Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 111(12): E1082-90, 2014 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-24522109

RESUMEN

Myosin 4 protein (Myo4p), one of five distinct myosins of yeast, is dedicated to cytoplasmic transport of two types of cargos, zipcoded messenger ribonucleoprotein particles (mRNPs) and tubular endoplasmic reticulum (tER). Neither cargo binds directly to Myo4p. Instead, swi5p-dependent HO expression 3 protein (She3p) serves as an "adaptor" that contains three binding modules, one for Myo4p and one each for zipcoded mRNP and tER. The assembly of a transport-competent motor complex is poorly understood. Here, we report that Myo4p•She3p forms a stable 1:2 heterotrimer in solution. In the Myo4p•She3p crystal structure, Myo4p's C-terminal domain (CTD) assumes a lobster claw-shaped form, the minor prong of which adheres to a pseudocoiled-coil region of She3p. The extensive Myo4p•She3p interactome buries 3,812 Å(2) surface area and is primarily hydrophobic. Because the Myo4p•She3p heterotrimer contains only one myosin molecule, it is not transport-competent. By stepwise reconstitution, we found a single molecule of synthetic oligonucleotide (representing the mRNA zipcode element) bound to a single tetramer of zipcode binding protein She2p to be sufficient for Myo4p•She3p dimerization. Therefore, cargo initiates cross-linking of two Myo4p•She3p heterotrimers to an ensemble that contains two myosin molecules obligatory for movement. An additional crystal structure comprising an overlapping upstream portion of She3p showed continuation of the pseudocoiled-coil structure and revealed another highly conserved surface region. We suggest this region as a candidate binding site for a yet unidentified tER ligand. We propose a model whereby zipcoded mRNP and/or tER ligands couple two Myo4p•She3p heterotrimers and thereby generate a transport-competent motor complex either for separate transport or cotransport of these two cargos.


Asunto(s)
Miosina Tipo IV/metabolismo , Cristalografía por Rayos X , Interacciones Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Mutación , Miosina Tipo IV/química , Conformación Proteica , Ribonucleoproteínas/química , Ribonucleoproteínas/metabolismo
2.
J Biol Chem ; 277(34): 30928-34, 2002 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-12050163

RESUMEN

SAP97 is a modular protein composed of three PDZ domains, an SH3 domain, and a guanylate kinase-like domain. It has been implicated functionally in the assembly and structural stability of synaptic junctions as well as in the trafficking, recruitment, and localization of specific ion channels and neurotransmitter receptors. The N terminus of SAP97 (S97N) has been shown to play a key role in the selection of binding partners and the localization of SAP97 at adhesion sites, as well as the clustering of ion channels in heterologous cells. Using the S97N domain as bait in a yeast two-hybrid screen, we identified the minus-end-directed actin-based motor, myosin VI, as an S97N binding partner. Moreover, in light membrane fractions prepared from rat brain, we found that myosin VI and SAP97 form a trimeric complex with the alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptor subunit, GluR1. These data suggest that SAP97 may serve as a molecular link between GluR1 and the actin-dependent motor protein myosin VI during the dynamic translocation of AMPA receptors to and from the postsynaptic plasma membrane.


Asunto(s)
Miosina Tipo IV/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Receptores AMPA/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Animales , Transporte Biológico , Encéfalo/metabolismo , Células CACO-2 , Homólogo 1 de la Proteína Discs Large , Humanos , Proteínas de la Membrana , Miosina Tipo IV/química , Células PC12 , Ratas , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA