Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 137
Filtrar
Más filtros

Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 119(8)2022 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-35181602

RESUMEN

The factors that determine why ecosystems exhibit abrupt shifts in state are of paramount importance for management, conservation, and restoration efforts. Kelp forests are emblematic of such abruptly shifting ecosystems, transitioning from kelp-dominated to urchin-dominated states around the world with increasing frequency, yet the underlying processes and mechanisms that control their dynamics remain unclear. Here, we analyze four decades of data from biannual monitoring around San Nicolas Island, CA, to show that substrate complexity controls both the number of possible (alternative) states and the velocity with which shifts between states occur. The superposition of community dynamics with reconstructions of system stability landscapes reveals that shifts between alternative states at low-complexity sites reflect abrupt, high-velocity events initiated by pulse perturbations that rapidly propel species across dynamically unstable state-space. In contrast, high-complexity sites exhibit a single state of resilient kelp-urchin coexistence. Our analyses suggest that substrate complexity influences both top-down and bottom-up regulatory processes in kelp forests, highlight its influence on kelp-forest stability at both large (island-wide) and small (<10 m) spatial scales, and could be valuable for holistic kelp-forest management.


Asunto(s)
Conservación de los Recursos Naturales/métodos , Ecosistema , Macrocystis/crecimiento & desarrollo , Animales , Organismos Acuáticos , Cambio Climático , Cadena Alimentaria , Kelp , Modelos Teóricos
2.
Ann Bot ; 133(1): 29-40, 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-37463436

RESUMEN

BACKGROUND AND AIMS: The increased likelihood and severity of storm events has brought into focus the role of coastal ecosystems in provision of shoreline protection by attenuating wave energy. Canopy-forming kelps, including giant kelp (Macrocystis pyrifera), are thought to provide this ecosystem service, but supporting data are extremely limited. Previous in situ examinations relied mostly on comparisons between nominally similar sites with and without kelp. Given that other factors (especially seafloor bathymetry and topographic features) often differ across sites, efforts to isolate the effects of kelp on wave energy propagation confront challenges. In particular, it can be difficult to distinguish wave energy dissipation attributable to kelp from frictional processes at the seabed that often covary with the presence of kelp. Here, we use an ecological transition from no kelp to a full forest, at a single site with static bathymetry, to resolve unambiguously the capacity of giant kelp to damp waves. METHODS: We measured waves within and outside rocky reef habitat, in both the absence and the presence of giant kelp, at Marguerite Reef, Palos Verdes, CA, USA. Nested within a broader kelp restoration project, this site transitioned from a bare state to one supporting a fully formed forest (density of 8 stipes m-2). We quantified, as a function of incident wave conditions, the decline in wave energy flux attributable to the presence of kelp, as waves propagated from outside and into reef habitat. KEY RESULTS: The kelp forest damped wave energy detectably, but to a modest extent. Interactions with the seabed alone reduced wave energy flux, on average, by 12 ±â€…1.4 % over 180 m of travel. The kelp forest induced an additional 7 ±â€…1.2 % decrease. Kelp-associated declines in wave energy flux were slightly greater for waves of longer periods and smaller wave heights. CONCLUSIONS: Macrocystis pyrifera forests have a limited, albeit measurable, capacity to enhance shoreline protection from nearshore waves. Expectations that giant kelp forests, whether extant or enhanced through restoration, have substantial impacts on wave-induced coastal erosion might require re-evaluation.


Asunto(s)
Kelp , Macrocystis , Ecosistema , Bosques , Reproducción
3.
J Phycol ; 60(3): 768-777, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38703050

RESUMEN

Nitrate, the form of nitrogen often associated with kelp growth, is typically low in summer during periods of high macroalgal growth. More ephemeral, regenerated forms of nitrogen, such as ammonium and urea, are much less studied as sources of nitrogen for kelps, despite the relatively high concentrations of regenerated nitrogen found in the Southern California Bight, where kelps are common. To assess how nitrogen uptake by kelps varies by species and nitrogen form in southern California, USA, we measured uptake rates of nitrate, ammonium, and urea by Macrocystis pyrifera and Eisenia arborea individuals from four regions characterized by differences in nitrogen availability-Orange County, San Pedro, eastern Santa Catalina Island, and western Santa Catalina Island-during the summers of 2021 and 2022. Seawater samples collected at each location showed that overall nitrogen availability was low, but ammonium and urea were often more abundant than nitrate. We also quantified the internal %nitrogen of each kelp blade collected, which was positively associated with ambient environmental nitrogen concentrations at the time of collection. We observed that both kelp species readily took up nitrate, ammonium, and urea, with M. pyrifera taking up nitrate and ammonium more efficiently than E. arborea. Urea uptake efficiency for both species increased as internal percent nitrogen decreased. Our results indicate that lesser-studied, more ephemeral forms of nitrogen can readily be taken up by these kelps, with possible upregulation of urea uptake as nitrogen availability declines.


Asunto(s)
Compuestos de Amonio , Nitratos , Nitrógeno , Urea , Urea/metabolismo , Nitratos/metabolismo , Compuestos de Amonio/metabolismo , Nitrógeno/metabolismo , California , Kelp/metabolismo , Macrocystis/metabolismo , Agua de Mar/química
4.
Proc Natl Acad Sci U S A ; 119(1)2021 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-34969854

RESUMEN

Disentangling the roles of the external environment and internal biotic drivers of plant population dynamics is challenging due to the absence of relevant physiological and abundance information over appropriate space and time scales. Remote observations of giant kelp biomass and photosynthetic pigment concentrations are used to show that spatiotemporal patterns of physiological condition, and thus growth and production, are regulated by different processes depending on the scale of observation. Nutrient supply was linked to regional scale (>1 km) physiological condition dynamics, and kelp forest stands were more persistent where nutrient levels were consistently high. However, on local scales (<1 km), internal senescence processes related to canopy age demographics determined patterns of biomass loss across individual kelp forests despite uniform nutrient conditions. Repeat measurements of physiology over continuous spatial fields can provide insights into complex dynamics that are unexplained by the environmental drivers thought to regulate abundance. Emerging remote sensing technologies that provide simultaneous estimates of abundance and physiology can quantify the roles of environmental change and demographics governing plant population dynamics for a wide range of aquatic and terrestrial ecosystems.


Asunto(s)
Macrocystis/metabolismo , Nutrientes/metabolismo , Biomasa , Ecosistema , Macrocystis/química , Macrocystis/crecimiento & desarrollo , Fotosíntesis , Dinámica Poblacional , Tecnología de Sensores Remotos
5.
BMC Genomics ; 24(1): 543, 2023 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-37704968

RESUMEN

Macrocystis pyrifera (giant kelp), is a brown macroalga of great ecological importance as a primary producer and structure-forming foundational species that provides habitat for hundreds of species. It has many commercial uses (e.g. source of alginate, fertilizer, cosmetics, feedstock). One of the limitations to exploiting giant kelp's economic potential and assisting in giant kelp conservation efforts is a lack of genomic tools like a high quality, contiguous reference genome with accurate gene annotations. Reference genomes attempt to capture the complete genomic sequence of an individual or species, and importantly provide a universal structure for comparison across a multitude of genetic experiments, both within and between species. We assembled the giant kelp genome of a haploid female gametophyte de novo using PacBio reads, then ordered contigs into chromosome level scaffolds using Hi-C. We found the giant kelp genome to be 537 MB, with a total of 35 scaffolds and 188 contigs. The assembly N50 is 13,669,674 with GC content of 50.37%. We assessed the genome completeness using BUSCO, and found giant kelp contained 94% of the BUSCO genes from the stramenopile clade. Annotation of the giant kelp genome revealed 25,919 genes. Additionally, we present genetic variation data based on 48 diploid giant kelp sporophytes from three different Southern California populations that confirms the population structure found in other studies of these populations. This work resulted in a high-quality giant kelp genome that greatly increases the genetic knowledge of this ecologically and economically vital species.


Asunto(s)
Macrocystis , Macrocystis/genética , Genómica , Alginatos , Diploidia , Fertilizantes
6.
J Phycol ; 59(2): 402-417, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36727292

RESUMEN

With national interest in seaweed-based biofuels as a sustainable alternative to fossil fuels, there is a need for tools that produce high-yield seaweed cultivars and increase the efficiency of offshore farms. Several agricultural studies have demonstrated that the application of microbial inoculants at an early life stage can improve crop yield, and there is an opportunity to use similar techniques in seaweed aquaculture. However, there is a critical knowledge gap regarding host-microbiome associations of macroalgae gametophytes in germplasm cultures. Here, we investigate the microbial community of Macrocystis pyrifera gametophyte germplasm cultures that were used to cultivate an offshore farm in Santa Barbara, California and identify key taxa correlated with increased biomass of mature sporophytes. This work provides a valuable knowledge base for the development of microbial inoculants that produce high-biomass M. pyrifera cultivars to ultimately be used as biofuel feedstocks.


Asunto(s)
Macrocystis , Algas Marinas , Células Germinativas de las Plantas , Biomasa
7.
J Phycol ; 59(3): 552-569, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36973579

RESUMEN

The spread of non-indigenous and invasive seaweeds has increased worldwide, and their potential effects on native seaweeds have raised concern. Undaria pinnatifida is considered among the most prolific non-indigenous species. This species has expanded rapidly in the Northeast Pacific, overlapping with native communities such as the iconic giant kelp forests (Macrocystis pyrifera). Canopy shading by giant kelp has been argued to be a limiting factor for the presence of U. pinnatifida in the understory, thus its invasiveness capacity. However, its physiological plasticity under light limitation remains unclear. In this work, we compared the physiology and growth of juvenile U. pinnatifida and M. pyrifera sporophytes transplanted to the understory of a giant kelp forest, to juveniles growing outside of the forest. Extreme low light availability compared to that outside (~0.2 and ~4.4 mol photon ⋅ m-2 ⋅ d-1 , respectively) likely caused a "metabolic energy crisis" in U. pinnatifida, thus restricting its photoacclimation plasticity and nitrogen acquisition, ultimately reducing its growth. Despite M. pyrifera juveniles showing photoacclimatory responses (e.g., increases in photosynthetic efficiency and lower compensation irradiance, Ec ), their physiological/vegetative status deteriorated similarly to U. pinnatifida, which explains the low recruitment inside the forest. Generally, our results revealed the ecophysiological basis behind the limited growth and survival of juvenile U. pinnatifida sporophytes in the understory.


Asunto(s)
Especies Introducidas , Kelp , Macrocystis , Undaria , Bosques , Macrocystis/fisiología , Fotosíntesis
8.
Int J Mol Sci ; 24(22)2023 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-38003573

RESUMEN

Atopic dermatitis is a chronic condition where epidermal barrier dysfunction and cytokine production by infiltrating immune cells exacerbate skin inflammation and damage. A total lipid extract from Macrocystis pyrifera, a brown seaweed, was previously reported to suppress inflammatory responses in monocytes. Here, treatment of human HaCaT keratinocytes with M. pyrifera lipids inhibited tumour necrosis factor (TNF)-α induced TNF receptor-associated factor 2 and monocyte chemoattractant protein (MCP)-1 protein production. HaCaT cells stimulated with TNF-α, interleukin (IL)-4, and IL-13 showed loss of claudin-1 tight junctions, but little improvement was observed following lipid pre-treatment. Three-dimensional cultures of HaCaT cells differentiated at the air-liquid interface showed increased MCP-1 production, loss of claudin-1 tight junctions, and trans-epidermal leakage with TNF-α, IL-4, and IL-13 stimulation, with all parameters reduced by lipid pre-treatment. These findings suggest that M. pyrifera lipids have anti-inflammatory and barrier-protective effects on keratinocytes, which may be beneficial for the treatment of atopic dermatitis or other skin conditions.


Asunto(s)
Dermatitis Atópica , Macrocystis , Humanos , Dermatitis Atópica/metabolismo , Macrocystis/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Interleucina-13/farmacología , Interleucina-13/metabolismo , Claudina-1/metabolismo , Queratinocitos/metabolismo , Lípidos/farmacología , Citocinas/metabolismo
9.
Ecol Lett ; 25(5): 1189-1201, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35246946

RESUMEN

Spatial synchrony may be tail-dependent, that is, stronger when populations are abundant than scarce, or vice-versa. Here, 'tail-dependent' follows from distributions having a lower tail consisting of relatively low values and an upper tail of relatively high values. We present a general theory of how the distribution and correlation structure of an environmental driver translates into tail-dependent spatial synchrony through a non-linear response, and examine empirical evidence for theoretical predictions in giant kelp along the California coastline. In sheltered areas, kelp declines synchronously (lower-tail dependence) when waves are relatively intense, because waves below a certain height do little damage to kelp. Conversely, in exposed areas, kelp is synchronised primarily by periods of calmness that cause shared recovery (upper-tail dependence). We find evidence for geographies of tail dependence in synchrony, which helps structure regional population resilience: areas where population declines are asynchronous may be more resilient to disturbance because remnant populations facilitate reestablishment.


Asunto(s)
Geraniaceae , Kelp , Macrocystis , Ecosistema , Geografía
10.
Ecol Lett ; 25(8): 1854-1868, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35771209

RESUMEN

Spatial synchrony is a ubiquitous and important feature of population dynamics, but many aspects of this phenomenon are not well understood. In particular, it is largely unknown how multiple environmental drivers interact to determine synchrony via Moran effects, and how these impacts vary across spatial and temporal scales. Using new wavelet statistical techniques, we characterised synchrony in populations of giant kelp Macrocystis pyrifera, a widely distributed marine foundation species, and related synchrony to variation in oceanographic conditions across 33 years (1987-2019) and >900 km of coastline in California, USA. We discovered that disturbance (storm-driven waves) and resources (seawater nutrients)-underpinned by climatic variability-act individually and interactively to produce synchrony in giant kelp across geography and timescales. Our findings demonstrate that understanding and predicting synchrony, and thus the regional stability of populations, relies on resolving the synergistic and antagonistic Moran effects of multiple environmental drivers acting on different timescales.


Asunto(s)
Kelp , Macrocystis , Ecosistema , Bosques , Nutrientes
11.
J Phycol ; 58(6): 773-788, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36302142

RESUMEN

Production rates reported for canopy-forming kelps have highlighted the potential contributions of these foundational macroalgal species to carbon cycling and sequestration on a globally relevant scale. Yet, the production dynamics of many kelp species remain poorly resolved. For example, productivity estimates for the widely distributed giant kelp Macrocystis pyrifera are based on a few studies from the center of this species' range. To address this geospatial bias, we surveyed giant kelp beds in their high latitude fringe habitat in southeast Alaska to quantify foliar standing crop, growth and loss rates, and productivity of M. pyrifera and co-occurring understory kelps Hedophyllum nigripes and Neoagarum fimbriatum. We found that giant kelp beds at the poleward edge of their range produce ~150 g C · m-2 · year-1 from a standing biomass that turns over an estimated 2.1 times per year, substantially lower rates than have been observed at lower latitudes. Although the productivity of high latitude M. pyrifera dwarfs production by associated understory kelps in both winter and summer seasons, phenological differences in growth and relative carbon and nitrogen content among the three kelp species suggests their complementary value as nutritional resources to consumers. This work represents the highest latitude consideration of M. pyrifera forest production to date, providing a valuable quantification of kelp carbon cycling in this highly seasonal environment.


Asunto(s)
Kelp , Macrocystis , Bosques , Ecosistema , Carbono
12.
Mar Drugs ; 21(1)2022 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-36662209

RESUMEN

The aim of this study was to evaluate the antiangiogenic and immunomodulatory potential of sulfated polysaccharides from the marine algae Macrocystis integrifolia characterized by FTIR. The cytotoxicity of sulfated polysaccharides was evaluated using the 3-(4,5-dimethylthiazol-2-yl) -2,5-diphenyltetrazolium bromide (MTT) assay. Antiangiogenic activity was evaluated using the chicken chorioallantoic membrane (CAM) assay. Immunomodulatory activity was determined on macrophage functionality and allergic response. The results showed that sulfated polysaccharides significantly decreased angiogenesis in chicken chorioallantoic membranes (p < 0.05). Likewise, they inhibited in vivo chemotaxis and in vitro phagocytosis, the transcription process of genes that code the enzymes cyclooxygenase-1 (COX-1), cyclooxygenase-2 (COX-2) and nitric oxide synthase-2 (NOS-2) and the nuclear factor kappa-light chain enhancer of activated B cells (NF-κB), showing immunomodulatory properties on the allergic response, as well as an in vivo inhibitory effect in the ovalbumin-induced inflammatory allergy model (OVA) and inhibited lymphocyte proliferation specific to the OVA antigen in immunized mice. Finally, these compounds inhibited the histamine-induced skin reaction in rats, the production of immunoglobulin E (IgE) in mice, and the passive response to skin anaphylaxis in rats. Therefore, the results of this research showed the potential of these compounds to be a promising source for the development of antiangiogenic and immunomodulatory drugs.


Asunto(s)
Macrocystis , Animales , Ratones , Ratas , FN-kappa B , Polisacáridos/farmacología , Espectroscopía Infrarroja por Transformada de Fourier , Sulfatos , Inhibidores de la Angiogénesis/farmacología , Factores Inmunológicos/farmacología
13.
New Phytol ; 232(1): 252-263, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34166525

RESUMEN

In UV sexual systems, sex is determined during the haploid phase of the life cycle and males have a V chromosome whereas females have a U chromosome. Previous work in the brown alga Ectocarpus revealed that the V chromosome has a dominant role in male sex determination and suggested that the female developmental programme may occur by 'default'. Here, we describe the identification of a genetically male giant kelp strain presenting phenotypic features typical of a female, despite lacking the U-specific region. The conversion to the female developmental programme is however incomplete, because gametes of this feminized male are unable to produce the sperm-attracting pheromone lamoxirene. We identify the transcriptomic patterns underlying the male and female specific developmental programmes, and show that the phenotypic feminization is associated with both feminization and de-masculinization of gene expression patterns. Importantly, the feminization phenotype was associated with dramatic downregulation of two V-specific genes including a candidate male-determining gene. Our results reveal the transcriptional changes associated with sexual differentiation in a UV system, and contribute to disentangling the role of sex-linked and autosomal gene expression in the initiation of sex-specific developmental programmes. Overall, the data presented here imply that the U-specific region is not required to initiate the female developmental programme, but is critical to produce fully functional eggs, arguing against the idea that female is the 'default' sex in this species.


Asunto(s)
Macrocystis , Phaeophyceae , Haploidia , Phaeophyceae/genética , Fenotipo , Diferenciación Sexual/genética
14.
Physiol Plant ; 172(3): 1641-1652, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33547806

RESUMEN

Oxylipins are important oxygenated derivatives of fatty acids that regulate a variety of plant physiological and pathological processes in response to specific external challenges. A large body of evidence has indicated that algae can also produce a surprisingly diverse array of volatile oxylipins, yet little is known about the roles of volatile oxylipins as defense signals in macroalgae. In this study, the kelp Macrocystis pyrifera was treated by the oxylipin messenger 1-octen-3-ol and then a genome-wide gene expression profile and fatty acid spectrum analysis were performed. We found that M. pyrifera responded rapidly to the exposure of the oxylipin messenger 1-octen-3-ol. It regulated the expression levels of genes mainly involved in signal transduction, lipid metabolism, oxidation prevention, cell wall synthesis, photosynthesis, and development. Moreover, 1-octen-3-ol treatments decreased several types of total fatty acid contents and increased free fatty acid contents, especially for the C18 and C20 fatty acids. In addition, it decreased the content of indole-3-acetic acid, abscisic acid, and zeatin and increased the gibberellic acid content. Our findings demonstrated that 1-octen-3-ol is an available inducer for M. pyrifera, which is capable of rapidly upregulating kelp's defense response.


Asunto(s)
Kelp , Macrocystis , Octanoles , Oxilipinas/farmacología
15.
Oecologia ; 196(4): 1195-1206, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34324077

RESUMEN

Declines in species diversity carry profound implications for ecosystem functioning. Communities of primary producers and consumers interact on evolutionary as well as ecological time scales, shaping complex relationships between biodiversity and ecosystem functioning. In subsidized ecosystems, resource inputs are independent of consumer actions, offering a simplified view of the relationship between species diversity and function for higher trophic levels. With food webs supported by substantial but variable inputs of detritus from adjacent marine ecosystems, sandy beaches are classic examples of subsidized ecosystems. We investigated effects of consumer species diversity and identity on a key ecological function, consumption of kelp wrack from nearshore giant kelp (Macrocystis pyrifera) forests. We assessed effects of species richness on kelp consumption by experimentally manipulating richness of six common species of invertebrate detritivores in laboratory mesocosms and conducting field assays of kelp consumption on beaches. Consumer richness had no effect on kelp consumption in the field and a slight negative effect in laboratory experiments. Kelp consumption was most strongly affected by the species composition of the detritivore community. Species identity and body size of intertidal detritivores drove variation in kelp consumption rates in both experiments and field assays. Our results provide further evidence that species traits, rather than richness per se, influence ecosystem function most, particularly in detrital-based food webs with high functional redundancy across species. On sandy beaches, where biodiversity is threatened by rising sea levels and expanding development, our findings suggest that loss of large-bodied consumer species could disproportionally impact ecosystem function.


Asunto(s)
Kelp , Macrocystis , Animales , Biodiversidad , Ecosistema , Cadena Alimentaria , Bosques , Invertebrados
16.
J Phycol ; 57(6): 1777-1791, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34570392

RESUMEN

Macroalgal holobiont studies involve understanding interactions between the host, its microbiota, and the environment. We analyzed the effect of bacteria-kelp interactions on phenotypic responses of two genetically distinct populations of giant kelp, Macrocystis pyrifera (north and south), exposed to different nitrogen (N) concentrations. In co-culture experiments with different N concentration treatments, we evaluated kelp growth responses and changes in three specific molecular markers associated with the N cycle, both in epiphytic bacteria (relative abundance of nrfA-gene: cytochrome c nitrite reductase) and macroalgae (expression of NR-gene: nitrate reductase; GluSyn-gene: glutamate synthase). Both kelp populations responded differently to N limitation, with M. pyrifera-south sporophytes having a lower specific growth rate (SGR) under N-limiting conditions than the northern population; M. pyrifera-north sporophytes showed no significant differences in SGR when exposed to low-N and high-N concentrations. This corresponded to a higher GluSyn-gene expression in the M. pyrifera-north sporophytes and the co-occurrence of specific nrfA bacterial taxa. These bacteria may increase ammonium availability under low-N concentrations, allowing M. pyrifera-north to optimize nutrient assimilation by increasing the expression of GluSyn. We conclude that bacteria-kelp interactions are important in enhancing kelp growth rates under low N availability, although this effect may be regulated by the genetic background of kelp populations.


Asunto(s)
Kelp , Macrocystis , Bacterias/genética , Nitrógeno
17.
J Phycol ; 57(5): 1619-1635, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34153125

RESUMEN

Macrocystis pyrifera is a major habitat forming kelp in coastal ecosystems of temperate regions of the northern and southern hemispheres. We investigated the seasonal occurrence of adult sporophytes, morphological characteristics, and reproductive phenology at two sites within a wave-protected harbour and two wave-exposed sites in southern New Zealand every 3-4 months between 2012 and 2013. Seasonality in reproduction was assessed via the number of sporophylls, the occurrence of sori on sporophylls, and non-sporophyllous laminae (fertile pneumatocyst-bearing blades and fertile apical scimitars), meiospore release, and germination. We found that M. pyrifera was present and reproductive year-round in three of the four sites, and patterns were similar for the wave-exposure conditions. Sori were found on pneumatocyst-bearing blades and apical scimitars in addition to the sporophylls, and viable meiospores were released from all three types of laminae. Morphological variations between sites with different wave exposure indicate that sporophytes from wave-protected sites have bigger blades and holdfasts and are longer than those from wave-exposed sites. We discuss the implications of these biological variables for the ecology of M. pyrifera inhabiting different wave exposure environments in southern New Zealand.


Asunto(s)
Kelp , Macrocystis , Movimientos del Agua , Ecosistema , Nueva Zelanda , Reproducción
18.
J Phycol ; 57(3): 711-725, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33583038

RESUMEN

Inbreeding, the mating between genetically related individuals, often results in reduced survival and fecundity of offspring, relative to outcrossing. Yet, high inbreeding rates are commonly observed in seaweeds, suggesting compensatory reproductive traits may affect the costs and benefits of the mating system. We experimentally manipulated inbreeding levels in controlled crossing experiments, using gametophytes from 19 populations of Macrocystis pyrifera along its Eastern Pacific coastal distribution (EPC). The objective was to investigate the effects of male-female kinship on female fecundity and fertility, to estimate inbreeding depression in the F1 progeny, and to assess the variability of these effects among different regions and habitats of the EPC. Results revealed that the presence and kinship of males had a significant effect on fecundity and fertility of female gametophytes. Females left alone or in the presence of sibling males express the highest gametophyte size, number, and size of oogonia, suggesting they were able to sense the presence and the identity of their mates before gamete contact. The opposite trend was observed for the production of embryos per female gametes, indicating higher costs of selfing and parthenogenesis than outcrossing on fertility. However, the increased fecundity compensated for the reduced fertility, leading to a stable overall reproductive output. Inbreeding also affected morphological traits of juvenile sporophytes, but not their heatwave tolerance. The male-female kinship effect was stronger in high-latitude populations, suggesting that females from low-latitude marginal populations might have evolved to mate with any male gamete to guarantee reproductive success.


Asunto(s)
Macrocystis , Células Germinativas de las Plantas , Endogamia , Reproducción
19.
J Phycol ; 57(5): 1604-1618, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34124800

RESUMEN

The frequency of marine heatwaves (MHWs) is increasing due to climate change. Although seaweeds are resilient to environmental changes, an increasing body of evidence shows that rising sea surface temperatures have deleterious effects on temperate kelp species. However, information on the vulnerability of juvenile kelp to these stressors and their population stability is limited. This study summarizes findings on the ability of juvenile sporophytes of Macrocystis pyrifera to survive and recover from simulated MHW conditions (22°C, 5 d) in combination with nitrate limitation (<1 µM) by evaluating photosynthetic capacity, nitrate uptake, tissue composition, bio-optical properties, and oxidative stress of single-blade juvenile sporophytes (<20 cm). Temperature, nitrate availability, and their interaction had significant effects on the physiological status of juvenile sporophytes after the exposure and recovery periods. Overall, as expected, the photosynthetic capacity of juvenile sporophytes decreased with increased temperature and lower nitrate availability. Short-term exposure to simulated MHWs resulted in oxidative damage and reduced growth. The termination of the experimental warming allowed partial recovery to control values, indicating high physiological resilience. However, the interaction of both high temperature and nitrate scarcity induced irreversible damage to their photosynthetic capacity, with an increase in compensation irradiance, highlighting potential limitations in the carbon balance of juvenile sporophytes.


Asunto(s)
Kelp , Macrocystis , Cambio Climático , Nitratos , Fotosíntesis
20.
Mar Drugs ; 20(1)2021 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-35049864

RESUMEN

Fucoidan compounds may increase immune activity and are known to have cancer inhibitory effects in vitro and in vivo. In this study, we aimed to investigate the effect of fucoidan compounds on ex vivo human peripheral blood mononuclear cells (PBMCs), and to determine their cancer cell killing activity both solely, and in combination with an immune-checkpoint inhibitor drug, Nivolumab. Proliferation of PBMCs and interferon gamma (IFNγ) release were assessed in the presence of fucoidan compounds extracted from Fucus vesiculosus, Undaria pinnatifida and Macrocystis pyrifera. Total cell numbers and cell killing activity were assessed using a hormone resistant prostate cancer cell line, PC3. All fucoidan compounds activated PBMCs, and increased the effects of Nivolumab. All fucoidan compounds had significant direct cytostatic effects on PC3 cells, reducing cancer cell numbers, and PBMCs exhibited cell killing activity as measured by apoptosis. However, there was no fucoidan mediated increase in the cell killing activity. In conclusion, fucoidan compounds promoted proliferation and activity of PBMCs and added to the effects of Nivolumab. Fucoidan compounds all had a direct cytostatic effect on PC3 cells, as shown through their proliferation reduction, while their killing was not increased.


Asunto(s)
Citostáticos/farmacología , Phaeophyceae , Polisacáridos/farmacología , Organismos Acuáticos , Línea Celular Tumoral/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Citostáticos/química , Sinergismo Farmacológico , Fucus , Humanos , Inhibidores de Puntos de Control Inmunológico/química , Inhibidores de Puntos de Control Inmunológico/farmacología , Leucocitos Mononucleares/efectos de los fármacos , Macrocystis , Masculino , Nivolumab/química , Nivolumab/farmacología , Polisacáridos/química , Undaria
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA