Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Eukaryot Microbiol ; 69(3): e12903, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35279903

RESUMEN

Cellular invasion by Trypanosoma cruzi metacyclic trypomastigotes (MTs) or tissue culture trypomastigotes (TCTs) is a complex process involving host-parasite cellular and molecular interactions. Particularly, the involvement of host cell actin cytoskeleton during trypomastigote invasion is poorly investigated, and still, the results are controversial. In the present work, we compare side by side both trypomastigote forms and employ state-of-the-art live-cell imaging showing for the first time the dynamic mobilization of host cell actin cytoskeleton to MT and TCT invasion sites. Moreover, cytochalasin D, latrunculin B, and jasplakinolide-pretreated cells inhibited MT and TCT invasion. Furthermore, our results demonstrated that TCT invasion decreased in RhoA, Rac1, and Cdc-42 GTPase-depleted cells, whereas MT invasion decreased only in Cdc42-and RhoA-depleted cells. Interestingly, depletion of the three studied GTPases induced a scattered lysosomal distribution throughout the cytosol. These observations indicate that GTPase depletion is sufficient to impair parasite invasion despite the importance of lysosome spread in trypomastigote invasion. Together, our results demonstrate that the host cell actin cytoskeleton plays a direct role during TCT and MT invasion.


Asunto(s)
Trypanosoma cruzi , Citoesqueleto de Actina/metabolismo , Lisosomas/metabolismo , Lisosomas/parasitología , Trypanosoma cruzi/metabolismo
2.
J Cell Sci ; 132(6)2019 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-30814331

RESUMEN

Intracellular parasites of the genus Leishmania are the causative agents of leishmaniasis. The disease is transmitted by the bite of a sand fly vector, which inoculates the parasite into the skin of mammalian hosts, including humans. During chronic infection the parasite lives and replicates inside phagocytic cells, notably the macrophages. An interesting, but overlooked finding, is that other cell types and even non-phagocytic cells have been found to be infected by Leishmania spp. Nevertheless, the mechanisms by which Leishmania invades such cells had not been previously studied. Here, we show that L. amazonensis can induce their own entry into fibroblasts independently of actin cytoskeleton activity, and, thus, through a mechanism that is distinct from phagocytosis. Invasion involves subversion of host cell functions, such as Ca2+ signaling and recruitment and exocytosis of host cell lysosomes involved in plasma membrane repair.This article has an associated First Person interview with the first author of the paper.


Asunto(s)
Membrana Celular/parasitología , Fibroblastos/parasitología , Leishmania mexicana , Lisosomas/parasitología , Citoesqueleto de Actina/parasitología , Animales , Señalización del Calcio , Línea Celular , Membrana Celular/metabolismo , Exocitosis , Interacciones Huésped-Parásitos , Leishmania mexicana/metabolismo , Leishmania mexicana/parasitología , Macrófagos/parasitología , Ratones , Fagocitosis
3.
PLoS Pathog ; 15(6): e1007775, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31170269

RESUMEN

Toxoplasma gondii is an apicomplexan parasite with the ability to use foodborne, zoonotic, and congenital routes of transmission that causes severe disease in immunocompromised patients. The parasites harbor a lysosome-like organelle, termed the "Vacuolar Compartment/Plant-Like Vacuole" (VAC/PLV), which plays an important role in maintaining the lytic cycle and virulence of T. gondii. The VAC supplies proteolytic enzymes that contribute to the maturation of invasion effectors and that digest autophagosomes and endocytosed host proteins. Previous work identified a T. gondii ortholog of the Plasmodium falciparum chloroquine resistance transporter (PfCRT) that localized to the VAC. Here, we show that TgCRT is a membrane transporter that is functionally similar to PfCRT. We also genetically ablate TgCRT and reveal that the TgCRT protein plays a key role in maintaining the integrity of the parasite's endolysosomal system by controlling morphology of the VAC. When TgCRT is absent, the VAC dramatically increases in volume by ~15-fold and overlaps with adjacent endosome-like compartments. Presumably to reduce aberrant swelling, transcription and translation of endolysosomal proteases are decreased in ΔTgCRT parasites. Expression of subtilisin protease 1 is significantly reduced, which impedes trimming of microneme proteins, and significantly decreases parasite invasion. Chemical or genetic inhibition of proteolysis within the VAC reverses these effects, reducing VAC size and partially restoring integrity of the endolysosomal system, microneme protein trimming, and invasion. Taken together, these findings reveal for the first time a physiological role of TgCRT in substrate transport that impacts VAC volume and the integrity of the endolysosomal system in T. gondii.


Asunto(s)
Cloroquina/farmacología , Endosomas , Lisosomas , Proteínas de Transporte de Membrana , Plasmodium falciparum , Proteínas Protozoarias , Toxoplasma , Toxoplasmosis , Línea Celular , Endosomas/metabolismo , Endosomas/parasitología , Humanos , Lisosomas/metabolismo , Lisosomas/parasitología , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Plasmodium falciparum/genética , Plasmodium falciparum/metabolismo , Plasmodium falciparum/patogenicidad , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Toxoplasma/genética , Toxoplasma/metabolismo , Toxoplasma/patogenicidad , Toxoplasmosis/genética , Toxoplasmosis/metabolismo , Toxoplasmosis/patología
4.
PLoS Pathog ; 12(11): e1006027, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27875583

RESUMEN

Toxoplasma gondii is the most common protozoan parasitic infection in man. Gamma interferon (IFNγ) activates haematopoietic and non-haematopoietic cells to kill the parasite and mediate host resistance. IFNγ-driven host resistance pathways and parasitic virulence factors are well described in mice, but a detailed understanding of pathways that kill Toxoplasma in human cells is lacking. Here we show, that contrary to the widely held belief that the Toxoplasma vacuole is non-fusogenic, in an immune-stimulated environment, the vacuole of type II Toxoplasma in human cells is able to fuse with the host endo-lysosomal machinery leading to parasite death by acidification. Similar to murine cells, we find that type II, but not type I Toxoplasma vacuoles are targeted by K63-linked ubiquitin in an IFNγ-dependent manner in non-haematopoetic primary-like human endothelial cells. Host defence proteins p62 and NDP52 are subsequently recruited to the type II vacuole in distinct, overlapping microdomains with a loss of IFNγ-dependent restriction in p62 knocked down cells. Autophagy proteins Atg16L1, GABARAP and LC3B are recruited to <10% of parasite vacuoles and show no parasite strain preference, which is consistent with inhibition and enhancement of autophagy showing no effect on parasite replication. We demonstrate that this differs from HeLa human epithelial cells, where type II Toxoplasma are restricted by non-canonical autophagy leading to growth stunting that is independent of lysosomal acidification. In contrast to mouse cells, human vacuoles do not break. In HUVEC, the ubiquitinated vacuoles are targeted for destruction in acidified LAMP1-positive endo-lysosomal compartments. Consequently, parasite death can be prevented by inhibiting host ubiquitination and endosomal acidification. Thus, K63-linked ubiquitin recognition leading to vacuolar endo-lysosomal fusion and acidification is an important, novel virulence-driven Toxoplasma human host defence pathway.


Asunto(s)
Interacciones Huésped-Parásitos/inmunología , Interferón gamma/inmunología , Lisosomas/inmunología , Toxoplasmosis/inmunología , Ubiquitinación/inmunología , Citometría de Flujo , Humanos , Immunoblotting , Lisina/metabolismo , Lisosomas/metabolismo , Lisosomas/parasitología , Microscopía Fluorescente , Toxoplasma/inmunología , Toxoplasma/metabolismo , Toxoplasmosis/metabolismo , Vacuolas/inmunología , Vacuolas/metabolismo , Vacuolas/parasitología
5.
Int J Med Microbiol ; 308(1): 68-76, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28927848

RESUMEN

Intracellular pathogens invade their host cells and replicate within specialized compartments. In turn, the host cell initiates a defensive response trying to kill the invasive agent. As a consequence, intracellular lifestyle implies morphological and physiological changes in both pathogen and host cell. Leishmania spp. are medically important intracellular protozoan parasites that are internalized by professional phagocytes such as macrophages, and reside within the parasitophorous vacuole inhibiting their microbicidal activity. Whereas the proteome of the extracellular promastigote form and the intracellular amastigote form have been extensively studied, the constituents of Leishmania's intracellular niche, an endolysosomal compartment, are not fully deciphered. In this review we discuss protocols to purify such compartments by means of an illustrating example to highlight generally relevant considerations and innovative aspects that allow purification of not only the intracellular parasites but also the phagosomes that harbor them and analyze the latter by gel free proteomics.


Asunto(s)
Leishmania/metabolismo , Macrófagos/parasitología , Fagosomas/química , Proteómica , Animales , Humanos , Leishmania/química , Leishmania/crecimiento & desarrollo , Leishmaniasis/metabolismo , Leishmaniasis/parasitología , Lisosomas/química , Lisosomas/metabolismo , Lisosomas/parasitología , Macrófagos/metabolismo , Fagosomas/metabolismo , Fagosomas/parasitología , Proteoma/metabolismo , Proteínas Protozoarias/metabolismo
6.
Infect Immun ; 85(9)2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28607099

RESUMEN

Successful infection by Trypanosoma cruzi, the agent of Chagas' disease, is critically dependent on host cell invasion by metacyclic trypomastigote (MT) forms. Two main metacyclic stage-specific surface molecules, gp82 and gp90, play determinant roles in target cell invasion in vitro and in oral T. cruzi infection in mice. The structure and properties of gp82, which is highly conserved among T. cruzi strains, are well known. Information on gp90 is still rather sparse. Here, we attempted to fill that gap. gp90, purified from poorly invasive G strain MT and expressing gp90 at high levels, inhibited HeLa cell lysosome spreading and the gp82-mediated internalization of a highly invasive CL strain MT expressing low levels of a diverse gp90 molecule. A recombinant protein containing the conserved C-terminal domain of gp90 exhibited the same properties as the native G strain gp90: it counteracted the host cell lysosome spreading induced by recombinant gp82 and exhibited an inhibitory effect on HeLa cell invasion by CL strain MT. Assays to identify the gp90 sequence associated with the property of downregulating MT invasion, using synthetic peptides spanning the gp90 C-terminal domain, revealed the sequence GVLYTADKEW. These data, plus the findings that lysosome spreading was induced upon HeLa cell interaction with CL strain MT, but not with G strain MT, and that in mixed infection CL strain MT internalization was inhibited by G strain MT, suggest that the inhibition of target cell lysosome spreading is the mechanism by which the gp90 molecule exerts its downregulatory role.


Asunto(s)
Endocitosis , Interacciones Huésped-Patógeno , Lisosomas/parasitología , Proteínas Protozoarias/metabolismo , Trypanosoma cruzi/fisiología , Glicoproteínas Variantes de Superficie de Trypanosoma/metabolismo , Células HeLa , Humanos
7.
PLoS Pathog ; 11(9): e1005136, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26334531

RESUMEN

Leishmania parasites replicate within the phagolysosome compartment of mammalian macrophages. Although Leishmania depend on sugars as a major carbon source during infections, the nutrient composition of the phagolysosome remains poorly described. To determine the origin of the sugar carbon source in macrophage phagolysosomes, we have generated a N-acetylglucosamine acetyltransferase (GNAT) deficient Leishmania major mutant (∆gnat) that is auxotrophic for the amino sugar, N-acetylglucosamine (GlcNAc). This mutant was unable to grow or survive in ex vivo infected macrophages even when macrophages were cultivated in presence of exogenous GlcNAc. In contrast, the L. major ∆gnat mutant induced normal skin lesions in mice, suggesting that these parasites have access to GlcNAc in tissue macrophages. Intracellular growth of the mutant in ex vivo infected macrophages was restored by supplementation of the macrophage medium with hyaluronan, a GlcNAc-rich extracellular matrix glycosaminoglycan. Hyaluronan is present and constitutively turned-over in Leishmania-induced skin lesions and is efficiently internalized into Leishmania containing phagolysosomes. These findings suggest that the constitutive internalization and degradation of host glycosaminoglycans by macrophages provides Leishmania with essential carbon sources, creating a uniquely favorable niche for these parasites.


Asunto(s)
Matriz Extracelular/metabolismo , Glicosaminoglicanos/metabolismo , Interacciones Huésped-Parásitos , Leishmania major/fisiología , Lisosomas/parasitología , Macrófagos/parasitología , Fagocitosis , Acetilglucosamina/metabolismo , Acetiltransferasas/genética , Acetiltransferasas/metabolismo , Animales , Supervivencia Celular , Células Cultivadas , Matriz Extracelular/inmunología , Matriz Extracelular/patología , Eliminación de Gen , Hidrólisis , Cinética , Leishmania major/genética , Leishmania major/crecimiento & desarrollo , Leishmania major/inmunología , Leishmania mexicana/genética , Leishmania mexicana/crecimiento & desarrollo , Leishmania mexicana/inmunología , Leishmania mexicana/fisiología , Leishmaniasis Cutánea/inmunología , Leishmaniasis Cutánea/metabolismo , Leishmaniasis Cutánea/parasitología , Leishmaniasis Cutánea/patología , Lisosomas/inmunología , Lisosomas/metabolismo , Lisosomas/patología , Macrófagos/inmunología , Macrófagos/metabolismo , Macrófagos/patología , Masculino , Ratones Endogámicos BALB C , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Especificidad de la Especie , Organismos Libres de Patógenos Específicos
8.
Cell Microbiol ; 18(5): 748-60, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26572924

RESUMEN

A fundamental question to be clarified concerning the host cell invasion by Trypanosoma cruzi is whether the insect-borne and mammalian-stage parasites use similar mechanisms for invasion. To address that question, we analysed the cell invasion capacity of metacyclic trypomastigotes (MT) and tissue culture trypomastigotes (TCT) under diverse conditions. Incubation of parasites for 1 h with HeLa cells in nutrient-deprived medium, a condition that triggered lysosome biogenesis and scattering, increased MT invasion and reduced TCT entry into cells. Sucrose-induced lysosome biogenesis increased HeLa cell susceptibility to MT and resistance to TCT. Treatment of cells with rapamycin, which inhibits mammalian target of rapamycin (mTOR), induced perinuclear lysosome accumulation and reduced MT invasion while augmenting TCT invasion. Metacylic trypomastigotes, but not TCT, induced mTOR dephosphorylation and the nuclear translocation of transcription factor EB (TFEB), a mTOR-associated lysosome biogenesis regulator. Lysosome biogenesis/scattering was stimulated upon HeLa cell interaction with MT but not with TCT. Recently, internalized MT, but not TCT, were surrounded by colocalized lysosome marker LAMP2 and mTOR. The recombinant gp82 protein, the MT-specific surface molecule that mediates invasion, induced mTOR dephosphorylation, nuclear TFEB translocation and lysosome biogenesis/scattering. Taken together, our data clearly indicate that MT invasion is mainly lysosome-dependent, whereas TCT entry is predominantly lysosome-independent.


Asunto(s)
Enfermedad de Chagas/genética , Interacciones Huésped-Patógeno/genética , Lisosomas/parasitología , Trypanosoma cruzi/patogenicidad , Animales , Enfermedad de Chagas/parasitología , Susceptibilidad a Enfermedades/metabolismo , Susceptibilidad a Enfermedades/parasitología , Células HeLa , Humanos , Insectos Vectores/genética , Insectos Vectores/parasitología , Insectos Vectores/patogenicidad , Proteína 2 de la Membrana Asociada a los Lisosomas/metabolismo , Lisosomas/metabolismo , Sirolimus/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Técnicas de Cultivo de Tejidos , Trypanosoma cruzi/metabolismo
9.
Infect Immun ; 84(9): 2463-72, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27297394

RESUMEN

Immune modulation is a hallmark of patent filarial infection, including suppression of antigen-presenting cell function and downmodulation of filarial antigen-specific T cell responses. The mammalian target of rapamycin (mTOR) signaling pathway has been implicated in immune regulation, not only by suppressing T cell responses but also by regulating autophagy (through mTOR sensing amino acid availability). Global proteomic analysis (liquid chromatography-tandem mass spectrometry) of microfilaria (mf)-exposed monocyte-derived dendritic cells (DC) indicated that multiple components of the mTOR signaling pathway, including mTOR, eIF4A, and eIF4E, are downregulated by mf, suggesting that mf target this pathway for immune modulation in DC. Utilizing Western blot analysis, we demonstrate that similar to rapamycin (a known mTOR inhibitor), mf downregulate the phosphorylation of mTOR and its regulatory proteins, p70S6K1 and 4E-BP1, a process essential for DC protein synthesis. As active mTOR signaling regulates autophagy, we examined whether mf exposure alters autophagy-associated processes. mf-induced autophagy was reflected in marked upregulation of phosphorylated Beclin 1, known to play an important role in both autophagosome formation and autolysosome fusion, in induction of LC3II, a marker of autophagosome formation, and in induced degradation of p62, a ubiquitin-binding protein that aggregates protein in autophagosomes and is degraded upon autophagy that was reduced significantly by mf exposure and by rapamycin. Together, these results suggest that Brugia malayi mf employ mechanisms of metabolic modulation in DC to influence the regulation of the host immune response by downregulating mTOR signaling, resulting in increased autophagy. Whether this is a result of the parasite-secreted rapamycin homolog is currently under study.


Asunto(s)
Autofagia/fisiología , Brugia Malayi/parasitología , Células Dendríticas/parasitología , Microfilarias/fisiología , Serina-Treonina Quinasas TOR/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Proteínas Reguladoras de la Apoptosis/metabolismo , Autofagosomas/metabolismo , Autofagosomas/parasitología , Beclina-1/metabolismo , Proteínas de Ciclo Celular , Células Dendríticas/metabolismo , Regulación hacia Abajo/fisiología , Factor 4A Eucariótico de Iniciación/metabolismo , Factor 4E Eucariótico de Iniciación/metabolismo , Humanos , Lisosomas/metabolismo , Lisosomas/parasitología , Monocitos/metabolismo , Monocitos/parasitología , Fosfoproteínas/metabolismo , Fosforilación/fisiología , Proteómica/métodos , Proteínas Quinasas S6 Ribosómicas 70-kDa/metabolismo , Transducción de Señal/fisiología , Ubiquitina/metabolismo , Regulación hacia Arriba/fisiología
10.
Acta Trop ; 240: 106845, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36709791

RESUMEN

Chagas disease is caused by the parasite Trypanosoma cruzi (T. cruzi) and, among all the chronic manifestations of the disease, Chronic Chagas Cardiomyopathy (CCC) is the most severe outcome. Despite high burden and public health importance in Latin America, there is a gap in understanding the molecular mechanisms that results in CCC development. Previous studies showed that T. cruzi uses the host machinery for infection and replication, including the repurposing of the responses to intracellular infection such as mitochondrial activity, vacuolar membrane, and lysosomal activation in benefit of parasite infection and replication. One common signaling upstream to many responses to parasite infection is mTOR pathway, previous associated to several downstream cellular mechanisms including autophagy, mitophagy and lysosomal activation. Here, using human iPSC derived cardiomyocytes (hiPSCCM), we show the mTOR pathway is activated in hiPSCCM after T. cruzi infection, and the inhibition of mTOR with rapamycin reduced number of T. cruzi 48 h post infection (hpi). Rapamycin treatment also reduced lysosome migration from nuclei region to cell periphery resulting in less T. cruzi inside the parasitophorous vacuole (PV) in the first hour of infection. In addition, the number of parasites leaving the PV to the cytoplasm to replicate in later times of infection was also lower after rapamycin treatment. Altogether, our data suggest that host's mTOR activation concomitant with parasite infection modulates lysosome migration and that T. cruzi uses this mechanism to achieve infection and replication. Modulating this mechanism with rapamycin impaired the success of T. cruzi life cycle independent of mitophagy.


Asunto(s)
Enfermedad de Chagas , Trypanosoma cruzi , Humanos , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/parasitología , Enfermedad de Chagas/parasitología , Trypanosoma cruzi/fisiología , Serina-Treonina Quinasas TOR , Lisosomas/metabolismo , Lisosomas/parasitología , Sirolimus/metabolismo
11.
J Exp Med ; 203(10): 2363-75, 2006 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-17000865

RESUMEN

Infection of mammalian hosts with Leishmania amazonensis depends on the remarkable ability of these parasites to replicate within macrophage phagolysosomes. A critical adaptation for survival in this harsh environment is an efficient mechanism for gaining access to iron. In this study, we identify and characterize LIT1, a novel L. amazonensis membrane protein with extensive similarity to IRT1, a ZIP family ferrous iron transporter from Arabidopsis thaliana. The ability of LIT1 to promote iron transport was demonstrated after expression in yeast and in L. amazonensis LIT1-null amastigotes. Endogenous LIT1 was only detectable in amastigotes replicating intracellularly, and its intracellular expression was accelerated under conditions predicted to result in iron deprivation. Although L. amazonensis lacking LIT1 grew normally in axenic culture and had no defects differentiating into infective forms, replication within macrophages was abolished. Consistent with an essential role for LIT1 in intracellular growth as amastigotes, Deltalit1 parasites were avirulent. After inoculation into highly susceptible mice, no lesions were detected, even after extensive periods of time. Despite the absence of pathology, viable Deltalit1 parasites were recovered from the original sites of inoculation, indicating that L. amazonensis can persist in vivo independently of the ability to grow in macrophages. Our findings highlight the essential role played by intracellular iron acquisition in Leishmania virulence and identify this pathway as a promising target for therapeutic intervention.


Asunto(s)
Proteínas de Transporte de Catión/genética , Proteínas de Transporte de Catión/metabolismo , Leishmania/metabolismo , Leishmania/patogenicidad , Lisosomas/parasitología , Macrófagos/parasitología , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Cartilla de ADN , Hierro/metabolismo , Leishmania/fisiología , Ratones , Microscopía Fluorescente , Datos de Secuencia Molecular , Reproducción/fisiología , Alineación de Secuencia , Análisis de Secuencia de ADN , Virulencia , Levaduras
12.
IUBMB Life ; 64(5): 387-96, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22454195

RESUMEN

The protozoan parasite Trypanosoma cruzi has a complex biological cycle that involves vertebrate and invertebrate hosts. In mammals, the infective trypomastigote form of this parasite can invade several cell types by exploiting phagocytic-like or nonphagocytic mechanisms depending on the class of cell involved. Morphological studies showed that when trypomastigotes contact macrophages, they induce the formation of plasma membrane protrusions that differ from the canonical phagocytosis that occurs in the case of noninfective epimastigotes. In contrast, when trypomastigotes infect epithelial or muscle cells, the cell surface is minimally modified, suggesting the induction of a different class of process. Lysosomal-dependent or -independent T. cruzi invasion of host cells are two different models that describe the molecular and cellular events activated during parasite entry into nonphagocytic cells. In this context, we have previously shown that induction of autophagy in host cells before infection favors T. cruzi invasion. Furthermore, we demonstrate that autophagosomes and the autophagosomal protein LC3 are recruited to the T. cruzi entry sites and that the newly formed T. cruzi parasitophorous vacuole has characteristics of an autophagolysosome. This review summarizes the current knowledge of the molecular and cellular mechanisms of T. cruzi invasion in nonphagocytic cells. Based on our findings, we propose a new model in which T. cruzi takes advantage of the upregulation of autophagy during starvation to increase its successful colonization of host cells.


Asunto(s)
Enfermedad de Chagas/parasitología , Interacciones Huésped-Parásitos , Trypanosoma cruzi/fisiología , Animales , Autofagia , Moléculas de Adhesión Celular/metabolismo , Moléculas de Adhesión Celular/fisiología , Humanos , Lisosomas/parasitología , Modelos Biológicos , Fagocitosis , Proteínas Protozoarias/metabolismo , Proteínas Protozoarias/fisiología
13.
Cell Microbiol ; 13(7): 943-54, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21501360

RESUMEN

The molecular mechanisms of host cell invasion by T. cruzi metacyclic trypomastigotes (MT), the developmental forms that initiate infection in the mammalian host, are only partially understood. Here we aimed at further identifying the target cell components involved in signalling cascades leading to MT internalization, and demonstrate for the first time the participation of mammalian target of rapamycin (mTOR). Treatment of human epithelial HeLa cells with mTOR inhibitor rapamycin reduced lysosomal exocytosis and MT invasion. Downregulation of phosphatidylinositol 3-kinase and protein kinase C also impaired exocytosis and MT internalization. The recombinant protein based on gp82, the MT surface molecule that mediates cell adhesion/invasion, induced exocytosis in HeLa cells. Such an effect has not previously been attributed to any T. cruzi surface molecule. Rapamycin treatment diminished gp82 binding as well. Cell invasion assays under conditions that promoted lysosome exocytosis, such as 1 h incubation in starvation medium PBS(++) , increased MT invasion, whereas pre-starvation of cells for 1-2 h had an opposite effect. In contrast to MT, invasion of tissue culture trypomastigotes (TCT) increased upon host cell pre-starvation or treatment with rapamycin, a novel finding that discloses quite distinctive features of the two infective forms in a key process for infection.


Asunto(s)
Exocitosis/efectos de los fármacos , Interacciones Huésped-Patógeno , Lisosomas/parasitología , Proteínas Protozoarias/metabolismo , Sirolimus/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Trypanosoma cruzi/patogenicidad , Glicoproteínas Variantes de Superficie de Trypanosoma/metabolismo , Inhibidores Enzimáticos/metabolismo , Células HeLa , Humanos , Lisosomas/efectos de los fármacos , Modelos Biológicos , Fosfatidilinositol 3-Quinasa/metabolismo , Inhibidores de las Quinasa Fosfoinosítidos-3 , Proteína Quinasa C/antagonistas & inhibidores , Proteína Quinasa C/metabolismo , Serina-Treonina Quinasas TOR/antagonistas & inhibidores
14.
Biochem J ; 439(3): 349-74, 2011 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-21992097

RESUMEN

Endosomes, lysosomes and lysosome-related organelles are emerging as important Ca2+ storage cellular compartments with a central role in intracellular Ca2+ signalling. Endocytosis at the plasma membrane forms endosomal vesicles which mature to late endosomes and culminate in lysosomal biogenesis. During this process, acquisition of different ion channels and transporters progressively changes the endolysosomal luminal ionic environment (e.g. pH and Ca2+) to regulate enzyme activities, membrane fusion/fission and organellar ion fluxes, and defects in these can result in disease. In the present review we focus on the physiology of the inter-related transport mechanisms of Ca2+ and H+ across endolysosomal membranes. In particular, we discuss the role of the Ca2+-mobilizing messenger NAADP (nicotinic acid adenine dinucleotide phosphate) as a major regulator of Ca2+ release from endolysosomes, and the recent discovery of an endolysosomal channel family, the TPCs (two-pore channels), as its principal intracellular targets. Recent molecular studies of endolysosomal Ca2+ physiology and its regulation by NAADP-gated TPCs are providing exciting new insights into the mechanisms of Ca2+-signal initiation that control a wide range of cellular processes and play a role in disease. These developments underscore a new central role for the endolysosomal system in cellular Ca2+ regulation and signalling.


Asunto(s)
Señalización del Calcio/fisiología , Endosomas/enzimología , Infecciones/enzimología , Lisosomas/enzimología , Animales , Endosomas/microbiología , Endosomas/parasitología , Humanos , Infecciones/microbiología , Infecciones/parasitología , Lisosomas/microbiología , Lisosomas/parasitología
15.
J Exp Med ; 200(9): 1135-43, 2004 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-15520245

RESUMEN

Trypomastigotes, the highly motile infective forms of Trypanosoma cruzi, are capable of infecting several cell types. Invasion occurs either by direct recruitment and fusion of lysosomes at the plasma membrane, or through invagination of the plasma membrane followed by intracellular fusion with lysosomes. The lysosome-like parasitophorous vacuole is subsequently disrupted, releasing the parasites for replication in the cytosol. The role of this early residence within lysosomes in the intracellular cycle of T. cruzi has remained unclear. For several other cytosolic pathogens, survival inside host cells depends on an early escape from phagosomes before lysosomal fusion. Here, we show that when lysosome-mediated T. cruzi invasion is blocked through phosophoinositide 3-kinase inhibition, a significant fraction of the internalized parasites are not subsequently retained inside host cells for a productive infection. A direct correlation was observed between the lysosomal fusion rates after invasion and the intracellular retention of trypomastigotes. Thus, formation of a parasitophorous vacuole with lysosomal properties is essential for preventing these highly motile parasites from exiting host cells and for allowing completion of the intracellular life cycle.


Asunto(s)
Enfermedad de Chagas/parasitología , Lisosomas/parasitología , Inhibidores de las Quinasa Fosfoinosítidos-3 , Trypanosoma cruzi/patogenicidad , Vacuolas/parasitología , Androstadienos/farmacología , Animales , Células CHO , Células Cultivadas , Cricetinae , Cricetulus , Técnica del Anticuerpo Fluorescente , Interacciones Huésped-Parásitos , Lisosomas/metabolismo , Fusión de Membrana/efectos de los fármacos , Ratones , Ratones Endogámicos BALB C , Microscopía por Video , Ratas , Trypanosoma cruzi/fisiología , Vacuolas/efectos de los fármacos , Vacuolas/metabolismo , Wortmanina
16.
Curr Top Microbiol Immunol ; 335: 251-65, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19802569

RESUMEN

A decisive outcome during host-pathogen interaction is governed by whether pathogen-containing vacuoles fuse with lysosomes. Fusion with lysosomes typically kills microbes. Toxoplasma gondii represents a classical example of an intracellular pathogen that survives within host cells by preventing the endosomal-lysosomal compartments from fusing with the vacuoles that contain the pathogen. Thus, T. gondii provides an excellent model to determine if the immune system can target a pathogen for lysosomal degradation. CD40, a major regulator of cell-mediated immunity, activates macrophages to kill T. gondii through a process that requires recruitment of autophagosomes around the parasitophorous vacuole, leading to lysosomal degradation of the parasite. These studies demonstrate that cell-mediated immunity can activate autophagy to kill a pathogen. CD40-induced autophagy likely contributes to resistance against T. gondii, particularly in neural tissues, the main sites affected by this pathogen.


Asunto(s)
Autofagia/inmunología , Toxoplasma/inmunología , Toxoplasmosis/inmunología , Animales , Antígenos CD40/inmunología , Humanos , Lisosomas/inmunología , Lisosomas/parasitología , Vacuolas/inmunología , Vacuolas/parasitología
17.
Cell Microbiol ; 11(12): 1827-41, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19702651

RESUMEN

The obligate intracellular protozoan, Leishmania infantum chagasi (Lic) undergoes receptor-mediated phagocytosis by macrophages followed by a transient delay in phagolysosome maturation. We found differences in the pathway through which virulent Lic metacyclic promastigotes or avirulent logarithmic promastigotes are phagocytosed by human monocyte-derived macrophages (MDMs). Both logarithmic and metacyclic promastigotes entered MDMs through a compartment lined by the third complement receptor (CR3). In contrast, many logarithmic promastigotes entered through vacuoles lined by mannose receptors (MR) whereas most metacyclic promastigotes did not (P < 0.005). CR3-positive vacuoles containing metacyclic promastigotes stained for caveolin-1 protein, suggesting CR3 localizes in caveolae during phagocytosis. Following entry, the kinetics of phagolysosomal maturation and intracellular survival also differed. Vacuoles containing metacyclic parasites did not accumulate lysosome-associated membrane protein-1 (LAMP-1) at early times after phagocytosis, whereas vacuoles with logarithmic promastigotes did. MDMs phagocytosed greater numbers of logarithmic than metacyclic promastigotes, yet metacyclics ultimately replicated intracellularly with greater efficiency. These data suggest that virulent metacyclic Leishmania promastigotes fail to ligate macrophage MR, and enter through a path that ultimately enhances intracellular survival. The relatively quiescent entry of virulent Leishmania spp. into macrophages may be accounted for by the ability of metacyclic promastigotes to selectively bypass deleterious entry pathways.


Asunto(s)
Lectinas Tipo C/metabolismo , Leishmania infantum/fisiología , Leishmaniasis Visceral/metabolismo , Lisosomas/metabolismo , Antígeno de Macrófago-1/metabolismo , Lectinas de Unión a Manosa/metabolismo , Receptores de Superficie Celular/metabolismo , Animales , Catepsina D/metabolismo , Caveolas/metabolismo , Caveolas/parasitología , Caveolina 1/metabolismo , Técnicas de Cultivo de Célula , Interacciones Huésped-Parásitos , Humanos , Leishmania infantum/patogenicidad , Leishmaniasis Visceral/inmunología , Leishmaniasis Visceral/parasitología , Proteína 1 de la Membrana Asociada a los Lisosomas/metabolismo , Lisosomas/parasitología , Macrófagos/inmunología , Macrófagos/metabolismo , Macrófagos/parasitología , Receptor de Manosa , Fagocitosis , Virulencia
18.
J Immunol ; 181(2): 1333-44, 2008 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-18606688

RESUMEN

TLR9 is critical in parasite recognition and host resistance to experimental infection with Trypanosoma cruzi. However, no information is available regarding nucleotide sequences and cellular events involved on T. cruzi recognition by TLR9. In silico wide analysis associated with in vitro screening of synthetic oligonucleotides demonstrates that the retrotransposon VIPER elements and mucin-like glycoprotein (TcMUC) genes in the T. cruzi genome are highly enriched for CpG motifs that are immunostimulatory for mouse and human TLR9, respectively. Importantly, infection with T. cruzi triggers high levels of luciferase activity under NF-kappaB-dependent transcription in HEK cells cotransfected with human TLR9, but not in control (cotransfected with human MD2/TLR4) HEK cells. Further, we observed translocation of TLR9 to the lysosomes during invasion/uptake of T. cruzi parasites by dendritic cells. Consistently, potent proinflammatory activity was observed when highly unmethylated T. cruzi genomic DNA was delivered to the endo-lysosomal compartment of host cells expressing TLR9. Thus, together our results indicate that the unmethylated CpG motifs found in the T. cruzi genome are likely to be main parasite targets and probably become available to TLR9 when parasites are destroyed in the lysosome-fused vacuoles during parasite invasion/uptake by phagocytes.


Asunto(s)
Células Dendríticas/inmunología , Células Dendríticas/parasitología , Lisosomas/inmunología , FN-kappa B/metabolismo , Receptor Toll-Like 9/metabolismo , Trypanosoma cruzi/inmunología , Animales , Línea Celular , Islas de CpG/inmunología , Células Dendríticas/citología , Interacciones Huésped-Parásitos , Humanos , Lisosomas/parasitología , Ratones , Ratones Noqueados , FN-kappa B/inmunología , Oligodesoxirribonucleótidos/inmunología , Retroelementos , Receptor Toll-Like 9/inmunología , Trypanosoma cruzi/genética
19.
Eukaryot Cell ; 8(9): 1352-61, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19581441

RESUMEN

African trypanosomes are the causative agents of human trypanosomiasis (sleeping sickness). The pathogenic stage of the parasite has unique adaptations to life in the bloodstream of the mammalian host, including upregulation of endocytic and lysosomal activities. We investigated stage-specific requirements for cytoplasmic adaptor/clathrin machinery in post-Golgi apparatus biosynthetic sorting to the lysosome using RNA interference silencing of the Tbmu1 subunit of adaptor complex 1 (AP-1), in conjunction with immunolocalization, kinetic analyses of reporter transport, and quantitative endocytosis assays. Tbmu1 silencing was lethal in both stages, indicating a critical function(s) for the AP-1 machinery. Transport of soluble and membrane-bound secretory cargoes was Tbmu1 independent in both stages. In procyclic parasites, trafficking of the lysosomal membrane protein, p67, was disrupted, leading to cell surface mislocalization. The lysosomal protease trypanopain was also secreted, suggesting a transmembrane-sorting receptor for this soluble hydrolase. In bloodstream trypanosomes, both p67 and trypanopain trafficking were unaffected by Tbmu1 silencing, suggesting that AP-1 is not necessary for biosynthetic lysosomal trafficking. Endocytosis in bloodstream cells was also unaffected, indicating that AP-1 does not function at the flagellar pocket. These results indicate that post-Golgi apparatus sorting to the lysosome is critically dependent on the AP-1/clathrin machinery in procyclic trypanosomes but that this machinery is not necessary in bloodstream parasites. We propose a simple model for stage-specific default secretory trafficking in trypanosomes that is consistent with the behavior of other soluble and glycosylphosphatidylinositol-anchored cargos and which is influenced by upregulation of endocytosis in bloodstream parasites as an adaptation to life in the mammalian bloodstream.


Asunto(s)
Complejo 1 de Proteína Adaptadora/metabolismo , Lisosomas/metabolismo , Proteínas Protozoarias/metabolismo , Trypanosoma brucei brucei/crecimiento & desarrollo , Trypanosoma brucei brucei/metabolismo , Tripanosomiasis Africana/metabolismo , Complejo 1 de Proteína Adaptadora/genética , Animales , Silenciador del Gen , Humanos , Lisosomas/parasitología , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Transporte de Proteínas , Proteínas Protozoarias/genética , Trypanosoma brucei brucei/genética , Tripanosomiasis Africana/parasitología
20.
Microbiologyopen ; 9(2): e969, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31743959

RESUMEN

The Leishmania lysosome has an atypical structure, consisting of an elongated vesicle-filled tubule running along the anterior-posterior axis of the cell, which is termed the multivesicular tubule (MVT) lysosome. Alongside, the MVT lysosome is one or more microtubules, the lysosomal microtubule(s). Previous work indicated there were cell cycle-related changes in MVT lysosome organization; however, these only provided snapshots and did not connect the changes in the lysosomal microtubule(s) or lysosomal function. Using mNeonGreen tagged cysteine peptidase A and SPEF1 as markers of the MVT lysosome and lysosomal microtubule(s), we examined the dynamics of these structures through the cell cycle. Both the MVT lysosome and lysosomal microtubule(s) elongated at the beginning of the cell cycle before plateauing and then disassembling in late G2 before cytokinesis. Moreover, the endocytic rate in cells where the MVT lysosome and lysosomal microtubule(s) had disassembled was extremely low. The dynamic nature of the MVT lysosome and lysosomal microtubule(s) parallels that of the Trypanosoma cruzi cytostome/cytopharynx, which also has a similar membrane tubule structure with associated microtubules. As the cytostome/cytopharynx is an ancestral feature of the kinetoplastids, this suggests that the Leishmania MVT lysosome and lysosomal microtubule(s) are a reduced cytostome/cytopharynx-like feature.


Asunto(s)
Endocitosis , Interacciones Huésped-Parásitos , Leishmania/fisiología , Leishmaniasis/metabolismo , Leishmaniasis/parasitología , Lisosomas/parasitología , División Celular , Citocinesis , Flagelos , Leishmania/ultraestructura , Leishmaniasis/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA