Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 164
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Fish Shellfish Immunol ; 151: 109666, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38838839

RESUMEN

The advancement of the Penaeus vannamei industry in a sustainable manner necessitates the creation of eco-friendly and exceptionally effective feed additives. To achieve this, 720 similarly-sized juvenile shrimp (0.88 ± 0.02 g) were randomly divided into four groups in this study, with each group consisting of three replicates, each tank (400 L) containing 60 shrimp. Four experimental diets were formulated by adding 0, 500, 1000, and 1500 mg kg-1 glycerol monolaurate (GML) to the basal diet, and the feeding trial lasted for 42 days. Subsequently, a 72-h White Spot Syndrome Virus (WSSV) challenge test was conducted. Polynomial orthogonal contrasts analysis revealed that with the increase in the concentration of GML, those indicators related to growth, metabolism and immunity, exhibit linear or quadratic correlations (P < 0.05). The results indicate that the GML groups exhibited a significant improvement in the shrimp weight gain rate, specific growth rate, and a reduction in the feed conversion ratio (P < 0.05). Furthermore, the GML groups promoted the lipase activity and reduced lipid content of the shrimp, augmented the expression of triglyceride and fatty acid decomposition-related genes and lowered the levels of plasma triglycerides (P < 0.05). GML can also enhanced the humoral immunity of the shrimp by activating the Toll-like receptor and Immune deficiency immune pathways, improved the phagocytic capacity and antibacterial ability of shrimp hemocytes. The challenge test revealed that GML significantly reduced the mortality of the shrimp compared to control group. The 16S rRNA sequencing indicates that the GML group can increases the abundance of beneficial bacteria. However, 1500 mg kg-1 GML adversely affected the stability of the intestinal microbiota, significantly upregulating intestinal antimicrobial peptide-related genes and tumor necrosis factor-alpha levels (P < 0.05). In summary, 1000 mg kg-1 GML was proven to enhance the growth performance, lipid absorption and metabolism, humoral immune response, and gut microbiota condition of P. vannamei, with no negative physiological effects.


Asunto(s)
Alimentación Animal , Dieta , Suplementos Dietéticos , Microbioma Gastrointestinal , Lauratos , Metabolismo de los Lípidos , Monoglicéridos , Penaeidae , Animales , Penaeidae/inmunología , Penaeidae/crecimiento & desarrollo , Penaeidae/efectos de los fármacos , Penaeidae/microbiología , Microbioma Gastrointestinal/efectos de los fármacos , Metabolismo de los Lípidos/efectos de los fármacos , Dieta/veterinaria , Alimentación Animal/análisis , Lauratos/farmacología , Lauratos/administración & dosificación , Monoglicéridos/administración & dosificación , Monoglicéridos/farmacología , Suplementos Dietéticos/análisis , Distribución Aleatoria , Inmunidad Innata/efectos de los fármacos , Virus del Síndrome de la Mancha Blanca 1/fisiología , Relación Dosis-Respuesta a Droga , Digestión/efectos de los fármacos
2.
J Nat Prod ; 87(5): 1358-1367, 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38656153

RESUMEN

cis-12-oxo-Phytodieneoic acid-α-monoglyceride (1) was isolated from Arabidopsis thaliana. The chemical structure of 1 was elucidated based on exhaustive 1D and 2D NMR spectroscopic measurements and supported by FDMS and HRFDMS data. The absolute configuration of the cis-OPDA moiety in 1 was determined by comparison of 1H NMR spectra and ECD measurements. With respect to the absolute configuration of the ß-position of the glycerol backbone, the 2:3 ratio of (S) to (R) was determined by making ester-bonded derivatives with (R)-(+)-α-methoxy-α-trifluoromethylphenylacetyl chloride and comparing 1H NMR spectra. Wounding stress did not increase endogenous levels of 1, and it was revealed 1 had an inhibitory effect of A. thaliana post germination growth. Notably, the endogenous amount of 1 was higher than the amounts of (+)-7-iso-jasmonic acid and (+)-cis-OPDA in intact plants. 1 also showed antimicrobial activity against Gram-positive bacteria, but jasmonic acid did not. It was also found that α-linolenic acid-α-monoglyceride was converted into 1 in the A. thaliana plant, which implied α-linolenic acid-α-monoglyceride was a biosynthetic intermediate of 1.


Asunto(s)
Arabidopsis , Estructura Molecular , Monoglicéridos/farmacología , Monoglicéridos/química , Ciclopentanos/farmacología , Ciclopentanos/química , Oxilipinas/química , Oxilipinas/farmacología , Ácidos Grasos Insaturados/química , Ácidos Grasos Insaturados/farmacología , Ácidos Grasos Insaturados/aislamiento & purificación , Germinación/efectos de los fármacos
3.
Food Microbiol ; 121: 104498, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38637069

RESUMEN

Organic acids are widely used in foodstuffs to inhibit pathogen and spoiler growth. In this study, six organic acids (acetic, lactic, propionic, phenyllactic, caprylic, and lauric acid) and monolaurin were selected based on their physicochemical properties: their molecular structure (carbon chain length), their lipophilicity (logP), and their ability to dissociate in a liquid environment (pKa). The relation between these physicochemical properties and the inhibitory efficacy against B. weihenstephanensis KBAB4 growth was evaluated. After assessing the active form of these compounds against the strain (undissociated, dissociated or both forms), their MIC values were estimated in nutrient broth at pH 6.0 and 5.5 using two models (Lambert & Pearson, 2000; Luong, 1985). The use of two models highlighted the mode of action of an antibacterial compound in its environment, thanks to the additional estimation of the curve shape α or the Non-Inhibitory Concentration (NIC). The undissociated form of the tested acids is responsible for growth inhibition, except for lauric acid and monolaurin. Moreover, long-carbon chain acids have lower estimated MICs, compared to short-chain acids. Thus, the inhibitory efficacy of organic acids is strongly related to their carbon chain length and lipophilicity. Lipophilicity is the main mechanism of action of a membrane-active compound, it can be favored by long chain structure or high pKa in an acid environment like food.


Asunto(s)
Bacillus , Lauratos , Monoglicéridos , Monoglicéridos/farmacología , Monoglicéridos/química , Ácidos , Ácidos Láuricos/farmacología , Carbono
4.
Mar Drugs ; 22(6)2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38921569

RESUMEN

Microalgae are currently considered an attractive source of highly valuable metabolites potentially exploitable as anticancer agents, nutraceuticals and cosmeceuticals and for bioenergy purposes. Their ease of culturing and their high growth rates further promote their use as raw material for the production of specialty products. In the present paper, we focused our attention on specific glycerol-based lipid compounds, monoacylglycerols (MAGs), which displayed in our previous studies a selective cytotoxic activity against the haematological U-937 and the colon HCT-116 cancer cell lines. Here, we performed a quali/quantitative analysis of MAGs and total fatty acids (FAs) along with a profiling of the main lipid classes in a panel of 12 microalgal species, including diatoms and dinoflagellates. Our results highlight an inter- and intraspecific variability of MAG profile in the selected strains. Among them, Skeletonema marinoi (strain FE7) has emerged as the most promising source for possible biotechnological production of MAGs.


Asunto(s)
Ácidos Grasos , Microalgas , Monoglicéridos , Microalgas/metabolismo , Humanos , Monoglicéridos/farmacología , Ácidos Grasos/metabolismo , Diatomeas/metabolismo , Antineoplásicos/farmacología , Línea Celular Tumoral , Organismos Acuáticos , Dinoflagelados/metabolismo , Dinoflagelados/química , Células HCT116
5.
Molecules ; 29(1)2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38202820

RESUMEN

We report electrochemical impedance spectroscopy measurements to characterize the membrane-disruptive properties of medium-chain fatty acid and monoglyceride mitigants interacting with tethered bilayer lipid membrane (tBLM) platforms composed of E. coli bacterial lipid extracts. The tested mitigants included capric acid (CA) and monocaprin (MC) with 10-carbon long hydrocarbon chains, and lauric acid (LA) and glycerol monolaurate (GML) with 12-carbon long hydrocarbon chains. All four mitigants disrupted E. coli tBLM platforms above their respective critical micelle concentration (CMC) values; however, there were marked differences in the extent of membrane disruption. In general, CA and MC caused larger changes in ionic permeability and structural damage, whereas the membrane-disruptive effects of LA and GML were appreciably smaller. Importantly, the distinct magnitudes of permeability changes agreed well with the known antibacterial activity levels of the different mitigants against E. coli, whereby CA and MC are inhibitory and LA and GML are non-inhibitory. Mechanistic insights obtained from the EIS data help to rationalize why CA and MC are more effective than LA and GML at disrupting E. coli membranes, and these measurement capabilities support the potential of utilizing bacterial lipid-derived tethered lipid bilayers for predictive assessment of antibacterial drug candidates and mitigants.


Asunto(s)
Ácidos Grasos , Monoglicéridos , Monoglicéridos/farmacología , Ácidos Grasos/farmacología , Escherichia coli , Membrana Dobles de Lípidos , Antibacterianos/farmacología , Bacterias , Lisados Bacterianos , Carbono , Hidrocarburos
6.
BMC Microbiol ; 22(1): 283, 2022 11 26.
Artículo en Inglés | MEDLINE | ID: mdl-36435751

RESUMEN

The effect of acylglycerols on the thermal inactivation of lactic acid bacteria used in the production of fermented products was studied. The starting point was the observation of an increase in thermal sensitivity in the presence of an emulsifier based on mono- and diacylglycerols in the culture medium. Analysis of the emulsifier showed that monoacylglycerols were the compounds responsible for this effect, with monopalmitin being the main contributor. Monostearin, on the other hand, showed significantly less potentiating effect. Interestingly, monoacylglycerols showed a greater bactericidal effect when used individually than when used in combination. On the other hand, the rate of thermal inactivation observed in reconstituted skim milk emulsions was lower than in peptone water emulsions, showing that the presence of proteins and colloidal particles increased the resistance of bacteria to heat treatment. With respect to pH values, a reduction in pH from 6.6 to 5.5 promoted an increase in the rate of thermal death. However, at pH = 5.5, the enhancing bactericidal effect was only detectable when the heat treatment was performed at low temperatures but not at high temperatures. This finding is of interest, since it will allow the design of moderate heat treatments, combining the use of temperature with the addition of acylglycerols, to prolong the shelf life of products fermented with lactic acid bacteria, and minimizing the destruction of desirable compounds that were obtained by the fermentation process.


Asunto(s)
Lactobacillales , Animales , Monoglicéridos/farmacología , Monoglicéridos/análisis , Fermentación , Leche/microbiología , Temperatura
7.
Int J Mol Sci ; 23(19)2022 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-36232458

RESUMEN

The chemical composition, investigated by gas chromatography-mass spectrometry, and antibacterial activity of lipophilic extractives of three varieties of Opuntia ficus-indica roots from Algeria are reported in this paper for the first time. The results obtained revealed a total of 55 compounds, including fatty acids, sterols, monoglycerides and long chain aliphatic alcohols that were identified and quantified. ß-Sitosterol was found as the major compound of the roots of the three varieties. Furthermore, considerable amounts of essential fatty acids (ω3, ω6, and ω9) such as oleic, linoleic, and linolenic acids were also identified. The green variety was the richest among the three studied varieties. The antibacterial activity, evaluated with disc diffusion method, revealed that lipophilic extracts were effective mainly against Gram-positive Staphylococcus aureus and methicillin-resistant Staphylococcus aureus (MRSA) (19~23 mm). Gram-negative strains mainly Pseudomonas aeruginosa gave an inhibition zone of 18 mm, which is considered high antibacterial activity. The minimal inhibitory concentrations of the tested bacteria revealed interesting values against the majority of bacteria tested: 75-100 µg mL-1 for Bacillus sp., 250-350 µg/mL for the two Staphylococcus strains, 550-600 µg mL-1 for E. coli, and 750-950 µg mL-1 obtained with Pseudomonas sp. This study allows us to conclude that the lipophilic fractions of cactus roots possess interesting phytochemicals such as steroids, some fatty acids and long chain alcohols that acted as antibiotic-like compounds countering pathogenic strains.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Opuntia , Fitosteroles , Alcoholes/farmacología , Argelia , Antibacterianos/química , Antibacterianos/farmacología , Escherichia coli , Ácidos Linolénicos/farmacología , Pruebas de Sensibilidad Microbiana , Monoglicéridos/farmacología , Opuntia/química , Fitoquímicos/análisis , Fitoquímicos/farmacología , Fitosteroles/farmacología , Extractos Vegetales/química
8.
Molecules ; 27(21)2022 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-36364088

RESUMEN

Porcine reproductive and respiratory syndrome (PRRS) is a disease with a major economic impact in the global pig industry, and this study aims to identify potential anti-PRRSV drugs. We examined the cytotoxicity of four medium-chain fatty acids (MCFAs) (caprylic, caprylic monoglyceride, decanoic monoglyceride, and monolaurin) and their inhibition rate against PRRSV. Then the MCFAs with the best anti-PRRSV effect in in vitro assays were selected for subsequent in vivo experiments. Potential anti-PRRSV drugs were evaluated by viral load assay, pathological assay, and cytokine level determination. The results showed that caprylic monoglyceride (CMG) was the least toxic to cells of the four MCFAs, while it had the highest PRRSV inhibition rate. Then the animals were divided into a low-CMG group, a medium-CMG group, and a high-CMG group to conduct the in vivo evaluation. The results indicated that piglets treated with higher concentrations of caprylic monoglyceride were associated with lower mortality and lower viral load after PRRSV infection (p < 0.05). The pulmonary pathology of the piglets also improved after CMG treatment. The levels of pro-inflammatory cytokines (IL-6, IL-8, IL-1ß, IFN-γ, TNF-α) were significantly downregulated, and the levels of anti-inflammatory cytokine (IL-10) were significantly upregulated in the CMG-treated piglets compared to the positive control group (p < 0.05). Taken together, the present study revealed for the first time that caprylic monoglyceride has strong antiviral activity against PRRSV in vitro and in vivo, suggesting that caprylic monoglyceride could potentially be used as a drug to treat PRRS infection.


Asunto(s)
Síndrome Respiratorio y de la Reproducción Porcina , Virus del Síndrome Respiratorio y Reproductivo Porcino , Animales , Porcinos , Antivirales/farmacología , Monoglicéridos/farmacología , Síndrome Respiratorio y de la Reproducción Porcina/tratamiento farmacológico , Citocinas
9.
BMC Vet Res ; 17(1): 312, 2021 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-34563182

RESUMEN

BACKGROUND: This experiment tested the impact of the combined supplementation of glycerol monolaurate (GLM) and oregano essential oil (EO) to broiler diets. Growth performance, metabolic response, immune status, apparent ileal digestibility coefficient (AID%), and intestinal histomorphology were assessed. Three-day-old Ross-308 broilers (76.62 g ± 0.50, n = 240) were randomly allocated into 4 experimental groups (6 replicates/group and 10 chicks/replicate). Birds were fed corn-soybean meal basal diets supplemented with four levels of GLM and oregano EO blend: 0, 0.15, 0.45, and 0.75% for 35 days. RESULTS: During the starter period, dietary GLM and oregano EO did not show significant (P > 0.05) changes in growth performance. During the grower period, GLM and oregano EO supplemented groups showed a linear and quadratic decline in FCR. During the finisher and overall performance, a linear increase in the body weight (BW), body weight gain (BWG), the protein efficiency ratio (PER), and relative growth rate (RGR), and a linear decrease in the FCR at 0.75% dietary level of GLM and oregano EO compared to the control. The broken-line regression model showed that the optimum dietary level of GLM and oregano EO blend was 0.58% based on final BW and FCR. The 0.45% or 0.15% dietary level of supplemented additives lowered (P < 0.05) the AID% of threonine and arginine, respectively, with no change in the AID% of other assessed amino acids at all dietary levels. Muscle thickness in jejunum and ileum in all dietary supplemented groups was increased (P < 0.05); however, such increase (P < 0.05) in the duodenum was shown at 0.45 and 0.75% dietary levels. All GLM and oregano EO supplemented groups showed increased (P < 0.05) duodenal, jejunal, and ileal villus height. The 0.15 and/or 0.75% dietary levels of supplemented additives increased (P < 0.05) the ileal and duodenal crypt depth, respectively, with a decreased (P < 0.05) duodenal crypt depth at 0.15% dietary level. The goblet cell count in ileum decreased (P < 0.05) in all GLM and oregano EO supplemented groups, but this decreased count (P < 0.05) was detected in jejunum at 0.45 and 0.75% dietary levels. The GLM and oregano EO supplemented groups did not show significant (P > 0.05) changes in the assessed metabolic and immune status parameters. Economically, the total return and performance index was increased at 0.75% dietary level. CONCLUSION: Better growth performance was achieved at a 0.75 % dietary level of GLM and oregano EO by improving most intestinal morphometric measures. The optimum dietary level detected was 0.58%. The lack of influence of supplemented additives on chickens' immune and metabolic responses could indicate a lack of synergy between GLM and oregano EO.


Asunto(s)
Pollos/fisiología , Suplementos Dietéticos , Digestión/efectos de los fármacos , Intestinos/efectos de los fármacos , Lauratos/farmacología , Monoglicéridos/farmacología , Aceites Volátiles/farmacología , Origanum/química , Aminoácidos/metabolismo , Animales , Dieta/veterinaria
10.
Int J Mol Sci ; 23(1)2021 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-35008810

RESUMEN

Zein is renewable plant protein with valuable film-forming properties that can be used as a packaging material. It is known that the addition of natural cross-linkers can enhance a film's tensile properties. In this study, we aimed to prepare antimicrobial zein-based films enriched with monolaurin, eugenol, oregano, and thyme essential oil. Films were prepared using the solvent casting technique from ethanol solution. Their physicochemical properties were investigated using structural, morphological, and thermal techniques. Polar and dispersive components were analyzed using two models to evaluate the effects on the surface free energy values. The antimicrobial activity was proven using a disk diffusion method and the suppression of bacterial growth was confirmed via a growth kinetics study with the Gompertz function. The films' morphological characteristics led to systems with uniform distribution of essential oils or eugenol droplets combined with a flat-plated structure of monolaurin. A unique combination of polyphenolic eugenol and amphiphilic monoglyceride provided highly stretchable films with enhanced barrier properties and efficiency against Gram-positive and Gram-negative bacteria, yeasts, and molds. The prepared zein-based films with tunable surface properties represent an alternative to non-renewable resources with a potential application as active packaging materials.


Asunto(s)
Eugenol/farmacología , Embalaje de Alimentos , Lauratos/farmacología , Monoglicéridos/farmacología , Aceites Volátiles/farmacología , Zeína/farmacología , Antibacterianos/farmacología , Antifúngicos/farmacología , Fenómenos Biomecánicos/efectos de los fármacos , Rastreo Diferencial de Calorimetría , Escherichia coli/efectos de los fármacos , Microscopía de Fuerza Atómica , Permeabilidad , Espectroscopía Infrarroja por Transformada de Fourier , Staphylococcus aureus/efectos de los fármacos , Vapor , Propiedades de Superficie , Humectabilidad
11.
Org Biomol Chem ; 18(3): 425-430, 2020 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-31774425

RESUMEN

Herein, we report on the synthesis of a series of enantiomerically pure linear, iso-branched, and α-branched monoacyl glycerides (MAGs) in 63-72% overall yield. The ability of the MAGs to signal through human macrophage inducible C-type lectin (hMincle) using NFAT-GFP reporter cells was explored, as was the ability of the compounds to activate human monocytes. From these studies, MAGs with an acyl chain length ≥C22 were required for Mincle activation and the production of interleukin-8 (IL-8) by human monocytes. Moreover, the iso-branched MAGs led to a more pronounced immune response compared to linear MAGs, while an α-branched MAG containing a C-32 acyl chain activated cells to a higher degree than trehalose dibehenate (TDB), the prototypical Mincle agonist. Across the compound classes, the activity of the sn-1 substituted isomers was greater than the sn-3 counterparts. None of the representative compounds were cytotoxic, thus mitigating cytotoxicity as a potential mediator of cellular activity. Taken together, 6h (sn-1, iC26+1), 8a (sn-1, C32) and 8b (sn-3, C32) exhibited the best immunostimulatory properties and thus, have potential as vaccine adjuvants.


Asunto(s)
Adyuvantes Inmunológicos/farmacología , Lectinas Tipo C/agonistas , Monoglicéridos/farmacología , Receptores Inmunológicos/agonistas , Adyuvantes Inmunológicos/síntesis química , Adyuvantes Inmunológicos/toxicidad , Línea Celular Tumoral , Humanos , Estructura Molecular , Monoglicéridos/síntesis química , Monoglicéridos/toxicidad , Estereoisomerismo , Relación Estructura-Actividad
12.
Lett Appl Microbiol ; 70(6): 407-412, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32133659

RESUMEN

Inactivation of Bacillales and Clostridiales spores is of interest, since some cause food spoilage and human diseases. A recent publication (mSphere 3: e00597-1, 2018) reported that glycerol monolaurate (GML) in a non-aqueous gel (GMLg) effectively killed spores of Bacillus subtilis, Bacillus cereus and Clostridioides difficile, and Bacillus anthracis spores to a lesser extent. We now show that (i) the B. subtilis spores prepared as in the prior work were impure; (ii) if spore viability was measured by diluting spores 1/10 in GMLg, serially diluting incubations 10-fold and spotting aliquots on recovery plates, there was no colony formation from the 1/10 to 1/1000 dilutions due to GMLg carryover, although thorough ethanol washes of incubated spores eliminated this problem and (iii) GMLg did not kill highly purified spores of B. subtilis, B. cereus, Bacillus megaterium and C. difficile in 3-20 h in the conditions used in the recent publication. GMLg also gave no killing of crude B. subtilis spores prepared as in the recent publication in 5 h but gave ~1·5 log killing at 24 h. Thus, GMLg does not appear to be an effective sporicide, although the gel likely inhibits spore germination and could kill spores somewhat upon long incubations. SIGNIFICANCE AND IMPACT OF THE STUDY: Given potential deleterious effects of spores of Bacillales and Clostridiales, there is an ongoing interest in new ways of spore killing. A recent paper (mSphere 3: e00597-1, 2018) reported that glycerol monolaurate (GML) in a non-aqueous gel (GMLg) effectively killed spores of many species. We now find that (i) the Bacillus subtilis spores prepared as in the previous report were impure and (ii) GMLg gave no killing of purified spores of Bacillales and Clostridiales species in ≤5 h under the published conditions. Thus, GMLg is not an effective sporicide, though may prevent spore germination or kill germinated spores.


Asunto(s)
Antibacterianos/farmacología , Bacillales/efectos de los fármacos , Clostridiales/efectos de los fármacos , Lauratos/farmacología , Monoglicéridos/farmacología , Esporas Bacterianas/efectos de los fármacos , Esporas Bacterianas/crecimiento & desarrollo , Bacillales/crecimiento & desarrollo , Bacillus cereus/efectos de los fármacos , Bacillus megaterium/efectos de los fármacos , Bacillus subtilis/efectos de los fármacos , Clostridiales/crecimiento & desarrollo , Clostridioides difficile/efectos de los fármacos , Microbiología de Alimentos , Geles/farmacología
13.
Int J Mol Sci ; 21(4)2020 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-32093358

RESUMEN

In this work, we developed a solid lipid nanoparticle (SLN) formulation with (+)-limonene 1,2-epoxide and glycerol monostearate (Lim-SLNs), stabilized with Poloxamer® 188 in aqueous dispersion to modify the release profile of the loaded monoterpene derivative. We also evaluated the role of SLNs in lipid peroxidation and cytotoxicity in a spontaneously transformed aneuploid immortal keratinocyte cell line from adult human skin (the HaCaT cell line). For the cell viability assay, the colorimetric 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay was used. Lim-SLNs with a loading capacity and encapsulation efficiency of 0.39% and 63%, respectively, were produced by high pressure homogenization. A mean particle size of 194 ± 3.4 nm and polydispersity index of 0.244 were recorded for the loaded Lim-SLNs, as compared to 203 ± 1.5 nm (PI 0.213) for the non-loaded (blank) SLNs. The loading of the monoterpene derivative into glycerol monostearate SLNs fitted into the zero-order kinetics, and ameliorated both lipid peroxidation and cytotoxicity in a keratinocyte cell line. A promising formulation for antioxidant and anti-tumoral activities is here proposed.


Asunto(s)
Antioxidantes , Monoterpenos Ciclohexánicos , Queratinocitos/metabolismo , Peroxidación de Lípido/efectos de los fármacos , Monoglicéridos , Nanopartículas/química , Poloxámero , Antioxidantes/química , Antioxidantes/farmacocinética , Antioxidantes/farmacología , Línea Celular , Monoterpenos Ciclohexánicos/química , Monoterpenos Ciclohexánicos/farmacocinética , Monoterpenos Ciclohexánicos/farmacología , Preparaciones de Acción Retardada/química , Preparaciones de Acción Retardada/farmacocinética , Preparaciones de Acción Retardada/farmacología , Humanos , Monoglicéridos/química , Monoglicéridos/farmacocinética , Monoglicéridos/farmacología , Poloxámero/química , Poloxámero/farmacocinética , Poloxámero/farmacología
14.
Microb Pathog ; 130: 178-185, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30862561

RESUMEN

Pseudomonas aeruginosa is a ubiquitous microorganism that commonly causes hospital-acquired infections, including pneumonia, bloodstream and urinary tract infections and it is well known for chronically colonising the respiratory tract of patients with cystic fibrosis, causing severe intermittent exacerbation of the condition. P. aeruginosa may appear in the free form cell but also grows in biofilm communities adhered to a surface. An alternative to conventional antimicrobial agents are nanoparticles that can act as carriers for antibiotics and other drugs. In this context, the study aimed to characterise and verify the anti-biofilm potential of GML Nanocapsules against P. aeruginosa. The nanocapsules showed a mean diameter of 190.7 nm, polydispersion index of 0.069, the zeta potential of -23.3 mV. The microdilution test showed a MIC of 62.5 µg/mL to GML and 15.62 µg/mL to GML Nanocapsules. The anti-biofilm experiments demonstrated the significant reduction of biomass, proteins, polysaccharide and viable P. aeruginosa in biofilm treated with GML Nanocapsules while the free GML did not cause an effect. The AFM images showed a decrease in a biofilm which received GML. The positive results suggest an alternative for the public health trouble related to infections associated with biofilm.


Asunto(s)
Antibacterianos/farmacología , Biopelículas/efectos de los fármacos , Lauratos/farmacología , Monoglicéridos/farmacología , Nanocápsulas , Pseudomonas aeruginosa/efectos de los fármacos , Tensoactivos/farmacología , Portadores de Fármacos , Pruebas de Sensibilidad Microbiana
15.
Langmuir ; 35(9): 3568-3575, 2019 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-30720282

RESUMEN

Monoglycerides are esterified adducts of fatty acid and glycerol molecules that disrupt phospholipid membranes, leading to a wide range of biological functions such as antimicrobial activity. Among monoglycerides, glycerol monolaurate (GML) exhibits particularly high antimicrobial activity, although enzymatic hydrolysis of its ester group can diminish potency. Consequently, there have been efforts to identify more chemically stable versions of GML, most notably its alkylglycerol ether equivalent called dodecylglycerol (DDG). However, despite high structural similarity, biological studies indicate that DDG and GML are not functionally equivalent and it has been speculated that the two compounds might have different interaction profiles with phospholipid membranes. To address this outstanding question, herein, we employed supported lipid bilayer (SLB) platforms to experimentally characterize the interactions of DDG with phospholipid membranes. Quartz crystal microbalance-dissipation experiments identified that DDG causes concentration-dependent membrane morphological changes in SLBs and the overall extent of membrane remodeling events was greater than that caused by GML. In addition, time-lapsed fluorescence microscopy imaging experiments revealed that DDG causes extensive membrane tubulation that is distinct from how GML induces membrane budding. We discuss how differences in the head group properties of DDG and GML contribute to distinct membrane interaction profiles, offering insight into how the molecular design of DDG not only improves chemical stability but also enhances membrane-disruptive activity.


Asunto(s)
Membrana Celular/efectos de los fármacos , Éteres de Glicerilo/farmacología , Lauratos/farmacología , Membrana Dobles de Lípidos/química , Monoglicéridos/farmacología , Línea Celular , Supervivencia Celular/efectos de los fármacos , Éteres de Glicerilo/química , Éteres de Glicerilo/toxicidad , Humanos , Lauratos/química , Lauratos/toxicidad , Microscopía Fluorescente , Monoglicéridos/química , Monoglicéridos/toxicidad , Fosfatidilcolinas/química , Tecnicas de Microbalanza del Cristal de Cuarzo
16.
Vet Dermatol ; 30(2): 133-e38, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30548715

RESUMEN

BACKGROUND: An antibiotic adjuvant is a chemical substance used to modify or augment the effectiveness of primary antimicrobial agents against drug-resistant micro-organisms. Its use provides an alternative approach to address the global issue of antimicrobial resistance and enhance antimicrobial stewardship. HYPOTHESIS/OBJECTIVES: To determine the antimicrobial activity of a panel of potential antimicrobial adjuvants against common pathogens associated with canine otitis externa (OE). ANIMALS/ISOLATES: A number of type strains and clinical isolates (n = 110) from canine OE were tested including Staphylococcus pseudintermedius, ß-haemolytic Streptococcus spp., Pseudomonas aeruginosa, Proteus mirabilis and Malassezia pachydermatis. METHODS AND MATERIALS: Antimicrobial activities of monolaurin, monocaprin, N-acetylcysteine (NAC), polymyxin B nonapeptide, Tris-EDTA, Tris-HCL and disodium EDTA were tested using microdilution methodology according to CLSI guidelines. RESULTS: N-acetylcysteine, Tris-EDTA and disodium EDTA had antimicrobial activity against both type strains and otic pathogens. The other adjuvants tested had limited to no efficacy. NAC had a minimal inhibitory concentration (MIC) range of 2,500-10,000 µg/mL for the various organisms. Pseudomonas aeruginosa isolates were eight times more susceptible to disodium EDTA in the presence of Tris-HCL in comparison to disodium EDTA alone. Malassezia pachydermatis isolates were most susceptible to Tris-EDTA (MIC90  = 190/60 µg/mL) and disodium EDTA (MIC90  = 120 µg/mL). CONCLUSIONS AND CLINICAL RELEVANCE: N-acetylcysteine, Tris-EDTA and disodium EDTA have intrinsic antimicrobial activity and represent promising adjuvants that could be used to enhance the efficacy of existing antibiotics against Gram-negative and multidrug-resistant bacterial infections. These agents could be combined with other antimicrobial agents in a multimodal approach for mixed ear infections in dogs.


Asunto(s)
Adyuvantes Farmacéuticos/farmacología , Antiinfecciosos/farmacología , Bacterias/efectos de los fármacos , Hongos/efectos de los fármacos , Otitis Externa/veterinaria , Acetilcisteína/farmacología , Animales , Bacterias/patogenicidad , Perros , Farmacorresistencia Bacteriana Múltiple , Sinergismo Farmacológico , Ácido Edético/farmacología , Hongos/patogenicidad , Lauratos/farmacología , Malassezia/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Monoglicéridos/farmacología , Otitis Externa/microbiología , Pseudomonas aeruginosa/efectos de los fármacos , Staphylococcus/efectos de los fármacos
17.
Molecules ; 24(20)2019 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-31635062

RESUMEN

The objective of this study was to determine the in vitro antimicrobial activity of several organic acids and their derivatives against Gram-positive (G+) and Gram-negative (G-) bacteria. Butyric acid, valeric acid, monopropionin, monobutyrin, monovalerin, monolaurin, sodium formate, and ProPhorce-a mixture of sodium formate and formic acid (40:60 w/v)-were tested at 8 to 16 concentrations from 10 to 50,000 mg/L. The tested bacteria included G- bacteria (Escherichia coli, Salmonella enterica Typhimurium, and Campylobacter jejuni) and G+ bacteria (Enterococcus faecalis, Clostridium perfringens, Streptococcus pneumoniae, and Streptococcus suis). Antimicrobial activity was expressed as minimum inhibitory concentration (MIC) of tested compounds that prevented growth of tested bacteria in treated culture broth. The MICs of butyric acid, valeric acid, and ProPhorce varied among bacterial strains with the lowest MIC of 500-1000 mg/L on two strains of Campylobacter. Sodium formate at highest tested concentrations (20,000 mg/L) did not inhibit the growth of Escherichia coli, Salmonella Typhimurium, and Enterococcus faecalis, but sodium formate inhibited the growth of other tested bacteria with MIC values from 2000 to 18,800 mg/L. The MIC values of monovalerin, monolaurin, and monobutyrin ranged from 2500 to 15,000 mg/L in the majority of bacterial strains. Monopropionin did not inhibit the growth of all tested bacteria, with the exception that the MIC of monopropionin was 11,300 mg/L on Clostridia perfringens. Monolaurin strongly inhibited G+ bacteria, with the MIC value of 10 mg/L against Streptococcus pneumoniae. The MIC tests indicated that organic acids and their derivatives exhibit promising antimicrobial effects in vitro against G- and G+ bacteria that are resistant to antimicrobial drugs. The acid forms had stronger in vitro antimicrobial activities than ester forms, except that the medium chain fatty acid ester monolaurin exhibited strong inhibitory effects on G+ bacteria.


Asunto(s)
Antibacterianos/farmacología , Bacterias Gramnegativas/efectos de los fármacos , Bacterias Grampositivas/efectos de los fármacos , Antibacterianos/química , Ácido Butírico/química , Ácido Butírico/farmacología , Formiatos/química , Formiatos/farmacología , Glicéridos/química , Glicéridos/farmacología , Bacterias Gramnegativas/clasificación , Bacterias Grampositivas/clasificación , Lauratos/química , Lauratos/farmacología , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Monoglicéridos/química , Monoglicéridos/farmacología , Ácidos Pentanoicos/química , Ácidos Pentanoicos/farmacología
18.
Am J Physiol Gastrointest Liver Physiol ; 315(1): G95-G103, 2018 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-29470144

RESUMEN

Breast milk lutein is better absorbed by infants than lutein delivered in infant formula. Therefore, we wanted to better understand the possible absorption differences of lutein in breast milk vs. that in infant formula by determining its bioavailability after gastric administration and whether the intestinal absorption of lutein can be improved by using new delivery vehicles. Study 1 compared the intestinal uptake,and the lymphatic and portal transport of lutein in conscious lymph fistula rats. Four groups of lymph- and portal vein-cannulated rats ( n = 8-10/group) were randomized to receive via gastric tube increasing doses (10, 20, 40, or 80 mg/kg) of 20% lutein in safflower oil (SO) suspension to assess whether there was a saturable level of lutein that could be absorbed and transported in lymph. Aliquots of hourly portal blood and lymph were taken for lutein and zeaxanthin analyses. The dose-response study showed that 20 mg/kg lutein was the saturable level of lymphatic lutein absorption with no lutein detected in portal circulation at any dosage level tested. Study 2 randomized five groups of lymph fistula rats ( n = 4-9/group) to receive 20 mg/kg lutein from either lutein in SO or lutein in four different mono- and diglyceride oils (MDGs). Gastric infusion of lutein suspended in MDG (20 mg/kg) significantly improved (71-211%, P < 0.05) lymphatic lutein output 2-6 h after lipid feeding vs. lutein in SO. Lymphatic zeaxanthin (10% of the lutein fed mixture) transport in both Study 1 and Study 2 followed that of lutein. We conclude that a mixture of MDGs helps solubilize lutein and facilitate gastrointestinal micelle formation, thus improving lymphatic lutein absorption compared with triglyceride oils. NEW & NOTEWORTHY This paper describes how lutein is digested and absorbed by the gastrointestinal tract by using the conscious lymph fistula rat model. Our dose-response study showed that absorption and lymphatic transport of lutein is a saturable process with no lutein detected in portal circulation at any dosage level tested. Our paper also provides insight into how this process can be improved by modifying the typical lipid mixtures carrying the lutein.


Asunto(s)
Transporte Biológico/fisiología , Diglicéridos , Absorción Intestinal , Luteína , Monoglicéridos , Animales , Disponibilidad Biológica , Factores Biológicos/metabolismo , Factores Biológicos/farmacología , Diglicéridos/metabolismo , Diglicéridos/farmacología , Relación Dosis-Respuesta a Droga , Absorción Intestinal/efectos de los fármacos , Absorción Intestinal/fisiología , Mucosa Intestinal/metabolismo , Luteína/metabolismo , Luteína/farmacología , Sistema Linfático/fisiología , Modelos Animales , Monoglicéridos/metabolismo , Monoglicéridos/farmacología , Sistema Porta/fisiología , Ratas
19.
Crit Rev Microbiol ; 44(5): 561-570, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29733249

RESUMEN

With the rising antibiotic resistance of many bacterial species, alternative treatments are necessary to combat infectious diseases. The World Health Organization and the US Centres for Disease Control and Prevention have warned that some infections, such as those from Neisseria gonorrhoeae, may be untreatable within a few years. One avenue of exploration is the use of antimicrobial fatty acids and their derivatives for therapeutic prevention or treatment of bacterial infections. Several studies have explored the activity of fatty acids and their derivatives, including monoglycerides against a variety of bacterial species. These are reviewed here, assessing the antimicrobial properties that have been demonstrated and the feasibility of therapeutic applications.


Asunto(s)
Antiinfecciosos/farmacología , Ácidos Grasos/farmacología , Monoglicéridos/farmacología , Animales , Antiinfecciosos/química , Bacterias/efectos de los fármacos , Infecciones Bacterianas/tratamiento farmacológico , Infecciones Bacterianas/microbiología , Ácidos Grasos/química , Humanos , Pruebas de Sensibilidad Microbiana , Monoglicéridos/química
20.
Arch Microbiol ; 200(1): 85-89, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28799127

RESUMEN

Bacterial antibiotic resistance is a natural phenomenon, seriously affecting the treatment of infections. The biggest danger is that current antibiotics are not able to eradicate the resistant strains. In recent years, alternative antibacterial substances are being sought, which can help in these cases. Fatty acids and monoglycerides are known among the natural substances for their antimicrobial properties and, important detail, bacteria do not develop resistance to them. In this work, we studied the antimicrobial effects of a monoglyceride blend against some multi-resistant Enterococci and Escherichia coli strains. Based on literature data, a blend of fatty acids and their monoglycerides was created and its antimicrobial activity was evaluated against 37 strains of E. coli and 17 Enterococci presenting resistance to at least two antibiotics. A different behavior was observed in the two groups of bacteria, proving that alternative substances can be considerate for the potential treatment of multidrug-resistant strains.


Asunto(s)
Antibacterianos/farmacología , Farmacorresistencia Bacteriana Múltiple , Enterococcus/efectos de los fármacos , Escherichia coli/efectos de los fármacos , Monoglicéridos/farmacología , Infecciones por Escherichia coli/microbiología , Humanos , Pruebas de Sensibilidad Microbiana
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA