Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 676
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 177(3): 711-721.e8, 2019 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-30982603

RESUMEN

Yeast ataxin-2, also known as Pbp1, senses the activity state of mitochondria in order to regulate TORC1. A domain of Pbp1 required to adapt cells to mitochondrial activity is of low sequence complexity. The low-complexity (LC) domain of Pbp1 forms labile, cross-ß polymers that facilitate phase transition of the protein into liquid-like or gel-like states. Phase transition for other LC domains is reliant upon widely distributed aromatic amino acids. In place of tyrosine or phenylalanine residues prototypically used for phase separation, Pbp1 contains 24 similarly disposed methionine residues. Here, we show that the Pbp1 methionine residues are sensitive to hydrogen peroxide (H2O2)-mediated oxidation in vitro and in living cells. Methionine oxidation melts Pbp1 liquid-like droplets in a manner reversed by methionine sulfoxide reductase enzymes. These observations explain how reversible formation of labile polymers by the Pbp1 LC domain enables the protein to function as a sensor of cellular redox state.


Asunto(s)
Proteínas Portadoras/metabolismo , Metionina/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Secuencia de Aminoácidos , Proteínas Portadoras/química , Proteínas Portadoras/genética , Peróxido de Hidrógeno/farmacología , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Metionina/metabolismo , Metionina Sulfóxido Reductasas/metabolismo , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Mutagénesis Sitio-Dirigida , Oxidación-Reducción , Estrés Oxidativo/efectos de los fármacos , Transición de Fase , Dominios Proteicos , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética
2.
Mol Cell ; 82(16): 3045-3060.e11, 2022 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-35752173

RESUMEN

Cancer mortality is primarily a consequence of its metastatic spread. Here, we report that methionine sulfoxide reductase A (MSRA), which can reduce oxidized methionine residues, acts as a suppressor of pancreatic ductal adenocarcinoma (PDA) metastasis. MSRA expression is decreased in the metastatic tumors of PDA patients, whereas MSRA loss in primary PDA cells promotes migration and invasion. Chemoproteomic profiling of pancreatic organoids revealed that MSRA loss results in the selective oxidation of a methionine residue (M239) in pyruvate kinase M2 (PKM2). Moreover, M239 oxidation sustains PKM2 in an active tetrameric state to promote respiration, migration, and metastasis, whereas pharmacological activation of PKM2 increases cell migration and metastasis in vivo. These results demonstrate that methionine residues can act as reversible redox switches governing distinct signaling outcomes and that the MSRA-PKM2 axis serves as a regulatory nexus between redox biology and cancer metabolism to control tumor metastasis.


Asunto(s)
Carcinoma Ductal Pancreático , Proteínas Portadoras/metabolismo , Proteínas de la Membrana/metabolismo , Neoplasias Pancreáticas , Hormonas Tiroideas/metabolismo , Carcinoma Ductal Pancreático/genética , Humanos , Metionina , Metionina Sulfóxido Reductasas/química , Metionina Sulfóxido Reductasas/metabolismo , Oxidación-Reducción , Neoplasias Pancreáticas/genética , Piruvato Quinasa/metabolismo , Proteínas de Unión a Hormona Tiroide , Neoplasias Pancreáticas
3.
J Biol Chem ; 300(3): 105662, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38246354

RESUMEN

The reversible oxidation of methionine plays a crucial role in redox regulation of proteins. Methionine oxidation in proteins causes major structural modifications that can destabilize and abrogate their function. The highly conserved methionine sulfoxide reductases protect proteins from oxidative damage by reducing their oxidized methionines, thus restoring their stability and function. Deletion or mutation in conserved methionine sulfoxide reductases leads to aging and several human neurological disorders and also reduces yeast growth on nonfermentable carbon sources. Despite their importance in human health, limited information about their physiological substrates in humans and yeast is available. For the first time, we show that Mxr2 interacts in vivo with two core proteins of the cytoplasm to vacuole targeting (Cvt) autophagy pathway, Atg19, and Ape1 in Saccharomyces cerevisiae. Deletion of MXR2 induces instability and early turnover of immature Ape1 and Atg19 proteins and reduces the leucine aminopeptidase activity of Ape1 without affecting the maturation process of Ape1. Additonally, Mxr2 interacts with the immature Ape1, dependent on Met17 present within the propeptide of Ape1 as a single substitution mutation of Met17 to Leu abolishes this interaction. Importantly, Ape1 M17L mutant protein resists oxidative stress-induced degradation in WT and mxr2Δ cells. By identifying Atg19 and Ape1 as cytosolic substrates of Mxr2, our study maps the hitherto unexplored connection between Mxr2 and the Cvt autophagy pathway and sheds light on Mxr2-dependent oxidative regulation of the Cvt pathway.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Autofagia , Metionina/metabolismo , Metionina Sulfóxido Reductasas/genética , Metionina Sulfóxido Reductasas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Citoplasma/metabolismo , Vacuolas/metabolismo , Estrés Oxidativo , Estabilidad Proteica
4.
Biochemistry ; 63(4): 533-544, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38286790

RESUMEN

The oxidation of Met to methionine sulfoxide (MetSO) by oxidants such as hydrogen peroxide, hypochlorite, or peroxynitrite has profound effects on protein function. This modification can be reversed by methionine sulfoxide reductases (msr). In the context of pathogen infection, the reduction of oxidized proteins gains significance due to microbial oxidative damage generated by the immune system. For example, Mycobacterium tuberculosis (Mt) utilizes msrs (MtmsrA and MtmsrB) as part of the repair response to the host-induced oxidative stress. The absence of these enzymes makes Mycobacteria prone to increased susceptibility to cell death, pointing them out as potential therapeutic targets. This study provides a detailed characterization of the catalytic mechanism of MtmsrA using a comprehensive approach, including experimental techniques and theoretical methodologies. Confirming a ping-pong type enzymatic mechanism, we elucidate the catalytic parameters for sulfoxide and thioredoxin substrates (kcat/KM = 2656 ± 525 M-1 s-1 and 1.7 ± 0.8 × 106 M-1 s-1, respectively). Notably, the entropic nature of the activation process thermodynamics, representing ∼85% of the activation free energy at room temperature, is underscored. Furthermore, the current study questions the plausibility of a sulfurane intermediate, which may be a transition-state-like structure, suggesting the involvement of a conserved histidine residue as an acid-base catalyst in the MetSO reduction mechanism. This mechanistic insight not only advances our understanding of Mt antioxidant enzymes but also holds implications for future drug discovery and biotechnological applications.


Asunto(s)
Metionina Sulfóxido Reductasas , Mycobacterium tuberculosis , Metionina Sulfóxido Reductasas/metabolismo , Mycobacterium tuberculosis/metabolismo , Oxidación-Reducción , Catálisis , Estrés Oxidativo , Metionina/metabolismo
5.
J Biol Chem ; 299(9): 105099, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37507014

RESUMEN

Methionine sulfoxide reductases (MSRs) are key enzymes in the cellular oxidative defense system. Reactive oxygen species oxidize methionine residues to methionine sulfoxide, and the methionine sulfoxide reductases catalyze their reduction back to methionine. We previously identified the cholesterol transport protein STARD3 as an in vivo binding partner of MSRA (methionine sulfoxide reductase A), an enzyme that reduces methionine-S-sulfoxide back to methionine. We hypothesized that STARD3 would also bind the cytotoxic cholesterol hydroperoxides and that its two methionine residues, Met307 and Met427, could be oxidized, thus detoxifying cholesterol hydroperoxide. We now show that in addition to binding MSRA, STARD3 binds all three MSRB (methionine sulfoxide reductase B), enzymes that reduce methionine-R-sulfoxide back to methionine. Using pure 5, 6, and 7 positional isomers of cholesterol hydroperoxide, we found that both Met307 and Met427 on STARD3 are oxidized by 6α-hydroperoxy-3ß-hydroxycholest-4-ene (cholesterol-6α-hydroperoxide) and 7α-hydroperoxy-3ß-hydroxycholest-5-ene (cholesterol-7α-hydroperoxide). MSRs reduce the methionine sulfoxide back to methionine, restoring the ability of STARD3 to bind cholesterol. Thus, the cyclic oxidation and reduction of methionine residues in STARD3 provides a catalytically efficient mechanism to detoxify cholesterol hydroperoxide during cholesterol transport, protecting membrane contact sites and the entire cell against the toxicity of cholesterol hydroperoxide.


Asunto(s)
Colesterol , Peróxido de Hidrógeno , Proteínas de la Membrana , Metionina Sulfóxido Reductasas , Colesterol/análogos & derivados , Colesterol/metabolismo , Peróxido de Hidrógeno/metabolismo , Metionina/metabolismo , Metionina Sulfóxido Reductasas/genética , Metionina Sulfóxido Reductasas/metabolismo , Oxidación-Reducción , Sulfóxidos/metabolismo , Células HEK293 , Células HeLa , Humanos , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Endosomas/metabolismo , Lisosomas/metabolismo
6.
Mol Microbiol ; 119(2): 143-150, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36350090

RESUMEN

Methionine is a sulfur-containing residue found in most proteins which are particularly susceptible to oxidation. Although methionine oxidation causes protein damage, it can in some cases activate protein function. Enzymatic systems reducing oxidized methionine have evolved in most bacterial species and methionine oxidation proves to be a reversible post-translational modification regulating protein activity. In this review, we inspect recent examples of methionine oxidation provoking protein loss and gain of function. We further speculate on the role of methionine oxidation as a multilayer endogenous antioxidant system and consider its potential consequences for bacterial virulence.


Asunto(s)
Metionina Sulfóxido Reductasas , Metionina , Metionina/metabolismo , Metionina Sulfóxido Reductasas/genética , Metionina Sulfóxido Reductasas/metabolismo , Oxidación-Reducción , Racemetionina/metabolismo , Bacterias/metabolismo , Procesamiento Proteico-Postraduccional
7.
Chemistry ; 30(19): e202304081, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38288909

RESUMEN

Optically pure sulfoxides are valuable organosulfur compounds extensively employed in medicinal and organic synthesis. In this study, we present a biocatalytic oxidation-reduction cascade system designed for the preparation of enantiopure sulfoxides. The system involves the cooperation of a low-enantioselective chimeric oxidase SMO (styrene monooxygenase) with a high-enantioselective reductase MsrA (methionine sulfoxide reductase A), facilitating "non-selective oxidation and selective reduction" cycles for prochiral sulfide oxidation. The regeneration of requisite cofactors for MsrA and SMO was achieved via a cascade catalysis process involving three auxiliary enzymes, sustained by cost-effective D-glucose. Under the optimal reaction conditions, a series of heteroaryl alkyl, aryl alkyl and dialkyl sulfoxides in R configuration were synthesized through this "one-pot, one step" cascade reaction. The obtained compounds exhibited high yields of >90 % and demonstrated enantiomeric excess (ee) values exceeding 90 %. This study represents an unconventional and efficient biocatalytic way in utilizing the low-enantioselective oxidase for the synthesis of enantiopure sulfoxides.


Asunto(s)
Metionina Sulfóxido Reductasas , Sulfóxidos , Biocatálisis , Oxidación-Reducción , Catálisis , Estereoisomerismo
8.
Immunol Invest ; 53(5): 813-829, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38638027

RESUMEN

BACKGROUND: Chondrocyte oxidative stress and apoptosis are critical factors contributing to the pathogenesis of osteoarthritis (OA). Methionine sulfoxide reductase B2 (MSRB2) is a mitochondrial protein that protects cells from oxidative stress and is involved in apoptosis. This study aimed to investigated the expression of MSRB2 in articular cartilage tissues and elucidated its effect on H2O2-stimulated chondrocytes. METHODS: Human chondrocytes were cultured in Dulbecco's modified Eagle's medium (DMEM)/F12. MSRB2 overexpression in chondrocytes was achieved by transfecting with an MSRB2 overexpression plasmid. Western blot, quantitative RT-PCR, Immunofluorescence staining, and TUNEL assay were employed in this study. RESULTS: MSRB2 expression was found to be reduced in OA patients. Furthermore, overexpression of MSRB2 in H2O2-induced chondrocytes mitigated apoptosis and enhanced cell viability. Elevated MSRB2 expression diminished chondrocyte ROS contents, decreased cytochrome C (Cyc) in the cytoplasm, and regulated mitochondrial membrane potential to maintain mitochondrial homeostasis. Interestingly, knockdown of charged multivesicular body protein 5 (CHMP5) led to a decreased inMSRB2 expression in chondrocytes. Additionally, protein levels of CHMP5 and MSRB2 were reduced in H2O2-stimulated chondrocytes, and silencing CHMP5 reduced MSRB2 expression. Knockdown of CHMP5 increased cleaved caspase-3 expression in H2O2-induced chondrocytes and elevated TUNEL-positive chondrocytes. CONCLUSION: MSRB2 decreased in OA, and overexpression of MSRB2 alleviated oxidative stress and apoptosis of chondrocyte.


Asunto(s)
Apoptosis , Condrocitos , Peróxido de Hidrógeno , Metionina Sulfóxido Reductasas , Osteoartritis , Estrés Oxidativo , Humanos , Condrocitos/metabolismo , Peróxido de Hidrógeno/metabolismo , Osteoartritis/metabolismo , Osteoartritis/patología , Metionina Sulfóxido Reductasas/metabolismo , Metionina Sulfóxido Reductasas/genética , Células Cultivadas , Cartílago Articular/metabolismo , Cartílago Articular/patología , Potencial de la Membrana Mitocondrial , Mitocondrias/metabolismo , Supervivencia Celular/efectos de los fármacos , Persona de Mediana Edad , Especies Reactivas de Oxígeno/metabolismo , Femenino
9.
Georgian Med News ; (350): 36-41, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-39089268

RESUMEN

Methionine sulfoxide reductase A (MsrA) is an antioxidant enzyme that repairs the oxidation of methionine residues in proteins and free methionine in autism spectrum disorder (ASD). The present study aimed to assess the level of MsrA and neurotransmission enzymes in ASD individuals. Results confirmed that ASD associated with significant (P<0.05) reduction of MsrA and modulated mission enzymes. The role of MsrA as repair enzyme should be taken into account for study the activity of brain enzymes and proteins in ASD including ASMT that has a role in melatonin problems production in ASD due to higher AANAT level. The influence of MsrA also should be studied with MAT in mice to give more evidence.


Asunto(s)
Trastorno del Espectro Autista , Metionina Sulfóxido Reductasas , Humanos , Trastorno del Espectro Autista/enzimología , Metionina Sulfóxido Reductasas/metabolismo , Metionina Sulfóxido Reductasas/genética , Masculino , Femenino , Transmisión Sináptica , Niño , Melatonina/metabolismo , Adolescente , Preescolar , Adulto , Estudios de Casos y Controles , 5-Metiltetrahidrofolato-Homocisteína S-Metiltransferasa/metabolismo , 5-Metiltetrahidrofolato-Homocisteína S-Metiltransferasa/genética
10.
J Biol Chem ; 298(5): 101973, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35461810

RESUMEN

Oxidation of protein methionines to methionine sulfoxides can result in protein structural alterations with a wide variety of biological implications. Factors that determine susceptibility to oxidation are not well understood. The recent JBC Editors Pick by Walker et al. applied proteomic methodologies to show that the oxidative susceptibility of buried methionine residues is strongly correlated with folding stability of the contextual peptide. Proteome-wide analysis of oxidation-susceptible methionines promises to answer open questions about the biological functions of reversible methionine oxidation.


Asunto(s)
Metionina , Proteómica , Metionina/química , Metionina/metabolismo , Metionina Sulfóxido Reductasas/metabolismo , Oxidación-Reducción , Estrés Oxidativo , Proteínas/metabolismo
11.
Mol Microbiol ; 118(4): 321-335, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36271736

RESUMEN

Pseudomonas aeruginosa is an opportunistic bacterial pathogen that often encounters hypoxic/anoxic environments within the host, which increases its tolerance to many conventional antibiotics. Toward identifying novel treatments, we explored the therapeutic potential of chlorate, a pro-drug that kills hypoxic/anoxic, antibiotic-tolerant P. aeruginosa populations. While chlorate itself is relatively nontoxic, it is enzymatically reduced to the toxic oxidizing agent, chlorite, by hypoxically induced nitrate reductase. To better assess chlorate's therapeutic potential, we investigated mechanisms of chlorate toxicity and resistance in P. aeruginosa. We used transposon mutagenesis to identify genes that alter P. aeruginosa fitness during chlorate treatment, finding that methionine sulfoxide reductases (Msr), which repair oxidized methionine residues, support survival during chlorate stress. Chlorate treatment leads to proteome-wide methionine oxidation, which is exacerbated in a ∆msrA∆msrB strain. In response to chlorate, P. aeruginosa upregulates proteins involved in a wide range of functions, including metabolism, DNA replication/repair, protein repair, transcription, and translation, and these newly synthesized proteins are particularly vulnerable to methionine oxidation. The addition of exogenous methionine partially rescues P. aeruginosa survival during chlorate treatment, suggesting that widespread methionine oxidation contributes to death. Finally, we found that mutations that decrease nitrate reductase activity are a common mechanism of chlorate resistance.


Asunto(s)
Cloratos , Profármacos , Cloratos/metabolismo , Cloratos/farmacología , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Metionina Sulfóxido Reductasas/genética , Proteoma , Nitratos/metabolismo , Nitrato-Reductasa , Antibacterianos/farmacología , Oxidantes , Metionina
12.
Mol Microbiol ; 118(4): 387-402, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36271735

RESUMEN

Repairing oxidative-targeted macromolecules is a central mechanism necessary for living organisms to adapt to oxidative stress. Reactive oxygen and chlorine species preferentially oxidize sulfur-containing amino acids in proteins. Among these amino acids, methionine can be converted into methionine sulfoxide. This post-translational oxidation can be reversed by methionine sulfoxide reductases, Msr enzymes. In Gram-negative bacteria, the antioxidant MsrPQ system is involved in the repair of periplasmic oxidized proteins. Surprisingly, in this study, we observed in Escherichia coli that msrPQ was highly expressed in the absence of oxygen. We have demonstrated that the anaerobic induction of msrPQ was due to chlorate (ClO3 - ) contamination of the Casamino Acids. Molecular investigation led us to determine that the reduction of chlorate to the toxic oxidizing agent chlorite (ClO2 - ) by the three nitrate reductases (NarA, NarZ, and Nap) led to methionine oxidation of periplasmic proteins. In response to this stress, the E. coli HprSR two-component system was activated, leading to the over-production of MsrPQ. This study, therefore, supports the idea that methionine oxidation in proteins is part of chlorate toxicity, and that MsrPQ can be considered as an anti-chlorate/chlorite defense system in bacteria. Finally, this study challenges the traditional view of the absence of Met-oxidation during anaerobiosis.


Asunto(s)
Escherichia coli , Proteínas Periplasmáticas , Escherichia coli/metabolismo , Metionina Sulfóxido Reductasas/metabolismo , Proteínas Periplasmáticas/metabolismo , Anaerobiosis , Cloro/metabolismo , Antioxidantes/metabolismo , Oxidación-Reducción , Metionina/metabolismo , Racemetionina/metabolismo , Oxígeno/metabolismo , Oxidantes/metabolismo , Azufre/metabolismo
13.
Org Biomol Chem ; 21(16): 3417-3422, 2023 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-37017279

RESUMEN

Optically pure sulfoxides are noteworthy compounds that find wide applications in various industrial fields. Here, we report a methionine sulfoxide reductase B (MsrB) homologue that exhibits high enantioselectivity and broad substrate scope for the kinetic resolution of racemic (rac) sulfoxides. This MsrB homologue, named liMsrB, was identified from Limnohabitans sp. 103DPR2 and showed good activity together with enantioselectivity towards a series of aromatic, heteroaromatic, alkyl and thioalkyl sulfoxides. Chiral sulfoxides in the S configuration were prepared in approximately 50% yield and 92-99% enantiomeric excess through kinetic resolution at an initial substrate concentration of up to 90 mM (11.2 g L-1). This study presents an efficient route for the enzymatic preparation of (S)-sulfoxides through kinetic resolution.


Asunto(s)
Metionina Sulfóxido Reductasas , Sulfóxidos , Sulfóxidos/química , Cinética , Estereoisomerismo , Metionina
14.
Cell ; 133(3): 462-74, 2008 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-18455987

RESUMEN

Calcium/calmodulin (Ca2+/CaM)-dependent protein kinase II (CaMKII) couples increases in cellular Ca2+ to fundamental responses in excitable cells. CaMKII was identified over 20 years ago by activation dependence on Ca2+/CaM, but recent evidence shows that CaMKII activity is also enhanced by pro-oxidant conditions. Here we show that oxidation of paired regulatory domain methionine residues sustains CaMKII activity in the absence of Ca2+/CaM. CaMKII is activated by angiotensin II (AngII)-induced oxidation, leading to apoptosis in cardiomyocytes both in vitro and in vivo. CaMKII oxidation is reversed by methionine sulfoxide reductase A (MsrA), and MsrA-/- mice show exaggerated CaMKII oxidation and myocardial apoptosis, impaired cardiac function, and increased mortality after myocardial infarction. Our data demonstrate a dynamic mechanism for CaMKII activation by oxidation and highlight the critical importance of oxidation-dependent CaMKII activation to AngII and ischemic myocardial apoptosis.


Asunto(s)
Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Cardiopatías/metabolismo , Metionina/metabolismo , Miocitos Cardíacos/metabolismo , Transducción de Señal , Angiotensina II , Animales , Apoptosis , Calcio , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/genética , Calmodulina/metabolismo , Metionina Sulfóxido Reductasas , Ratones , Mutagénesis Sitio-Dirigida , Miocitos Cardíacos/citología , Oxidación-Reducción , Oxidorreductasas/genética , Ratas , Especies Reactivas de Oxígeno/metabolismo
15.
Proc Natl Acad Sci U S A ; 117(8): 4169-4179, 2020 02 25.
Artículo en Inglés | MEDLINE | ID: mdl-32029597

RESUMEN

Abscission is the terminal step of cytokinesis leading to the physical separation of the daughter cells. In response to the abnormal presence of lagging chromatin between dividing cells, an evolutionarily conserved abscission/NoCut checkpoint delays abscission and prevents formation of binucleated cells by stabilizing the cytokinetic intercellular bridge (ICB). How this bridge is stably maintained for hours while the checkpoint is activated is poorly understood and has been proposed to rely on F-actin in the bridge region. Here, we show that actin polymerization is indeed essential for stabilizing the ICB when lagging chromatin is present, but not in normal dividing cells. Mechanistically, we found that a cytosolic pool of human methionine sulfoxide reductase B2 (MsrB2) is strongly recruited at the midbody in response to the presence of lagging chromatin and functions within the ICB to promote actin polymerization there. Consistently, in MsrB2-depleted cells, F-actin levels are decreased in ICBs, and dividing cells with lagging chromatin become binucleated as a consequence of unstable bridges. We further demonstrate that MsrB2 selectively reduces oxidized actin monomers and thereby counteracts MICAL1, an enzyme known to depolymerize actin filaments by direct oxidation. Finally, MsrB2 colocalizes and genetically interacts with the checkpoint components Aurora B and ANCHR, and the abscission delay upon checkpoint activation by nuclear pore defects also depends on MsrB2. Altogether, this work reveals that actin reduction by MsrB2 is a key component of the abscission checkpoint that favors F-actin polymerization and limits tetraploidy, a starting point for tumorigenesis.


Asunto(s)
Actinas/metabolismo , Cromatina/metabolismo , Citocinesis/fisiología , Proteínas de Drosophila/metabolismo , Metionina Sulfóxido Reductasas/metabolismo , Proteínas de Microfilamentos/metabolismo , Mitosis/fisiología , Animales , Línea Celular , Drosophila , Proteínas de Drosophila/genética , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Células HeLa , Humanos , Metionina Sulfóxido Reductasas/genética , Proteínas de Microfilamentos/genética , Oxigenasas de Función Mixta/genética , Oxigenasas de Función Mixta/metabolismo , Oxidación-Reducción
16.
Anal Chem ; 94(16): 6289-6296, 2022 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-35412308

RESUMEN

Oxidative stress in organisms is a factor leading to a series of diseases including tumors and neurological disorders, while methionine sulfoxide reductases (Msrs) may provide an antioxidant and self-repair mechanism through redox cycles of methionine residues in proteins. Thus, it is important to understand the crucial role of Msrs in maintaining the redox homeostasis. However, it remains a great challenge for real-time and quantitative monitoring of Msrs in live systems due to the lack of appropriate sensing tools. Herein, a novel unimolecular platform integrating the intramolecular charge transfer (ICT) and Förster resonance energy transfer (FRET) dual mechanisms was successfully developed. By employing the highly specific Msrs-catalyzed reduction from the electron-withdrawing sulfoxide moiety in the probe to an electron-donating sulfide group, a synergistic ICT-FRET activation process was achieved, leading to a ratiometric fluorescence response toward Msrs with high selectivity, sensitivity, and accuracy. Moreover, benefiting from the favorable features, including mitochondria-targeting, near-infrared two-photon excitation, low cytotoxicity, good stability, and biocompatibility, the probe was successfully used for monitoring mitochondrial Msrs levels in live-neurons, and a positively correlated up-regulation of endogenous Msrs levels under O2•- stimulation was observed for the first time, confirming a Msrs-involved adaptive antioxidant mechanism in neurons. Furthermore, two-photon microscopic imaging of various regions in Alzheimer's disease (AD) mice brains revealed a down-regulated Msrs levels compared with that in normal brains, especially in the cornuammonis of the hippocampus region, which may in turn lead to an aggravation of AD pathogenesis due to the weakened antioxidant and self-repair capability of neurons.


Asunto(s)
Transferencia Resonante de Energía de Fluorescencia , Metionina Sulfóxido Reductasas , Animales , Antioxidantes , Encéfalo/metabolismo , Transferencia Resonante de Energía de Fluorescencia/métodos , Metionina Sulfóxido Reductasas/metabolismo , Ratones , Neuronas/metabolismo
17.
Appl Environ Microbiol ; 88(11): e0003822, 2022 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-35575549

RESUMEN

Reactive oxygen species (ROS) can cause destructive damage to biological macromolecules and protein dysfunction in bacteria. Methionine sulfoxide reductase (Msr) with redox-active Cys and/or seleno-cysteine (Sec) residues can restore physiological functions of the proteome, which is essential for oxidative stress tolerance of the extremophile Deinococcus radiodurans. However, the underlying mechanism regulating MsrA enzyme activity in D. radiodurans under oxidative stress has remained elusive. Here, we identified the function of MsrA in response to oxidative stress. msrA expression in D. radiodurans was significantly upregulated under oxidative stress. The msrA mutant showed a deficiency in antioxidative capacity and an increased level of dabsyl-Met-S-SO, indicating increased sensitivity to oxidative stress. Moreover, msrA mRNA was posttranscriptionally regulated by a small RNA, DsrO. Analysis of the molecular interaction between DsrO and msrA mRNA demonstrated that DsrO increased the half-life of msrA mRNA and then upregulated MsrA enzyme activity under oxidative stress compared to the wild type. msrA expression was also transcriptionally regulated by the DNA-repairing regulator DrRRA, providing a connection for further analysis of protein restoration during DNA repair. Overall, our results provide direct evidence that DsrO and DrRRA regulate msrA expression at two levels to stabilize msrA mRNA and increase MsrA protein levels, revealing the protective roles of DsrO signaling in D. radiodurans against oxidative stress. IMPORTANCE The repair of oxidized proteins is an indispensable function allowing the extremophile D. radiodurans to grow in adverse environments. Msr proteins and various oxidoreductases can reduce oxidized Cys and Met amino acid residues of damaged proteins to recover protein function. Consequently, it is important to investigate the molecular mechanism maintaining the high reducing activity of MsrA protein in D. radiodurans during stresses. Here, we showed the protective roles of an sRNA, DsrO, in D. radiodurans against oxidative stress. DsrO interacts with msrA mRNA to improve msrA mRNA stability, and this increases the amount of MsrA protein. In addition, we also showed that DrRRA transcriptionally regulated msrA gene expression. Due to the importance of DrRRA in regulating DNA repair, this study provides a clue for further analysis of MsrA activity during DNA repair. This study indicates that protecting proteins from oxidation is an effective strategy for extremophiles to adapt to stress conditions.


Asunto(s)
Deinococcus , Metionina Sulfóxido Reductasas , Deinococcus/genética , Deinococcus/metabolismo , Metionina/metabolismo , Metionina Sulfóxido Reductasas/genética , Metionina Sulfóxido Reductasas/metabolismo , Estrés Oxidativo/fisiología , ARN/metabolismo , ARN Mensajero/metabolismo
18.
New Phytol ; 236(3): 1042-1060, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35909309

RESUMEN

Oxidation of methionine leads to the formation of methionine S-sulfoxide and methionine R-sulfoxide, which can be reverted by two types of methionine sulfoxide reductase (MSR): MSRA and MSRB. Though the role of MSR enzymes has been elucidated in various physiological processes, the regulation and role of MSR in seeds remains poorly understood. In this study, through molecular, biochemical, and genetic studies using seed-specific overexpression and RNAi lines of OsMSRB5 in Oryza sativa, we demonstrate the role of OsMSRB5 in maintaining seed vigor and longevity. We show that an age-induced reduction in the vigor and viability of seeds is correlated with reduced MSR activity and increased methionine sulfoxide (MetSO) formation. OsMSRB5 expression increases during seed maturation and is predominantly localized to the embryo. Further analyses on transgenic lines reveal the role of OsMSRB5 in modulating reactive oxygen species (ROS) homeostasis to preserve seed vigor and longevity. We show that ascorbate peroxidase and PROTEIN l-ISOASPARTYL METHYLTRANSFERASE undergo MetSO modification in seeds that affects their functional competence. OsMSRB5 physically interacts with these proteins and reverts this modification to facilitate their functions and preserve seed vigor and longevity. Our results thus illustrate the role of OsMSRB5 in preserving seed vigor and longevity by modulating ROS homeostasis in seeds.


Asunto(s)
Metionina Sulfóxido Reductasas , Oryza , Ascorbato Peroxidasas , Longevidad , Metionina/metabolismo , Metionina Sulfóxido Reductasas/genética , Metionina Sulfóxido Reductasas/metabolismo , Oryza/metabolismo , Proteína D-Aspartato-L-Isoaspartato Metiltransferasa/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Semillas/metabolismo , Sulfóxidos
19.
Chemistry ; 28(61): e202201997, 2022 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-35938698

RESUMEN

Chiral sulfoxides are versatile synthons and have gained a particular interest in asymmetric synthesis of active pharmaceutical and agrochemical ingredients. Herein, a linear oxidation-reduction bienzymatic cascade to synthesize chiral sulfoxides is reported. The extraordinarily stable and active vanadium-dependent chloroperoxidase from Curvularia inaequalis (CiVCPO) was used to oxidize sulfides into racemic sulfoxides, which were then converted to chiral sulfoxides by highly enantioselective methionine sulfoxide reductase A (MsrA) and B (MsrB) by kinetic resolution, respectively. The combinatorial cascade gave a broad range of structurally diverse sulfoxides with excellent optical purity (>99 %  ee) with complementary chirality. The enzymatic cascade requires no NAD(P)H recycling, representing a facile method for chiral sulfoxide synthesis. Particularly, the envisioned enzymatic cascade not only allows CiVCPO to gain relevance in chiral sulfoxide synthesis, but also provides a powerful approach for (S)-sulfoxide synthesis; the latter case is significantly unexplored for heme-dependent peroxidases and peroxygenases.


Asunto(s)
Metionina Sulfóxido Reductasas , Sulfóxidos , Oxidación-Reducción , Safrol
20.
J Org Chem ; 87(2): 1585-1588, 2022 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-35057628

RESUMEN

A novel concept of nonhydrolytic enzyme sensing based on aggregation-induced emission is described. As a proof of principle, fluorogenic probes for methionine sulfoxide reductases have been developed. Changes in the polarity and electronic nature upon reduction of sulfoxide to sulfide are translated to the aggregation potential of the probe. The new probes enable sensitive and highly spatially resolved imaging of the enzymatic activity.


Asunto(s)
Metionina Sulfóxido Reductasas , Sulfóxidos , Metionina/metabolismo , Metionina Sulfóxido Reductasas/metabolismo , Oxidación-Reducción , Estereoisomerismo , Sulfuros
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA