Basófilos/metabolismo , Interleucina-4/metabolismo , Receptores de IgE/metabolismo , Inmunoglobulina E/metabolismo
12.
Cytokine ; 173: 156417, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37944421

RESUMEN

Colony-stimulating factors (CSFs) are key cytokines responsible for the production, maturation, and mobilization of the granulocytic and macrophage lineages from the bone marrow, which have been gaining attention for playing pro- and/or anti-tumorigenic roles in cancer. Head and neck cancers (HNCs) represent a group of heterogeneous neoplasms with high morbidity and mortality worldwide. Treatment for HNCs is still limited even with the advancements in cancer immunotherapy. Novel treatments for patients with recurrent and metastatic HNCs are urgently needed. This article provides an in-depth review of the role of hematopoietic cytokines such as granulocyte colony-stimulating factor (G-CSF), granulocyte-macrophage colony-stimulating factor (GM-CSF), macrophage colony-stimulating factor (M-CSF), and interleukin-3 (IL-3; also known as multi-CSF) in the HNCs tumor microenvironment. We have reviewed current results from clinical trials using CSFs as adjuvant therapy to treat HNCs patients, and also clinical findings reported to date on the therapeutic application of CSFs toxicities arising from chemoradiotherapy.


Asunto(s)
Factores Estimulantes de Colonias , Neoplasias de Cabeza y Cuello , Humanos , Interleucina-3 , Factor Estimulante de Colonias de Granulocitos/uso terapéutico , Citocinas , Granulocitos , Neoplasias de Cabeza y Cuello/tratamiento farmacológico , Microambiente Tumoral
13.
Haematologica ; 109(8): 2445-2458, 2024 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-38356460

RESUMEN

ETV6::ACSL6 represents a rare genetic aberration in hematopoietic neoplasms and is often associated with severe eosinophilia, which confers an unfavorable prognosis requiring additional anti-inflammatory treatment. However, since the translocation is unlikely to produce a fusion protein, the mechanism of ETV6::ACSL6 action remains unclear. Here, we performed multi-omics analyses of primary leukemia cells and patient-derived xenografts from an acute lymphoblastic leukemia (ALL) patient with ETV6::ACSL6 translocation. We identified a super-enhancer located within the ETV6 gene locus, and revealed translocation and activation of the super-enhancer associated with the ETV6::ACSL6 fusion. The translocated super-enhancer exhibited intense interactions with genomic regions adjacent to and distal from the breakpoint at chromosomes 5 and 12, including genes coding inflammatory factors such as IL-3. This led to modulations in DNA methylation, histone modifications, and chromatin structures, triggering transcription of inflammatory factors leading to eosinophilia. Furthermore, the bromodomain and extraterminal domain (BET) inhibitor synergized with standard-of-care drugs for ALL, effectively reducing IL-3 expression and inhibiting ETV6::ACSL6 ALL growth in vitro and in vivo. Overall, our study revealed for the first time a cis-regulatory mechanism of super-enhancer translocation in ETV6::ACSL6ALL, leading to an ALL-accompanying clinical syndrome. These findings may stimulate novel treatment approaches for this challenging ALL subtype.


Asunto(s)
Proteína ETS de Variante de Translocación 6 , Elementos de Facilitación Genéticos , Eosinofilia , Interleucina-3 , Proteínas de Fusión Oncogénica , Leucemia-Linfoma Linfoblástico de Células Precursoras , Proteínas Proto-Oncogénicas c-ets , Proteínas Represoras , Translocación Genética , Animales , Humanos , Ratones , Eosinofilia/genética , Eosinofilia/metabolismo , Eosinofilia/patología , Regulación Leucémica de la Expresión Génica , Interleucina-3/genética , Interleucina-3/metabolismo , Proteínas de Fusión Oncogénica/genética , Proteínas de Fusión Oncogénica/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/patología , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Proteínas Proto-Oncogénicas c-ets/genética , Proteínas Proto-Oncogénicas c-ets/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo
14.
Trends Immunol ; 42(11): 937-939, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34657802

RESUMEN

Brain ß-amyloid (Aß) deposition is a biomarker for Alzheimer's disease (AD) and other dementias, in which Aß amounts correlate with disease burden. McAlpine et al. reveal that astrocyte expression or administration of interleukin (IL)-3 in the context of aggregated Aß endows microglia with enhanced capability to cluster and clear Aß oligomers.


Asunto(s)
Enfermedad de Alzheimer , Microglía , Péptidos beta-Amiloides/metabolismo , Astrocitos , Humanos , Interleucina-3/metabolismo
15.
Cell Commun Signal ; 22(1): 254, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38702781

RESUMEN

IL-3/STAT5 signaling pathway is crucial for the development and activation of immune cells, contributing to the cellular response to infections and inflammatory stimuli. Dysregulation of the IL-3/STAT5 signaling have been associated with inflammatory and autoimmune diseases characterized by inflammatory cell infiltration and organ damage. IL-3 receptor α (IL-3Rα) specifically binds to IL-3 and initiates intracellular signaling, resulting in the phosphorylation of STAT5. However, the regulatory mechanisms of IL-3Rα remain unclear. Here, we identified the E3 ubiquitin ligase RNF128 as a negative regulator of IL-3/STAT5 signaling by targeting IL-3Rα for lysosomal degradation. RNF128 was shown to selectively bind to IL-3Rα, without interacting with the common beta chain IL-3Rß, which shares the subunit with GM-CSF. The deficiency of Rnf128 had no effect on GM-CSF-induced phosphorylation of Stat5, but it resulted in heightened Il-3-triggered activation of Stat5 and increased transcription of the Id1, Pim1, and Cd69 genes. Furthermore, we found that RNF128 promoted the K27-linked polyubiquitination of IL-3Rα in a ligase activity-dependent manner, ultimately facilitating its degradation through the lysosomal pathway. RNF128 inhibited the activation and chemotaxis of macrophages in response to LPS stimulation, thereby attenuating excessive inflammatory responses. Collectively, these results reveal that RNF128 negatively regulates the IL-3/STAT5 signaling pathway by facilitating K27-linked polyubiquitination of IL-3Rα. This study uncovers E3 ubiquitin ligase RNF128 as a novel regulator of the IL-3/STAT5 signaling pathway, providing potential molecular targets for the treatment of inflammatory diseases.


Asunto(s)
Interleucina-3 , Factor de Transcripción STAT5 , Transducción de Señal , Ubiquitina-Proteína Ligasas , Ubiquitinación , Factor de Transcripción STAT5/metabolismo , Factor de Transcripción STAT5/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Humanos , Animales , Interleucina-3/metabolismo , Ratones , Lisosomas/metabolismo , Células HEK293 , Fosforilación , Receptores de Interleucina-3/metabolismo , Receptores de Interleucina-3/genética
16.
Cell Commun Signal ; 22(1): 211, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38566191

RESUMEN

The EP300-ZNF384 fusion gene is an oncogenic driver in B-cell acute lymphoblastic leukemia (B-ALL). In the present study, we demonstrated that EP300-ZNF384 substantially induces the transcription of IL3RA and the expression of IL3Rα (CD123) on B-ALL cell membranes. Interleukin 3 (IL-3) supplementation promotes the proliferation of EP300-ZNF348-positive B-ALL cells by activating STAT5. Conditional knockdown of IL3RA in EP300-ZF384-positive cells inhibited the proliferation in vitro, and induced a significant increase in overall survival of mice, which is attributed to impaired propagation ability of leukemia cells. Mechanistically, the EP300-ZNF384 fusion protein transactivates the promoter activity of IL3RA by binding to an A-rich sequence localized at -222/-234 of IL3RA. Furthermore, forced EP300-ZNF384 expression induces the expression of IL3Rα on cell membranes and the secretion of IL-3 in CD19-positive B precursor cells derived from healthy individuals. Doxorubicin displayed a selective killing of EP300-ZNF384-positive B-ALL cells in vitro and in vivo. Collectively, we identify IL3RA as a direct downstream target of EP300-ZNF384, suggesting CD123 is a potent biomarker for EP300-ZNF384-driven B-ALL. Targeting CD123 may be a novel therapeutic approach to EP300-ZNF384-positive patients, alternative or, more likely, complementary to standard chemotherapy regimen in clinical setting.


Asunto(s)
Leucemia-Linfoma Linfoblástico de Células Precursoras , Transactivadores , Animales , Humanos , Ratones , Doxorrubicina , Proteína p300 Asociada a E1A , Interleucina-3 , Subunidad alfa del Receptor de Interleucina-3 , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Transactivadores/metabolismo
17.
Neurochem Res ; 49(5): 1373-1386, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38512424

RESUMEN

Interleukin 3 (IL-3) is a well-known pleiotropic cytokine that regulates the proliferation and differentiation of hematopoietic progenitor cells, triggering classical signaling pathways such as JAK/STAT, Ras/MAPK, and PI3K/Akt to carry out its functions. Interestingly, the IL-3 receptor is also expressed in non-hematopoietic cells, playing a crucial role in cell survival. Our previous research demonstrated the expression of the IL-3 receptor in neuron cells and its protective role in neurodegeneration. Glutamate, a principal neurotransmitter in the central nervous system, can induce cellular stress and lead to neurotoxicity when its extracellular concentrations surpass normal levels. This excessive glutamate presence is frequently observed in various neurological diseases. In this study, we uncover the protective role of IL-3 as an inhibitor of glutamate-induced cell death, analyzing the cytokine's signaling pathways during its protective effect. Specifically, we examined the relevance of JAK/STAT, Ras/MAPK, and PI3 K signaling pathways in the molecular mechanism triggered by IL-3. Our results show that the inhibition of JAK, ERK, and PI3 K signaling pathways, using pharmacological inhibitors, effectively blocked IL-3's protective role against glutamate-induced cell death. Additionally, our findings suggest that Bcl-2 and Bax proteins may be involved in the molecular mechanism triggered by IL-3. Our investigation into IL-3's ability to protect neuronal cells from glutamate-induced damage offers a promising therapeutic avenue with potential clinical implications for several neurological diseases characterized by glutamate neurotoxicity.


Asunto(s)
Interleucina-3 , Neuroblastoma , Humanos , Ácido Glutámico/toxicidad , Fosfatidilinositol 3-Quinasas/metabolismo , Receptores de Interleucina-3 , Línea Celular , Proteínas Proto-Oncogénicas c-akt/metabolismo
18.
J Surg Res ; 295: 611-618, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38096775

RESUMEN

INTRODUCTION: Syndecan-1 is a heparan sulfate proteoglycan found in the glycocalyx of vascular endothelial cells. Serum levels of syndecan-1 have repeatedly been demonstrated to increase following traumatic injury and shock, but it is unclear whether syndecan-1 plays an active role in the inflammatory response or is simply a biomarker of a state of hypoperfusion. The aim of this study was to identify the role of syndecan-1 role in the inflammatory process in the absence of trauma. METHODS: Male mice were randomized into five groups (n = 3). Four groups received increasing concentrations of syndecan-1 (1, 10, 100, and 1000pg/mL per blood volume) and a fifth group was given normal saline as a control via intravenous injection. These concentrations were selected based on previous syndecan-1 enzyme-linked immunosorbent assay data acquired following induced hemorrhagic shock in mice resulting in serum levels of 10-6000 pg/mL. Mice from each group were sacrificed at 1-, 4-, and 24-h time points for serum biomarker evaluation. A multiplex enzyme-linked immunosorbent assay was performed to analyze proinflammatory cytokines and chemokines including interleukin (IL)-1a, IL-1b, IL-2, IL-3, IL-4, IL-6, IL-10, IL-12, IL-17, monocyte chemoattractant protein-1, TNF-α, macrophage inflammatory protein-1α, granulocyte-macrophage colony-stimulating factor, and normal T cell expressed and presumably secreted levels. Whole blood was analyzed via rotational thromboelastometry in a separate group of mice dosed with syndecan-1 at 1000 pg/mL and compared to sham mice at 1 h. RESULTS: Tumor necrosis factor-α was significantly elevated in the 1000 pg/mL group compared to sham animals. There were no significant changes in IL-1a, IL-1b, IL-2, IL-3, IL-4, IL-6, IL-10, IL-12, monocyte chemoattractant protein--1, macrophage inflammatory protein-1α, granulocyte-macrophage colony-stimulating factor, or normal T cell expressed and presumably secretedat 1, 4, and 24 h for any group when compared to mice receiving saline alone. No significant differences were noted in coagulability between the 1000 pg/mL syndecan-1 group and shams at 1 h CONCLUSIONS: Inflammatory cytokine concentrations did not change with increasing dosage of syndecan-1 within mice at any timepoint, except for an acute change in tumor necrosis factor-α which was transient. Based on our results, syndecan-1 appears to be a biomarker for inflammation rather than an active participant in eliciting an inflammatory response. Further research will focus on the role of syndecan-1 following hemorrhagic shock.


Asunto(s)
Factor Estimulante de Colonias de Granulocitos y Macrófagos , Choque Hemorrágico , Humanos , Masculino , Ratones , Animales , Interleucina-10 , Interleucina-6 , Células Endoteliales , Factor de Necrosis Tumoral alfa , Choque Hemorrágico/complicaciones , Sindecano-1 , Interleucina-2 , Interleucina-3 , Interleucina-4 , Citocinas , Interleucina-12 , Biomarcadores , Proteínas Inflamatorias de Macrófagos
19.
J Allergy Clin Immunol ; 151(1): 202-211, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-35953001

RESUMEN

BACKGROUND: Mast cells (MC) and basophils are effector cells of allergic reactions and display a number of activation-linked cell surface antigens. Of these antigens, however, only a few are functionally relevant and specifically expressed in these cells. OBJECTIVE: We sought to identify MC- and basophil-specific surface molecules and to study their cellular distribution and regulation during cytokine-induced and IgE-dependent activation. METHODS: Multicolor flow cytometry was performed to recognize surface antigens and to determine changes in antigen expression upon activation. RESULTS: We identified Siglec-6 (CD327) as a differentially regulated surface antigen on human MC and basophils. In the bone marrow, Siglec-6 was expressed abundantly on MC in patients with mastocytosis and in reactive states, but it was not detected on other myeloid cells, with the exception of basophils and monocytes. In healthy individuals, allergic patients, and patients with chronic myeloid leukemia (CML), Siglec-6 was identified on CD203c+ blood basophils, a subset of CD19+ B lymphocytes, and few CD14+ monocytes, but not on other blood leukocytes. CML basophils expressed higher levels of Siglec-6 than normal basophils. IL-3 promoted Siglec-6 expression on normal and CML basophils, and stem cell factor increased the expression of Siglec-6 on tissue MC. Unexpectedly, IgE-dependent activation resulted in downregulation of Siglec-6 in IL-3-primed basophils, whereas in MC, IgE-dependent activation augmented stem cell factor-induced upregulation of Siglec-6. CONCLUSIONS: Siglec-6 is a dynamically regulated marker of MC and basophils. Activated MC and basophils exhibit unique Siglec-6 responses, including cytokine-dependent upregulation and unique, cell-specific, responses to IgE-receptor cross-linking.


Asunto(s)
Basófilos , Mastocitos , Humanos , Antígenos CD , Enfermedad Crónica , Inmunoglobulina E , Interleucina-3/metabolismo , Lectinas Similares a la Inmunoglobulina de Unión a Ácido Siálico , Factor de Células Madre/metabolismo
20.
J Allergy Clin Immunol ; 151(2): 324-344, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36424209

RESUMEN

The family of cytokines that comprises IL-3, IL-5, and GM-CSF was discovered over 30 years ago, and their biological activities and resulting impact in clinical medicine has continued to expand ever since. Originally identified as bone marrow growth factors capable of acting on hemopoietic progenitor cells to induce their proliferation and differentiation into mature blood cells, these cytokines are also recognized as key mediators of inflammation and the pathobiology of diverse immunologic diseases. This increased understanding of the functional repertoire of IL-3, IL-5, and GM-CSF has led to an explosion of interest in modulating their functions for clinical management. Key to the successful clinical translation of this knowledge is the recognition that these cytokines act by engaging distinct dimeric receptors and that they share a common signaling subunit called ß-common or ßc. The structural determination of how IL-3, IL-5, and GM-CSF interact with their receptors and linking this to their differential biological functions on effector cells has unveiled new paradigms of cell signaling. This knowledge has paved the way for novel mAbs and other molecules as selective or pan inhibitors for use in different clinical settings.


Asunto(s)
Medicina Clínica , Factor Estimulante de Colonias de Granulocitos y Macrófagos , Humanos , Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo , Citocinas/metabolismo , Interleucina-3/metabolismo , Interleucina-5/metabolismo , Eosinófilos , Biología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA