Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 857
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 186(1): 178-193.e15, 2023 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-36608653

RESUMEN

The hypothalamus regulates innate social behaviors, including mating and aggression. These behaviors can be evoked by optogenetic stimulation of specific neuronal subpopulations within MPOA and VMHvl, respectively. Here, we perform dynamical systems modeling of population neuronal activity in these nuclei during social behaviors. In VMHvl, unsupervised analysis identified a dominant dimension of neural activity with a large time constant (>50 s), generating an approximate line attractor in neural state space. Progression of the neural trajectory along this attractor was correlated with an escalation of agonistic behavior, suggesting that it may encode a scalable state of aggressiveness. Consistent with this, individual differences in the magnitude of the integration dimension time constant were strongly correlated with differences in aggressiveness. In contrast, approximate line attractors were not observed in MPOA during mating; instead, neurons with fast dynamics were tuned to specific actions. Thus, different hypothalamic nuclei employ distinct neural population codes to represent similar social behaviors.


Asunto(s)
Conducta Sexual Animal , Núcleo Hipotalámico Ventromedial , Animales , Conducta Sexual Animal/fisiología , Núcleo Hipotalámico Ventromedial/fisiología , Hipotálamo/fisiología , Agresión/fisiología , Conducta Social
2.
Nature ; 599(7883): 131-135, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34646010

RESUMEN

Oestrogen depletion in rodents and humans leads to inactivity, fat accumulation and diabetes1,2, underscoring the conserved metabolic benefits of oestrogen that inevitably decrease with age. In rodents, the preovulatory surge in 17ß-oestradiol (E2) temporarily increases energy expenditure to coordinate increased physical activity with peak sexual receptivity. Here we report that a subset of oestrogen-sensitive neurons in the ventrolateral ventromedial hypothalamic nucleus (VMHvl)3-7 projects to arousal centres in the hippocampus and hindbrain, and enables oestrogen to rebalance energy allocation in female mice. Surges in E2 increase melanocortin-4 receptor (MC4R) signalling in these VMHvl neurons by directly recruiting oestrogen receptor-α (ERα) to the Mc4r gene. Sedentary behaviour and obesity in oestrogen-depleted female mice were reversed after chemogenetic stimulation of VMHvl neurons expressing both MC4R and ERα. Similarly, a long-term increase in physical activity is observed after CRISPR-mediated activation of this node. These data extend the effect of MC4R signalling - the most common cause of monogenic human obesity8 - beyond the regulation of food intake and rationalize reported sex differences in melanocortin signalling, including greater disease severity of MC4R insufficiency in women9. This hormone-dependent node illuminates the power of oestrogen during the reproductive cycle in motivating behaviour and maintaining an active lifestyle in women.


Asunto(s)
Encéfalo/fisiología , Estrógenos/metabolismo , Esfuerzo Físico/fisiología , Receptor de Melanocortina Tipo 4/metabolismo , Transducción de Señal , Animales , Sistemas CRISPR-Cas , Metabolismo Energético , Receptor alfa de Estrógeno/metabolismo , Estrógenos/deficiencia , Femenino , Edición Génica , Hipocampo/metabolismo , Masculino , Melanocortinas/metabolismo , Ratones , Neuronas/metabolismo , Obesidad/metabolismo , Rombencéfalo/metabolismo , Conducta Sedentaria , Caracteres Sexuales , Núcleo Hipotalámico Ventromedial/citología , Núcleo Hipotalámico Ventromedial/fisiología
3.
Nature ; 564(7735): 213-218, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30518859

RESUMEN

Although the hippocampus is known to be important for declarative memory, it is less clear how hippocampal output regulates motivated behaviours, such as social aggression. Here we report that pyramidal neurons in the CA2 region of the hippocampus, which are important for social memory, promote social aggression in mice. This action depends on output from CA2 to the lateral septum, which is selectively enhanced immediately before an attack. Activation of the lateral septum by CA2 recruits a circuit that disinhibits a subnucleus of the ventromedial hypothalamus that is known to trigger attack. The social hormone arginine vasopressin enhances social aggression by acting on arginine vasopressin 1b receptors on CA2 presynaptic terminals in the lateral septum to facilitate excitatory synaptic transmission. In this manner, release of arginine vasopressin in the lateral septum, driven by an animal's internal state, may serve as a modulatory control that determines whether CA2 activity leads to declarative memory of a social encounter and/or promotes motivated social aggression.


Asunto(s)
Agresión/fisiología , Región CA2 Hipocampal/citología , Región CA2 Hipocampal/fisiología , Inhibición Neural , Vías Nerviosas/fisiología , Núcleos Septales/citología , Núcleos Septales/fisiología , Conducta Social , Animales , Arginina Vasopresina/metabolismo , Clozapina/análogos & derivados , Clozapina/farmacología , Potenciales Postsinápticos Excitadores , Femenino , Masculino , Memoria/fisiología , Ratones , Ratones Endogámicos BALB C , Motivación , Terminales Presinápticos/metabolismo , Proteínas Proto-Oncogénicas c-fos/biosíntesis , Células Piramidales/metabolismo , Receptores de Vasopresinas/metabolismo , Transmisión Sináptica , Núcleo Hipotalámico Ventromedial/citología , Núcleo Hipotalámico Ventromedial/fisiología
4.
Proc Natl Acad Sci U S A ; 117(32): 19566-19577, 2020 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-32719118

RESUMEN

The ventromedial hypothalamus (VMH) plays chief roles regulating energy and glucose homeostasis and is sexually dimorphic. We discovered that expression of metabotropic glutamate receptor subtype 5 (mGluR5) in the VMH is regulated by caloric status in normal mice and reduced in brain-derived neurotrophic factor (BDNF) mutants, which are severely obese and have diminished glucose balance control. These findings led us to investigate whether mGluR5 might act downstream of BDNF to critically regulate VMH neuronal activity and metabolic function. We found that mGluR5 depletion in VMH SF1 neurons did not affect energy balance regulation. However, it significantly impaired insulin sensitivity, glycemic control, lipid metabolism, and sympathetic output in females but not in males. These sex-specific deficits are linked to reductions in intrinsic excitability and firing rate of SF1 neurons. Abnormal excitatory and inhibitory synapse assembly and elevated expression of the GABAergic synthetic enzyme GAD67 also cooperate to decrease and potentiate the synaptic excitatory and inhibitory tone onto mutant SF1 neurons, respectively. Notably, these alterations arise from disrupted functional interactions of mGluR5 with estrogen receptors that switch the normally positive effects of estrogen on SF1 neuronal activity and glucose balance control to paradoxical and detrimental. The collective data inform an essential central mechanism regulating metabolic function in females and underlying the protective effects of estrogen against metabolic disease.


Asunto(s)
Glucemia/metabolismo , Estrógenos/metabolismo , Receptor del Glutamato Metabotropico 5/metabolismo , Núcleo Hipotalámico Ventromedial/fisiología , Animales , Factor Neurotrófico Derivado del Encéfalo/genética , Metabolismo Energético , Femenino , Glutamato Descarboxilasa/metabolismo , Homeostasis , Metabolismo de los Lípidos , Masculino , Ratones , Ratones Mutantes , Red Nerviosa , Inhibición Neural , Neuronas/metabolismo , Neuronas/fisiología , Receptor del Glutamato Metabotropico 5/genética , Receptores de Estrógenos/metabolismo , Factores Sexuales , Transducción de Señal , Factor Esteroidogénico 1/metabolismo , Sistema Nervioso Simpático/metabolismo , Transmisión Sináptica , Núcleo Hipotalámico Ventromedial/citología , Núcleo Hipotalámico Ventromedial/metabolismo
5.
Nature ; 531(7596): 647-50, 2016 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-27007848

RESUMEN

Targeted, temporally regulated neural modulation is invaluable in determining the physiological roles of specific neural populations or circuits. Here we describe a system for non-invasive, temporal activation or inhibition of neuronal activity in vivo and its use to study central nervous system control of glucose homeostasis and feeding in mice. We are able to induce neuronal activation remotely using radio waves or magnetic fields via Cre-dependent expression of a GFP-tagged ferritin fusion protein tethered to the cation-conducting transient receptor potential vanilloid 1 (TRPV1) by a camelid anti-GFP antibody (anti-GFP-TRPV1). Neuronal inhibition via the same stimuli is achieved by mutating the TRPV1 pore, rendering the channel chloride-permeable. These constructs were targeted to glucose-sensing neurons in the ventromedial hypothalamus in glucokinase-Cre mice, which express Cre in glucose-sensing neurons. Acute activation of glucose-sensing neurons in this region increases plasma glucose and glucagon, lowers insulin levels and stimulates feeding, while inhibition reduces blood glucose, raises insulin levels and suppresses feeding. These results suggest that pancreatic hormones function as an effector mechanism of central nervous system circuits controlling blood glucose and behaviour. The method we employ obviates the need for permanent implants and could potentially be applied to study other neural processes or used to regulate other, even dispersed, cell types.


Asunto(s)
Glucemia/metabolismo , Ingestión de Alimentos/fisiología , Campos Magnéticos , Neuronas/fisiología , Ondas de Radio , Núcleo Hipotalámico Ventromedial/citología , Núcleo Hipotalámico Ventromedial/fisiología , Animales , Ferritinas/genética , Ferritinas/metabolismo , Glucagón/sangre , Glucoquinasa/metabolismo , Homeostasis , Hipoglucemia/metabolismo , Insulina/sangre , Integrasas/metabolismo , Ratones , Inhibición Neural , Hormonas Pancreáticas/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Canales Catiónicos TRPV/genética , Canales Catiónicos TRPV/metabolismo , Factores de Tiempo
6.
Cell Mol Life Sci ; 78(23): 7289-7307, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34687319

RESUMEN

Individuals of many species fight with conspecifics to gain access to or defend critical resources essential for survival and reproduction. Such intraspecific fighting is evolutionarily selected for in a species-, sex-, and environment-dependent manner when the value of resources secured exceeds the cost of fighting. One such example is males fighting for chances to mate with females. Recent advances in new tools open up ways to dissect the detailed neural circuit mechanisms that govern intraspecific, particularly inter-male, aggression in the model organism Mus musculus (house mouse). By targeting and functional manipulating genetically defined populations of neurons and their projections, these studies reveal a core neural circuit that controls the display of reactive male-male attacks in mice, from sensory detection to decision making and action selection. Here, we summarize these critical results. We then describe various modulatory inputs that route into the core circuit to afford state-dependent and top-down modulation of inter-male attacks. While reviewing these exciting developments, we note that how the inter-male attack circuit converges or diverges with neural circuits that mediate other forms of social interactions remain not fully understood. Finally, we emphasize the importance of combining circuit, pharmacological, and genetic analysis when studying the neural control of aggression in the future.


Asunto(s)
Agresión/fisiología , Fenómenos Fisiológicos del Sistema Nervioso , Núcleos Septales/fisiología , Conducta Sexual Animal/fisiología , Núcleo Hipotalámico Ventromedial/fisiología , Animales , Toma de Decisiones/fisiología , Receptor alfa de Estrógeno/metabolismo , Femenino , Instinto , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C3H , Ratones Endogámicos C57BL , Ratones Endogámicos DBA , Ratones Endogámicos ICR , Sistema Nervioso , Neuronas/fisiología , Sensación/fisiología
7.
Proc Natl Acad Sci U S A ; 116(15): 7503-7512, 2019 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-30898882

RESUMEN

Type 1 estrogen receptor-expressing neurons in the ventrolateral subdivision of the ventromedial hypothalamus (VMHvlEsr1) play a causal role in the control of social behaviors, including aggression. Here we use six different viral-genetic tracing methods to systematically map the connectional architecture of VMHvlEsr1 neurons. These data reveal a high level of input convergence and output divergence ("fan-in/fan-out") from and to over 30 distinct brain regions, with a high degree (∼90%) of bidirectionality, including both direct as well as indirect feedback. Unbiased collateralization mapping experiments indicate that VMHvlEsr1 neurons project to multiple targets. However, we identify two anatomically distinct subpopulations with anterior vs. posterior biases in their collateralization targets. Nevertheless, these two subpopulations receive indistinguishable inputs. These studies suggest an overall system architecture in which an anatomically feed-forward sensory-to-motor processing stream is integrated with a dense, highly recurrent central processing circuit. This architecture differs from the "brain-inspired," hierarchical feed-forward circuits used in certain types of artificial intelligence networks.


Asunto(s)
Conducta Animal/fisiología , Red Nerviosa/fisiología , Neuronas/metabolismo , Conducta Social , Núcleo Hipotalámico Ventromedial/fisiología , Animales , Mapeo Encefálico , Receptor alfa de Estrógeno/biosíntesis , Receptor alfa de Estrógeno/genética , Ratones , Ratones Transgénicos , Red Nerviosa/citología , Neuronas/citología , Núcleo Hipotalámico Ventromedial/citología
8.
J Neurosci ; 40(48): 9283-9292, 2020 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-33115925

RESUMEN

The ventromedial hypothalamus is a central node of the mammalian predator defense network. Stimulation of this structure in rodents and primates elicits abrupt defensive responses, including flight, freezing, sympathetic activation, and panic, while inhibition reduces defensive responses to predators. The major efferent target of the ventromedial hypothalamus is the dorsal periaqueductal gray (dPAG), and stimulation of this structure also elicits flight, freezing, and sympathetic activation. However, reversible inhibition experiments suggest that the ventromedial hypothalamus and periaqueductal gray play distinct roles in the control of defensive behavior, with the former proposed to encode an internal state necessary for the motivation of defensive responses, while the latter serves as a motor pattern initiator. Here, we used electrophysiological recordings of single units in behaving male mice exposed to a rat to investigate the encoding of predator fear in the dorsomedial division of the ventromedial hypothalamus (VMHdm) and the dPAG. Distinct correlates of threat intensity and motor responses were found in both structures, suggesting a distributed encoding of sensory and motor features in the medial hypothalamic-brainstem instinctive network.SIGNIFICANCE STATEMENT Although behavioral responses to predatory threat are essential for survival, the underlying neuronal circuits remain undefined. Using single unit in vivo electrophysiological recordings in mice, we have identified neuronal populations in the medial hypothalamus and brainstem that encode defensive responses to a rat predator. We found that both structures encode both sensory as well as motor aspects of the behavior although with different kinetics. Our findings provide a framework for understanding how innate sensory cues are processed to elicit adaptive behavioral responses to threat and will help to identify targets for the pharmacological modulation of related pathologic behaviors.


Asunto(s)
Miedo/fisiología , Sustancia Gris Periacueductal/fisiología , Conducta Predatoria , Núcleo Hipotalámico Ventromedial/fisiología , Animales , Señales (Psicología) , Electrodos Implantados , Fenómenos Electrofisiológicos , Masculino , Ratones , Ratones Endogámicos C57BL , Optogenética , Ratas , Sistema Nervioso Simpático/fisiología
9.
Bull Exp Biol Med ; 171(2): 251-253, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-34173105

RESUMEN

Spike activity of neurons in the ventromedial nucleus (VMN) of the hypothalamus in adult (6-8 months) and aged (2 years) male rats was studied by the in vivo extracellular method using stereotaxic insertion of microelectrodes. In all animals, firing frequency of most VMN neurons increased in response to glucose administration. However, in aged rats, the mean baseline and glucose-induced spike frequencies of VMN neurons were lower than in adult animals. These results support the hypothesis that aging is associated with a decrease in the functional activity of hypothalamic neurons.


Asunto(s)
Envejecimiento/psicología , Núcleo Hipotalámico Ventromedial/fisiología , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/fisiología , Envejecimiento/efectos de los fármacos , Animales , Excitabilidad Cortical/efectos de los fármacos , Fenómenos Electrofisiológicos/efectos de los fármacos , Glucosa/farmacología , Hipotálamo/citología , Hipotálamo/efectos de los fármacos , Hipotálamo/fisiología , Insulina/farmacología , Masculino , Neuronas/efectos de los fármacos , Neuronas/fisiología , Ratas , Ratas Wistar , Núcleo Hipotalámico Ventromedial/citología , Núcleo Hipotalámico Ventromedial/efectos de los fármacos
10.
BMC Neurosci ; 21(1): 51, 2020 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-33238883

RESUMEN

BACKGROUND: Ventromedial hypothalamic nucleus (VMN) gluco-regulatory transmission is subject to sex-specific control by estradiol. The VMN is characterized by high levels of aromatase expression. METHODS: The aromatase inhibitor letrozole (LZ) was used with high-resolution microdissection/Western blot techniques to address the hypothesis that neuroestradiol exerts sex-dimorphic control of VMN neuronal nitric oxide synthase (nNOS) and glutamate decarboxylase65/67 (GAD) protein expression. Glycogen metabolism impacts VMN nNOS and GAD profiles; here, LZ treatment effects on VMN glycogen synthase (GS) and phosphorylase brain- (GPbb; glucoprivic-sensitive) and muscle (GPmm; norepinephrine-sensitive) variant proteins were examined. RESULTS: VMN aromatase protein content was similar between sexes. Intracerebroventricular LZ infusion of testes-intact male and ovariectomized, estradiol-replaced female rats blocked insulin-induced hypoglycemic (IIH) up-regulation of this profile. LZ exerted sex-contingent effects on basal VMN nNOS and GAD expression, but blocked IIH-induced NO stimulation and GAD suppression in each sex. Sex-contingent LZ effects on basal and hypoglycemic patterns of GPbb and GPmm expression occurred at distinctive levels of the VMN. LZ correspondingly down- or up-regulated baseline pyruvate recycling pathway marker protein expression in males (glutaminase) and females (malic enzyme-1), and altered INS effects on those proteins. CONCLUSIONS: Results infer that neuroestradiol is required in each sex for optimal VMN metabolic transmitter signaling of hypoglycemic energy deficiency. Sex differences in VMN GP variant protein levels and sensitivity to aromatase may correlate with sex-dimorphic glycogen mobilization during this metabolic stress. Neuroestradiol may also exert sex-specific effects on glucogenic amino acid energy yield by actions on distinctive enzyme targets in each sex.


Asunto(s)
Estradiol/fisiología , Regulación de la Expresión Génica/genética , Glucosa/metabolismo , Glucógeno/metabolismo , Caracteres Sexuales , Núcleo Hipotalámico Ventromedial/metabolismo , Núcleo Hipotalámico Ventromedial/fisiología , Animales , Inhibidores de la Aromatasa/farmacología , Terapia de Reemplazo de Estrógeno , Femenino , Glutamato Descarboxilasa/metabolismo , Glutaminasa/metabolismo , Glucógeno Sintasa/metabolismo , Letrozol/farmacología , Malato Deshidrogenasa/metabolismo , Masculino , Óxido Nítrico Sintasa/metabolismo , Ovariectomía , Ratas , Ratas Sprague-Dawley
11.
PLoS Comput Biol ; 15(6): e1007092, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31158265

RESUMEN

The ventromedial nucleus of the hypothalamus (VMN) has an important role in diverse behaviours. The common involvement in these of sex steroids, nutritionally-related signals, and emotional inputs from other brain areas, suggests that, at any given time, its output is in one of a discrete number of possible states corresponding to discrete motivational drives. Here we explored how networks of VMN neurons might generate such a decision-making architecture. We began with minimalist assumptions about the intrinsic properties of VMN neurons inferred from electrophysiological recordings of these neurons in rats in vivo, using an integrate-and-fire based model modified to simulate activity-dependent post-spike changes in neuronal excitability. We used a genetic algorithm based method to fit model parameters to the statistical features of spike patterning in each cell. The spike patterns in both recorded cells and model cells were assessed by analysis of interspike interval distributions and of the index of dispersion of firing rate over different binwidths. Simpler patterned cells could be closely matched by single neuron models incorporating a hyperpolarising afterpotential and either a slow afterhyperpolarisation or a depolarising afterpotential, but many others could not. We then constructed network models with the challenge of explaining the more complex patterns. We assumed that neurons of a given type (with heterogeneity introduced by independently random patterns of external input) were mutually interconnected at random by excitatory synaptic connections (with a variable delay and a random chance of failure). Simple network models of one or two cell types were able to explain the more complex patterns. We then explored the information processing features of such networks that might be relevant for a decision-making network. We concluded that rhythm generation (in the slow theta range) and bistability arise as emergent properties of networks of heterogeneous VMN neurons.


Asunto(s)
Toma de Decisiones/fisiología , Modelos Neurológicos , Núcleo Hipotalámico Ventromedial , Algoritmos , Animales , Biología Computacional , Masculino , Neuronas/citología , Neuronas/fisiología , Ratas , Núcleo Hipotalámico Ventromedial/citología , Núcleo Hipotalámico Ventromedial/fisiología
12.
Nature ; 509(7502): 627-32, 2014 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-24739975

RESUMEN

Social behaviours, such as aggression or mating, proceed through a series of appetitive and consummatory phases that are associated with increasing levels of arousal. How such escalation is encoded in the brain, and linked to behavioural action selection, remains an unsolved problem in neuroscience. The ventrolateral subdivision of the murine ventromedial hypothalamus (VMHvl) contains neurons whose activity increases during male-male and male-female social encounters. Non-cell-type-specific optogenetic activation of this region elicited attack behaviour, but not mounting. We have identified a subset of VMHvl neurons marked by the oestrogen receptor 1 (Esr1), and investigated their role in male social behaviour. Optogenetic manipulations indicated that Esr1(+) (but not Esr1(-)) neurons are sufficient to initiate attack, and that their activity is continuously required during ongoing agonistic behaviour. Surprisingly, weaker optogenetic activation of these neurons promoted mounting behaviour, rather than attack, towards both males and females, as well as sniffing and close investigation. Increasing photostimulation intensity could promote a transition from close investigation and mounting to attack, within a single social encounter. Importantly, time-resolved optogenetic inhibition experiments revealed requirements for Esr1(+) neurons in both the appetitive (investigative) and the consummatory phases of social interactions. Combined optogenetic activation and calcium imaging experiments in vitro, as well as c-Fos analysis in vivo, indicated that increasing photostimulation intensity increases both the number of active neurons and the average level of activity per neuron. These data suggest that Esr1(+) neurons in VMHvl control the progression of a social encounter from its appetitive through its consummatory phases, in a scalable manner that reflects the number or type of active neurons in the population.


Asunto(s)
Agresión/fisiología , Receptor alfa de Estrógeno/metabolismo , Neuronas/metabolismo , Conducta Sexual Animal/fisiología , Núcleo Hipotalámico Ventromedial/citología , Núcleo Hipotalámico Ventromedial/fisiología , Animales , Femenino , Integrasas/genética , Integrasas/metabolismo , Masculino , Ratones , Optogenética
13.
Proc Natl Acad Sci U S A ; 113(14): E2073-82, 2016 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-27001850

RESUMEN

Previous studies implicate the hypothalamic ventromedial nucleus (VMN) in glycemic control. Here, we report that selective inhibition of the subset of VMN neurons that express the transcription factor steroidogenic-factor 1 (VMN(SF1) neurons) blocks recovery from insulin-induced hypoglycemia whereas, conversely, activation of VMN(SF1) neurons causes diabetes-range hyperglycemia. Moreover, this hyperglycemic response is reproduced by selective activation of VMN(SF1) fibers projecting to the anterior bed nucleus of the stria terminalis (aBNST), but not to other brain areas innervated by VMN(SF1) neurons. We also report that neurons in the lateral parabrachial nucleus (LPBN), a brain area that is also implicated in the response to hypoglycemia, make synaptic connections with the specific subset of glucoregulatory VMN(SF1) neurons that project to the aBNST. These results collectively establish a physiological role in glucose homeostasis for VMN(SF1) neurons and suggest that these neurons are part of an ascending glucoregulatory LPBN→VMN(SF1)→aBNST neurocircuit.


Asunto(s)
Glucemia/metabolismo , Neuronas Aferentes/fisiología , Núcleo Hipotalámico Ventromedial/fisiología , Animales , Insulina/administración & dosificación , Ratones , Núcleo Hipotalámico Ventromedial/citología
14.
Am J Physiol Endocrinol Metab ; 313(6): E651-E662, 2017 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-28811293

RESUMEN

Pharmacological activation of the glucagon-like peptide-1 receptor (GLP-1R) in the ventromedial hypothalamus (VMH) reduces food intake. Here, we assessed whether suppression of food intake by GLP-1R agonists (GLP-1RA) in this region is dependent on AMP-activated protein kinase (AMPK) and mammalian target of rapamycin (mTOR). We found that pharmacological inhibition of glycolysis, and thus activation of AMPK, in the VMH attenuates the anorectic effect of the GLP-1R agonist exendin-4 (Ex4), indicating that glucose metabolism and inhibition of AMPK are both required for this effect. Furthermore, we found that Ex4-mediated anorexia in the VMH involved mTOR but not acetyl-CoA carboxylase, two downstream targets of AMPK. We support this by showing that Ex4 activates mTOR signaling in the VMH and Chinese hamster ovary (CHO)-K1 cells. In contrast to the clear acute pharmacological impact of the these receptors on food intake, knockdown of the VMH Glp1r conferred no changes in energy balance in either chow- or high-fat-diet-fed mice, and the acute anorectic and glucose tolerance effects of peripherally dosed GLP-1RA were preserved. These results show that the VMH GLP-1R regulates food intake by engaging key nutrient sensors but is dispensable for the effects of GLP-1RA on nutrient homeostasis.


Asunto(s)
Ingestión de Alimentos/fisiología , Alimentos , Receptor del Péptido 1 Similar al Glucagón/fisiología , Sensación/fisiología , Núcleo Hipotalámico Ventromedial/fisiología , Acetil-CoA Carboxilasa/metabolismo , Adenilato Quinasa/metabolismo , Animales , Composición Corporal/efectos de los fármacos , Células CHO , Cricetulus , Relación Dosis-Respuesta a Droga , Ingestión de Alimentos/efectos de los fármacos , Exenatida , Receptor del Péptido 1 Similar al Glucagón/agonistas , Receptor del Péptido 1 Similar al Glucagón/metabolismo , Glucólisis/efectos de los fármacos , Homeostasis/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Péptidos/farmacología , Sensación/efectos de los fármacos , Serina-Treonina Quinasas TOR/metabolismo , Ponzoñas/farmacología , Núcleo Hipotalámico Ventromedial/metabolismo
15.
Nature ; 470(7333): 221-6, 2011 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-21307935

RESUMEN

Electrical stimulation of certain hypothalamic regions in cats and rodents can elicit attack behaviour, but the exact location of relevant cells within these regions, their requirement for naturally occurring aggression and their relationship to mating circuits have not been clear. Genetic methods for neural circuit manipulation in mice provide a potentially powerful approach to this problem, but brain-stimulation-evoked aggression has never been demonstrated in this species. Here we show that optogenetic, but not electrical, stimulation of neurons in the ventromedial hypothalamus, ventrolateral subdivision (VMHvl) causes male mice to attack both females and inanimate objects, as well as males. Pharmacogenetic silencing of VMHvl reversibly inhibits inter-male aggression. Immediate early gene analysis and single unit recordings from VMHvl during social interactions reveal overlapping but distinct neuronal subpopulations involved in fighting and mating. Neurons activated during attack are inhibited during mating, suggesting a potential neural substrate for competition between these opponent social behaviours.


Asunto(s)
Agresión/fisiología , Núcleo Hipotalámico Ventromedial/citología , Núcleo Hipotalámico Ventromedial/fisiología , Animales , Estimulación Eléctrica , Electrofisiología , Femenino , Regulación de la Expresión Génica , Genes fos/genética , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Inhibición Neural/genética , Inhibición Neural/fisiología , Vías Nerviosas/fisiología , Neuronas/fisiología , Conducta Sexual Animal/fisiología , Núcleo Hipotalámico Ventromedial/anatomía & histología , Núcleo Hipotalámico Ventromedial/metabolismo
16.
Adv Exp Med Biol ; 1043: 199-213, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29224096

RESUMEN

The neuroendocrine brain or hypothalamus has emerged as one of the most highly sexually dimorphic brain regions in mammals, and specifically in rodents. It is not surprising that hypothalamic nuclei play a pivotal role in controlling sex-dependent physiology. This brain region functions as a chief executive officer or master regulator of homeostatic physiological systems to integrate both external and internal signals. In this review, we describe sex differences in energy homeostasis that arise in one area of the hypothalamus, the ventrolateral subregion of the ventromedial hypothalamus (VMHvl) with a focus on how male and female neurons function in metabolic and behavioral aspects. Because other chapters within this book provide details on signaling pathways in the VMH that contribute to sex differences in metabolism, our discussion will be limited to how the sexually dimorphic VMHvl develops and what key regulators are thought to control the many functional and physiological endpoints attributed to this region. In the last decade, several exciting new studies using state-of-the-art genetic and molecular tools are beginning to provide some understanding as to how specific neurons contribute to the coordinated physiological responses needed by male and females. New technology that combines intersectional spatial and genetic approaches is now allowing further refinement in how we describe, probe, and manipulate critical male and female neurocircuits involved in metabolism.


Asunto(s)
Conducta , Metabolismo Energético , Neuronas/fisiología , Núcleo Hipotalámico Ventromedial/fisiología , Animales , Conducta Animal , Femenino , Homeostasis , Humanos , Masculino , Neuronas/metabolismo , Caracteres Sexuales , Factores Sexuales , Núcleo Hipotalámico Ventromedial/metabolismo
17.
Proc Natl Acad Sci U S A ; 111(32): 11876-81, 2014 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-25071172

RESUMEN

Prolyl endopeptidase (PREP) has been implicated in neuronal functions. Here we report that hypothalamic PREP is predominantly expressed in the ventromedial nucleus (VMH), where it regulates glucose-induced neuronal activation. PREP knockdown mice (Prep(gt/gt)) exhibited glucose intolerance, decreased fasting insulin, increased fasting glucagon levels, and reduced glucose-induced insulin secretion compared with wild-type controls. Consistent with this, central infusion of a specific PREP inhibitor, S17092, impaired glucose tolerance and decreased insulin levels in wild-type mice. Arguing further for a central mode of action of PREP, isolated pancreatic islets showed no difference in glucose-induced insulin release between Prep(gt/gt) and wild-type mice. Furthermore, hyperinsulinemic euglycemic clamp studies showed no difference between Prep(gt/gt) and wild-type control mice. Central PREP regulation of insulin and glucagon secretion appears to be mediated by the autonomic nervous system because Prep(gt/gt) mice have elevated sympathetic outflow and norepinephrine levels in the pancreas, and propranolol treatment reversed glucose intolerance in these mice. Finally, re-expression of PREP by bilateral VMH injection of adeno-associated virus-PREP reversed the glucose-intolerant phenotype of the Prep(gt/gt) mice. Taken together, our results unmask a previously unknown player in central regulation of glucose metabolism and pancreatic function.


Asunto(s)
Glucagón/metabolismo , Hipotálamo/enzimología , Insulina/metabolismo , Serina Endopeptidasas/metabolismo , Animales , Glucemia/metabolismo , Expresión Génica , Técnicas de Silenciamiento del Gen , Técnica de Clampeo de la Glucosa , Intolerancia a la Glucosa/enzimología , Intolerancia a la Glucosa/etiología , Hipotálamo/fisiología , Indoles/farmacología , Secreción de Insulina , Canales Iónicos/genética , Masculino , Ratones , Ratones Transgénicos , Proteínas Mitocondriales/genética , Páncreas/metabolismo , Fosforilación , Prolil Oligopeptidasas , Receptor de Insulina/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Serina Endopeptidasas/deficiencia , Serina Endopeptidasas/genética , Inhibidores de Serina Proteinasa/farmacología , Tiazolidinas/farmacología , Proteína Desacopladora 1 , Núcleo Hipotalámico Ventromedial/enzimología , Núcleo Hipotalámico Ventromedial/fisiología
18.
Eur J Neurosci ; 43(11): 1431-9, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26991018

RESUMEN

The amygdala has been shown to be essential for the processing of acute and learned fear across animal species. However, the downstream neural circuits that mediate these fear responses differ according to the nature of the threat, with separate pathways having been identified for predator, conspecific and physically harmful threats. In particular, the dorsomedial part of the ventromedial hypothalamus (VHMdm) is critical for the expression of defensive responses to predators. Here, we tested the hypothesis that this circuit also participates in predator fear memory by transient pharmacogenetic inhibition of the VMHdm and its downstream effector, the dorsal periaqueductal grey, during predator fear learning in the mouse. Our data demonstrate that neural activity in the VMHdm is required for both the acquisition and recall of predator fear memory, whereas that of its downstream effector, the dorsal periaqueductal grey, is required only for the acute expression of fear. These findings are consistent with a role for the medial hypothalamus in encoding an internal emotional state of fear.


Asunto(s)
Miedo/fisiología , Aprendizaje/fisiología , Recuerdo Mental/fisiología , Núcleo Hipotalámico Ventromedial/fisiología , Animales , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Vías Nerviosas/fisiología , Sustancia Gris Periacueductal/fisiología
19.
Proc Natl Acad Sci U S A ; 110(35): 14438-43, 2013 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-23918394

RESUMEN

Maternal aggression is under the control of a wide variety of factors that prime the females for aggression or trigger the aggressive event. Maternal attacks are triggered by the perception of sensory cues from the intruder, and here we have identified a site in the hypothalamus of lactating rats that is highly responsive to the male intruder--the ventral premammillary nucleus (PMv). The PMv is heavily targeted by the medial amygdalar nucleus, and we used lesion and immediate-early gene studies to test our working hypothesis that the PMv signals the presence of a male intruder and transfers this information to the network organizing maternal aggression. PMv-lesioned dams exhibit significantly reduced maternal aggression, without affecting maternal care. The Fos analysis revealed that PMv influences the activation of hypothalamic and septal sites shown to be mobilized during maternal aggression, including the medial preoptic nucleus (likely to represent an important locus to integrate priming stimuli critical for maternal aggression), the caudal two-thirds of the hypothalamic attack area (comprising the ventrolateral part of the ventromedial hypothalamic nucleus and the adjacent tuberal region of the lateral hypothalamic area, critical for the expression of maternal aggression), and the ventral part of the anterior bed nuclei of the stria terminalis (presently discussed as being involved in controlling neuroendocrine and autonomic responses accompanying maternal aggression). These findings reveal an important role for the PMv in detecting the male intruder and how this nucleus modulates the network controlling maternal aggression.


Asunto(s)
Agresión , Conducta Animal , Núcleo Hipotalámico Ventromedial/fisiología , Animales , Femenino , Masculino , Ratas , Ratas Long-Evans
20.
J Neurosci ; 34(17): 5971-84, 2014 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-24760856

RESUMEN

The ventromedial hypothalamus, ventrolateral area (VMHvl) was identified recently as a critical locus for inter-male aggression. Optogenetic stimulation of VMHvl in male mice evokes attack toward conspecifics and inactivation of the region inhibits natural aggression, yet very little is known about its underlying neural activity. To understand its role in promoting aggression, we recorded and analyzed neural activity in the VMHvl in response to a wide range of social and nonsocial stimuli. Although response profiles of VMHvl neurons are complex and heterogeneous, we identified a subpopulation of neurons that respond maximally during investigation and attack of male conspecific mice and during investigation of a source of male mouse urine. These "male responsive" neurons in the VMHvl are tuned to both the inter-male distance and the animal's velocity during attack. Additionally, VMHvl activity predicts several parameters of future aggressive action, including the latency and duration of the next attack. Linear regression analysis further demonstrates that aggression-specific parameters, such as distance, movement velocity, and attack latency, can model ongoing VMHvl activity fluctuation during inter-male encounters. These results represent the first effort to understand the hypothalamic neural activity during social behaviors using quantitative tools and suggest an important role for the VMHvl in encoding movement, sensory, and motivation-related signals.


Asunto(s)
Potenciales de Acción/fisiología , Agresión/fisiología , Conducta Animal/fisiología , Neuronas/fisiología , Núcleo Hipotalámico Ventromedial/fisiología , Animales , Masculino , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA