Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23.772
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 187(19): 5431-5452.e20, 2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39303691

RESUMEN

Breastfeeding and microbial colonization during infancy occur within a critical time window for development, and both are thought to influence the risk of respiratory illness. However, the mechanisms underlying the protective effects of breastfeeding and the regulation of microbial colonization are poorly understood. Here, we profiled the nasal and gut microbiomes, breastfeeding characteristics, and maternal milk composition of 2,227 children from the CHILD Cohort Study. We identified robust colonization patterns that, together with milk components, predict preschool asthma and mediate the protective effects of breastfeeding. We found that early cessation of breastfeeding (before 3 months) leads to the premature acquisition of microbial species and functions, including Ruminococcus gnavus and tryptophan biosynthesis, which were previously linked to immune modulation and asthma. Conversely, longer exclusive breastfeeding supports a paced microbial development, protecting against asthma. These findings underscore the importance of extended breastfeeding for respiratory health and highlight potential microbial targets for intervention.


Asunto(s)
Lactancia Materna , Leche Humana , Humanos , Femenino , Leche Humana/microbiología , Lactante , Preescolar , Asma/microbiología , Asma/prevención & control , Asma/inmunología , Microbiota , Microbioma Gastrointestinal , Masculino , Estudios de Cohortes , Recién Nacido
2.
Cell ; 187(3): 750-763.e20, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38242132

RESUMEN

Breastfeeding offers demonstrable benefits to newborns and infants by providing nourishment and immune protection and by shaping the gut commensal microbiota. Although it has been appreciated for decades that breast milk contains complement components, the physiological relevance of complement in breast milk remains undefined. Here, we demonstrate that weanling mice fostered by complement-deficient dams rapidly succumb when exposed to murine pathogen Citrobacter rodentium (CR), whereas pups fostered on complement-containing milk from wild-type dams can tolerate CR challenge. The complement components in breast milk were shown to directly lyse specific members of gram-positive gut commensal microbiota via a C1-dependent, antibody-independent mechanism, resulting in the deposition of the membrane attack complex and subsequent bacterial lysis. By selectively eliminating members of the commensal gut community, complement components from breast milk shape neonate and infant gut microbial composition to be protective against environmental pathogens such as CR.


Asunto(s)
Proteínas del Sistema Complemento , Microbioma Gastrointestinal , Leche , Animales , Femenino , Humanos , Lactante , Ratones , Bacterias , Lactancia Materna , Citrobacter rodentium , Proteínas del Sistema Complemento/análisis , Factores Inmunológicos , Salud del Lactante , Leche Humana , Leche/química , Infecciones por Enterobacteriaceae/inmunología
3.
Cell ; 185(23): 4280-4297.e12, 2022 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-36323316

RESUMEN

The gut microbiome has an important role in infant health and development. We characterized the fecal microbiome and metabolome of 222 young children in Dhaka, Bangladesh during the first two years of life. A distinct Bifidobacterium longum clade expanded with introduction of solid foods and harbored enzymes for utilizing both breast milk and solid food substrates. The clade was highly prevalent in Bangladesh, present globally (at lower prevalence), and correlated with many other gut taxa and metabolites, indicating an important role in gut ecology. We also found that the B. longum clades and associated metabolites were implicated in childhood diarrhea and early growth, including positive associations between growth measures and B. longum subsp. infantis, indolelactate and N-acetylglutamate. Our data demonstrate geographic, cultural, seasonal, and ecological heterogeneity that should be accounted for when identifying microbiome factors implicated in and potentially benefiting infant development.


Asunto(s)
Bifidobacterium longum , Lactante , Niño , Femenino , Humanos , Preescolar , Bifidobacterium longum/metabolismo , Bifidobacterium/metabolismo , Destete , Oligosacáridos/metabolismo , Bangladesh , Leche Humana , Heces/microbiología
4.
Cell ; 184(6): 1486-1499, 2021 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-33740451

RESUMEN

Neonates are born with an immature immune system and rely on the transfer of immunity from their mothers. Maternal antibodies are transferred via the placenta and breast milk. Although the role of placentally transferred immunoglobulin G (IgG) is established, less is known about the selection of antibodies transferred via breast milk and the mechanisms by which they provide protection against neonatal disease. Evidence suggests that breast milk antibodies play multifaceted roles, preventing infection and supporting the selection of commensals and tolerizing immunity during infancy. Here, we discuss emerging data related to the importance of breast milk antibodies in neonatal immunity and development.


Asunto(s)
Anticuerpos/metabolismo , Leche Humana/inmunología , Animales , Homeostasis , Humanos , Inmunidad , Factores Inmunológicos/farmacología , Microbiota
5.
Cell ; 184(15): 3884-3898.e11, 2021 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-34143954

RESUMEN

Immune-microbe interactions early in life influence the risk of allergies, asthma, and other inflammatory diseases. Breastfeeding guides healthier immune-microbe relationships by providing nutrients to specialized microbes that in turn benefit the host's immune system. Such bacteria have co-evolved with humans but are now increasingly rare in modern societies. Here we show that a lack of bifidobacteria, and in particular depletion of genes required for human milk oligosaccharide (HMO) utilization from the metagenome, is associated with systemic inflammation and immune dysregulation early in life. In breastfed infants given Bifidobacterium infantis EVC001, which expresses all HMO-utilization genes, intestinal T helper 2 (Th2) and Th17 cytokines were silenced and interferon ß (IFNß) was induced. Fecal water from EVC001-supplemented infants contains abundant indolelactate and B. infantis-derived indole-3-lactic acid (ILA) upregulated immunoregulatory galectin-1 in Th2 and Th17 cells during polarization, providing a functional link between beneficial microbes and immunoregulation during the first months of life.


Asunto(s)
Bifidobacterium/fisiología , Sistema Inmunológico/crecimiento & desarrollo , Sistema Inmunológico/microbiología , Antibacterianos/farmacología , Biomarcadores/metabolismo , Lactancia Materna , Linfocitos T CD4-Positivos/inmunología , Polaridad Celular , Proliferación Celular , Citocinas/metabolismo , Heces/química , Heces/microbiología , Galectina 1/metabolismo , Microbioma Gastrointestinal , Humanos , Indoles/metabolismo , Recién Nacido , Inflamación/sangre , Inflamación/genética , Mucosa Intestinal/inmunología , Metaboloma , Leche Humana/química , Oligosacáridos/metabolismo , Células Th17/inmunología , Células Th2/inmunología , Agua
6.
Nat Immunol ; 24(7): 1098-1109, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37337103

RESUMEN

Macrophages are involved in immune defense, organogenesis and tissue homeostasis. Macrophages contribute to the different phases of mammary gland remodeling during development, pregnancy and involution postlactation. Less is known about the dynamics of mammary gland macrophages in the lactation stage. Here, we describe a macrophage population present during lactation in mice. By multiparameter flow cytometry and single-cell RNA sequencing, we identified a lactation-induced CD11c+CX3CR1+Dectin-1+ macrophage population (liMac) that was distinct from the two resident F4/80hi and F4/80lo macrophage subsets present pregestationally. LiMacs were predominantly monocyte-derived and expanded by proliferation in situ concomitant with nursing. LiMacs developed independently of IL-34, but required CSF-1 signaling and were partly microbiota-dependent. Locally, they resided adjacent to the basal cells of the alveoli and extravasated into the milk. We found several macrophage subsets in human milk that resembled liMacs. Collectively, these findings reveal the emergence of unique macrophages in the mammary gland and milk during lactation.


Asunto(s)
Lactancia , Leche Humana , Embarazo , Femenino , Ratones , Humanos , Animales , Macrófagos , Glándulas Mamarias Animales
7.
Cell ; 181(6): 1202-1204, 2020 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-32497500

RESUMEN

ROR-γt+ regulatory T cells (Tregs) of the colon can prevent excessive inflammation but also delay pathogen clearance. How these cells are regulated has remained elusive. In this issue of Cell, Ramanan et al. find that the set-point for ROR-γt+ Tregs is non-genetically maternally inherited during a critical time window after birth through immunoglobulin A present in breast milk.


Asunto(s)
Microbioma Gastrointestinal , Linfocitos T Reguladores , Femenino , Humanos , Leche Humana , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares , Células Th17
8.
Cell ; 165(4): 842-53, 2016 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-27133167

RESUMEN

According to the hygiene hypothesis, the increasing incidence of autoimmune diseases in western countries may be explained by changes in early microbial exposure, leading to altered immune maturation. We followed gut microbiome development from birth until age three in 222 infants in Northern Europe, where early-onset autoimmune diseases are common in Finland and Estonia but are less prevalent in Russia. We found that Bacteroides species are lowly abundant in Russians but dominate in Finnish and Estonian infants. Therefore, their lipopolysaccharide (LPS) exposures arose primarily from Bacteroides rather than from Escherichia coli, which is a potent innate immune activator. We show that Bacteroides LPS is structurally distinct from E. coli LPS and inhibits innate immune signaling and endotoxin tolerance; furthermore, unlike LPS from E. coli, B. dorei LPS does not decrease incidence of autoimmune diabetes in non-obese diabetic mice. Early colonization by immunologically silencing microbiota may thus preclude aspects of immune education.


Asunto(s)
Bacteroides/inmunología , Diabetes Mellitus Tipo 1/inmunología , Microbioma Gastrointestinal , Lipopolisacáridos/inmunología , Animales , Estonia , Heces/microbiología , Finlandia , Microbiología de Alimentos , Humanos , Lactante , Ratones , Ratones Endogámicos NOD , Leche Humana/inmunología , Federación de Rusia
9.
Cell ; 165(4): 827-41, 2016 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-27153495

RESUMEN

To maintain a symbiotic relationship between the host and its resident intestinal microbiota, appropriate mucosal T cell responses to commensal antigens must be established. Mice acquire both IgG and IgA maternally; the former has primarily been implicated in passive immunity to pathogens while the latter mediates host-commensal mutualism. Here, we report the surprising observation that mice generate T cell-independent and largely Toll-like receptor (TLR)-dependent IgG2b and IgG3 antibody responses against their gut microbiota. We demonstrate that maternal acquisition of these antibodies dampens mucosal T follicular helper responses and subsequent germinal center B cell responses following birth. This work reveals a feedback loop whereby T cell-independent, TLR-dependent antibodies limit mucosal adaptive immune responses to newly acquired commensal antigens and uncovers a broader function for maternal IgG.


Asunto(s)
Animales Recién Nacidos/inmunología , Microbioma Gastrointestinal , Inmunidad Mucosa , Inmunoglobulina A/inmunología , Inmunoglobulina G/inmunología , Leche Humana/inmunología , Linfocitos T Colaboradores-Inductores/inmunología , Animales , Animales Recién Nacidos/microbiología , Linfocitos B/inmunología , Activación de Linfocitos , Ratones , Ratones Endogámicos C57BL , Transducción de Señal , Organismos Libres de Patógenos Específicos , Receptores Toll-Like/inmunología
10.
Cell ; 164(5): 859-71, 2016 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-26898329

RESUMEN

Identifying interventions that more effectively promote healthy growth of children with undernutrition is a pressing global health goal. Analysis of human milk oligosaccharides (HMOs) from 6-month-postpartum mothers in two Malawian birth cohorts revealed that sialylated HMOs are significantly less abundant in those with severely stunted infants. To explore this association, we colonized young germ-free mice with a consortium of bacterial strains cultured from the fecal microbiota of a 6-month-old stunted Malawian infant and fed recipient animals a prototypic Malawian diet with or without purified sialylated bovine milk oligosaccharides (S-BMO). S-BMO produced a microbiota-dependent augmentation of lean body mass gain, changed bone morphology, and altered liver, muscle, and brain metabolism in ways indicative of a greater ability to utilize nutrients for anabolism. These effects were also documented in gnotobiotic piglets using the same consortium and Malawian diet. These preclinical models indicate a causal, microbiota-dependent relationship between S-BMO and growth promotion.


Asunto(s)
Desarrollo Infantil , Desnutrición/dietoterapia , Leche Humana/química , Leche/química , Oligosacáridos/metabolismo , Animales , Bacteroides fragilis/genética , Bifidobacterium/clasificación , Bifidobacterium/genética , Química Encefálica , Modelos Animales de Enfermedad , Escherichia coli/genética , Heces/microbiología , Vida Libre de Gérmenes , Humanos , Lactante , Malaui , Masculino , Metabolómica , Ratones , Ratones Endogámicos C57BL , Microbiota
12.
Immunity ; 54(8): 1633-1635, 2021 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-34380062

RESUMEN

Immune-system maturation starts early in life, but studies investigating immune-system education in human infants remain scarce. In a recent issue of Cell, Henrick et al. study early gut microbiota and immune-system development in two infant cohorts. The authors describe that Bifidobacteria can use milk sugars to produce immunoregulatory compounds that induce immune tolerance and reduce intestinal inflammation.


Asunto(s)
Bifidobacterium/metabolismo , Sistema Inmunológico/crecimiento & desarrollo , Intestinos/inmunología , Intestinos/microbiología , Leche Humana/química , Oligosacáridos/metabolismo , Animales , Lactancia Materna , Microbioma Gastrointestinal/fisiología , Humanos , Tolerancia Inmunológica/inmunología , Factores Inmunológicos/química , Inmunomodulación/inmunología , Lactante , Suecia , Estados Unidos
13.
Nature ; 618(7964): 365-373, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37225978

RESUMEN

Birth presents a metabolic challenge to cardiomyocytes as they reshape fuel preference from glucose to fatty acids for postnatal energy production1,2. This adaptation is triggered in part by post-partum environmental changes3, but the molecules orchestrating cardiomyocyte maturation remain unknown. Here we show that this transition is coordinated by maternally supplied γ-linolenic acid (GLA), an 18:3 omega-6 fatty acid enriched in the maternal milk. GLA binds and activates retinoid X receptors4 (RXRs), ligand-regulated transcription factors that are expressed in cardiomyocytes from embryonic stages. Multifaceted genome-wide analysis revealed that the lack of RXR in embryonic cardiomyocytes caused an aberrant chromatin landscape that prevented the induction of an RXR-dependent gene expression signature controlling mitochondrial fatty acid homeostasis. The ensuing defective metabolic transition featured blunted mitochondrial lipid-derived energy production and enhanced glucose consumption, leading to perinatal cardiac dysfunction and death. Finally, GLA supplementation induced RXR-dependent expression of the mitochondrial fatty acid homeostasis signature in cardiomyocytes, both in vitro and in vivo. Thus, our study identifies the GLA-RXR axis as a key transcriptional regulatory mechanism underlying the maternal control of perinatal cardiac metabolism.


Asunto(s)
Ácidos Grasos , Glucosa , Corazón , Leche Humana , Ácido gammalinolénico , Femenino , Humanos , Recién Nacido , Embarazo , Cromatina/genética , Ácidos Grasos/metabolismo , Ácido gammalinolénico/metabolismo , Ácido gammalinolénico/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Glucosa/metabolismo , Corazón/efectos de los fármacos , Corazón/embriología , Corazón/crecimiento & desarrollo , Homeostasis , Técnicas In Vitro , Leche Humana/química , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Receptores X Retinoide/metabolismo , Factores de Transcripción/metabolismo
14.
Immunol Rev ; 326(1): 117-129, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39162048

RESUMEN

In this review, we will highlight infants' immune responses to food, emphasizing the unique aspects of early-life immunity and the critical role of breast milk as a food dedicated to infants. Infants are susceptible to inflammatory responses rather than immune tolerance at the mucosal and skin barriers, necessitating strategies to promote oral tolerance that consider this susceptibility. Breast milk provides nutrients for growth and cell metabolism, including immune cells. The content of breast milk, influenced by maternal genetics and environmental exposures, prepares the infant's immune system for the outside world, including solid foods. To do this, breast milk promotes immune system development through antigen-specific and non-antigen-specific immune education by exposing the newborn to food and respiratory allergens and acting on three key targets for food allergy prevention: the gut microbiota, epithelial cells, and immune cells. Building knowledge of how the maternal exposome and human milk composition influence offspring's healthy immune development will lead to recommendations that meet the specific needs of the developing immune system and increase the chances of promoting an appropriate immune response to food in the long term.


Asunto(s)
Hipersensibilidad a los Alimentos , Leche Humana , Humanos , Leche Humana/inmunología , Recién Nacido , Hipersensibilidad a los Alimentos/inmunología , Animales , Tolerancia Inmunológica , Alérgenos/inmunología , Microbioma Gastrointestinal/inmunología , Femenino , Sistema Inmunológico/inmunología , Sistema Inmunológico/metabolismo , Sistema Inmunológico/crecimiento & desarrollo , Alimentos/efectos adversos , Lactante , Lactancia Materna
15.
Immunol Rev ; 326(1): 130-150, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39275992

RESUMEN

The prevalence of allergies has been globally escalating. While allergies could appear at any age, they often develop in early life. However, the significant knowledge gap in the field is the mechanisms by which allergies affect certain people but not others. Investigating early factors and events in neonatal life that have a lasting impact on determining the susceptibilities of children to develop allergies is a significant area of the investigation as it promotes the understanding of neonatal immune system that mediates tolerance versus allergies. This review focuses on the research over the recent 10 years regarding the potential maternal factors that influence offspring allergies with a view to food allergy, a potentially life-threatening cause of anaphylaxis. The role of breast milk, maternal diet, maternal antibodies, and microbiota that have been suggested as key maternal factors regulating offspring allergies are discussed here. We also suggest future research area to expand our knowledge of maternal-offspring interactions on the pathogenesis of food allergy.


Asunto(s)
Hipersensibilidad a los Alimentos , Humanos , Hipersensibilidad a los Alimentos/inmunología , Femenino , Embarazo , Animales , Leche Humana/inmunología , Efectos Tardíos de la Exposición Prenatal/inmunología , Tolerancia Inmunológica , Microbiota/inmunología , Anafilaxia/inmunología , Anafilaxia/etiología , Exposición Materna/efectos adversos , Recién Nacido , Alérgenos/inmunología
16.
Immunol Rev ; 326(1): 17-34, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39001685

RESUMEN

Oral tolerance promotes the suppression of immune responses to innocuous antigen and is primarily mediated by regulatory T cell (Tregs). The development of oral tolerance begins in early life during a "window of tolerance," which occurs around weaning and is mediated by components in breastmilk. Herein, we review the factors dictating this window and how Tregs are uniquely educated in early life. In early life, the translocation of luminal antigen for Treg induction is primarily dictated by goblet cell-associated antigen passages (GAPs). GAPs in the colon are negatively regulated by maternally-derived epidermal growth factor and the microbiota, restricting GAP formation to the "periweaning" period (postnatal day 11-21 in mice, 4-6 months in humans). The induction of solid food also promotes the diversification of the bacteria such that bacterially-derived metabolites known to promote Tregs-short-chain fatty acids, tryptophan metabolites, and bile acids-peak during the periweaning phase. Further, breastmilk immunoglobulins-IgA and IgG-regulate both microbial diversity and the interaction of microbes with the epithelium, further controlling which antigens are presented to T cells. Overall, these elements work in conjunction to induce a long-lived population of Tregs, around weaning, that are crucial for maintaining homeostasis in adults.


Asunto(s)
Tolerancia Inmunológica , Linfocitos T Reguladores , Destete , Humanos , Animales , Linfocitos T Reguladores/inmunología , Leche Humana/inmunología , Microbioma Gastrointestinal/inmunología , Células Caliciformes/inmunología , Células Caliciformes/metabolismo , Ratones
17.
N Engl J Med ; 390(16): 1493-1504, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38657245

RESUMEN

BACKGROUND: Most moderate-to-late-preterm infants need nutritional support until they are feeding exclusively on their mother's breast milk. Evidence to guide nutrition strategies for these infants is lacking. METHODS: We conducted a multicenter, factorial, randomized trial involving infants born at 32 weeks 0 days' to 35 weeks 6 days' gestation who had intravenous access and whose mothers intended to breast-feed. Each infant was assigned to three interventions or their comparators: intravenous amino acid solution (parenteral nutrition) or dextrose solution until full feeding with milk was established; milk supplement given when maternal milk was insufficient or mother's breast milk exclusively with no supplementation; and taste and smell exposure before gastric-tube feeding or no taste and smell exposure. The primary outcome for the parenteral nutrition and the milk supplement interventions was the body-fat percentage at 4 months of corrected gestational age, and the primary outcome for the taste and smell intervention was the time to full enteral feeding (150 ml per kilogram of body weight per day or exclusive breast-feeding). RESULTS: A total of 532 infants (291 boys [55%]) were included in the trial. The mean (±SD) body-fat percentage at 4 months was similar among the infants who received parenteral nutrition and those who received dextrose solution (26.0±5.4% vs. 26.2±5.2%; adjusted mean difference, -0.20; 95% confidence interval [CI], -1.32 to 0.92; P = 0.72) and among the infants who received milk supplement and those who received mother's breast milk exclusively (26.3±5.3% vs. 25.8±5.4%; adjusted mean difference, 0.65; 95% CI, -0.45 to 1.74; P = 0.25). The time to full enteral feeding was similar among the infants who were exposed to taste and smell and those who were not (5.8±1.5 vs. 5.7±1.9 days; P = 0.59). Secondary outcomes were similar across interventions. Serious adverse events occurred in one infant. CONCLUSIONS: This trial of routine nutrition interventions to support moderate-to-late-preterm infants until full nutrition with mother's breast milk was possible did not show any effects on the time to full enteral feeding or on body composition at 4 months of corrected gestational age. (Funded by the Health Research Council of New Zealand and others; DIAMOND Australian New Zealand Clinical Trials Registry number, ACTRN12616001199404.).


Asunto(s)
Lactancia Materna , Nutrición Enteral , Recien Nacido Prematuro , Nutrición Parenteral , Femenino , Humanos , Lactante , Recién Nacido , Masculino , Aminoácidos/administración & dosificación , Edad Gestacional , Glucosa/administración & dosificación , Leche Humana , Olfato , Gusto , Apoyo Nutricional , Soluciones para Nutrición Parenteral/uso terapéutico , Adiposidad
18.
Nat Rev Neurosci ; 22(7): 423-438, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34021274

RESUMEN

Recent years have been transformational in regard to the perception of the health risks and benefits of cannabis with increased acceptance of use. This has unintended neurodevelopmental implications given the increased use of cannabis and the potent levels of Δ9-tetrahydrocannabinol today being consumed by pregnant women, young mothers and teens. In this Review, we provide an overview of the neurobiological effects of cannabinoid exposure during prenatal/perinatal and adolescent periods, in which the endogenous cannabinoid system plays a fundamental role in neurodevelopmental processes. We highlight impaired synaptic plasticity as characteristic of developmental exposure and the important contribution of epigenetic reprogramming that maintains the long-term impact into adulthood and across generations. Such epigenetic influence by its very nature being highly responsive to the environment also provides the potential to diminish neural perturbations associated with developmental cannabis exposure.


Asunto(s)
Encéfalo/efectos de los fármacos , Cannabis , Efectos Tardíos de la Exposición Prenatal , Adolescente , Adulto , Factores de Edad , Animales , Encéfalo/embriología , Encéfalo/crecimiento & desarrollo , Cannabis/efectos adversos , Niño , Preescolar , Dronabinol/efectos adversos , Dronabinol/farmacocinética , Dronabinol/farmacología , Endocannabinoides/fisiología , Epigénesis Genética/efectos de los fármacos , Femenino , Humanos , Lactante , Lactancia , Lipasa/fisiología , Masculino , Fumar Marihuana , Exposición Materna , Ratones , Leche Humana/química , Trastornos del Neurodesarrollo/inducido químicamente , Plasticidad Neuronal/efectos de los fármacos , Neurotransmisores/fisiología , Exposición Paterna , Embarazo , Ratas , Receptor Cannabinoide CB1/fisiología , Especificidad de la Especie , Adulto Joven
19.
Trends Immunol ; 44(8): 644-661, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37438187

RESUMEN

Childhood allergy, including asthma, eczema, and food allergies, is a major global health burden, with prevalence increasing dramatically and novel interventions needed. Emerging research suggests that human milk oligosaccharides (HMOs), complex glycans found in breastmilk, have allergy-protective properties, indicating exciting therapeutic potential. This review evaluates current literature on the role of HMOs in allergy, assesses underlying immunological mechanisms, and discusses future research needed to translate findings into clinical implications. HMOs may mediate allergy risk through multiple structure-specific mechanisms, including microbiome modification, intestinal barrier maturation, immunomodulation, and gene regulation. Findings emphasize the importance of breastfeeding encouragement and HMO-supplemented formula milk for high allergy-risk infants. Although further investigation is necessary to determine the most efficacious structures against varying allergy phenotypes and their long-term efficacy, HMOs may represent a promising complementary tool for childhood allergy prevention.


Asunto(s)
Hipersensibilidad a los Alimentos , Leche Humana , Lactante , Femenino , Humanos , Niño , Fórmulas Infantiles/química , Hipersensibilidad a los Alimentos/prevención & control , Lactancia Materna , Oligosacáridos/uso terapéutico , Oligosacáridos/análisis
20.
J Immunol ; 213(5): 612-618, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39007643

RESUMEN

Breast milk confers multiple benefits to the neonate, including passive immunity against multiple microorganisms via Abs. However, it remains unclear whether breast milk-derived Abs affect vaccine-induced immunity in the neonate. We evaluated in C57BL/6 and BALB/c mice whether breastfeeding from an mRNA-SARS-CoV-2-vaccinated dam affects vaccine-induced immunity in neonate mice. Using an experimental model that allows the distinction of maternal Abs and neonate Abs based on their allotype, we show that breastfeeding from an immune dam is associated with reduced vaccine immunity in the neonate. Importantly, mice that breastfed from an immune dam showed reduced numbers of plasma cells after vaccination, relative to mice that breastfed from a naive dam. Our subsequent studies using an mRNA-luciferase reporter system show that passive transfer of Abs through breastfeeding accelerates the clearance of vaccine Ag in suckling mice, resulting in reduced Ag availability. Altogether, maternal Abs transferred through breast milk can protect against infectious microorganisms, but they may also interfere with the neonate's response to vaccination by accelerating the clearance of vaccine Ag. These findings are important for understanding the effects of maternal Abs on the neonate's response to vaccines and may provide insights for improving neonatal vaccines.


Asunto(s)
Animales Recién Nacidos , Inmunidad Materno-Adquirida , Ratones Endogámicos BALB C , Leche Humana , Animales , Ratones , Femenino , Inmunidad Materno-Adquirida/inmunología , Leche Humana/inmunología , Animales Lactantes/inmunología , Ratones Endogámicos C57BL , Vacunación , Humanos , Lactancia Materna
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA