Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 311
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Somatosens Mot Res ; 32(3): 187-99, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26235095

RESUMEN

Specializations of the trigeminal sensory system are present in all three infraclasses of mammals (metatheria, eutheria, prototheria or monotremata). The trigeminal sensory system has been suggested as a critically important modality for sampling the path to the pouch and detecting the nipple or milk patch, but the degree to which that system may be required to function at birth varies significantly. Archived sections of the snout and brainstem of embryonic and postnatal mammals were used to test the relationship between structural maturity of the two ends of the trigeminal nerve pathway and the body size of mammalian young in metatherians, rodents and monotremes. A system for staging different levels of structural maturity of the vibrissae and trigeminal sensory was applied to embryos, pouch young and hatchlings and correlated with body length. Dasyurids are born at the most immature state with respect to vibrissal and trigeminal sensory nucleus development of any available metatherian, but these components of the trigeminal system are also developmentally advanced relative to body size when dasyurids are compared to other metatherians. Vibrissal and trigeminal sensory nucleus development is at a similar stage of development at birth and for a given body size in non-dasyurid metatherians; and trigeminal sensory nucleus development in monotremes is at a similar stage at birth to metatherians. Rodents reach a far more advanced stage of vibrissal and trigeminal sensory nucleus development at birth than do metatherians, and in the case of the mouse have a more developmentally advanced trigeminal system than all available metatherians at any given body length. Precocious development of the trigeminal sensory pathway relative to body size is evident in dasyurids, as might be expected given the small birth size of those metatherians. Nevertheless, the trigeminal sensory system in metatherians in general is not precocious relative to body size when these species are considered alongside the pace of trigeminal somatosensory development in rodents.


Asunto(s)
Tamaño Corporal , Marsupiales/fisiología , Monotremata/fisiología , Roedores/fisiología , Nervio Trigémino/fisiología , Núcleos del Trigémino/fisiología , Vías Aferentes/fisiología , Factores de Edad , Animales , Animales Recién Nacidos , Evolución Biológica , Embrión de Mamíferos , Especificidad de la Especie , Nervio Trigémino/anatomía & histología , Núcleos del Trigémino/anatomía & histología , Vibrisas/fisiología
2.
Dent Update ; 42(3): 238-40, 242-4, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26076542

RESUMEN

In order to understand the underlying principles of orofacial pain it is important to understand the corresponding anatomy and mechanisms. Paper 1 of this series explains the central nervous and peripheral nervous systems relating to pain. The trigeminal nerve is the 'great protector' of the most important region of our body. It is the largest sensory nerve of the body and over half of the sensory cortex is responsive to any stimulation within this system. This nerve is the main sensory system of the branchial arches and underpins the protection of the brain, sight, smell, airway, hearing and taste, underpinning our very existence. The brain reaction to pain within the trigeminal system has a significant and larger reaction to the threat of, and actual, pain compared with other sensory nerves. We are physiologically wired to run when threatened with pain in the trigeminal region and it is a 'miracle' that patients volunteer to sit in a dental chair and undergo dental treatment. Clinical Relevance: This paper aims to provide the dental and medical teams with a review of the trigeminal anatomy of pain and the principles of pain assessment.


Asunto(s)
Dolor Facial/patología , Nervio Trigémino/anatomía & histología , Sistema Nervioso Autónomo/anatomía & histología , Sistema Nervioso Autónomo/fisiología , Dolor Facial/fisiopatología , Humanos , Nervio Mandibular/anatomía & histología , Nervio Mandibular/fisiología , Nervio Maxilar/anatomía & histología , Nervio Maxilar/fisiología , Vías Nerviosas/anatomía & histología , Neuralgia/patología , Neuralgia/fisiopatología , Nociceptores/citología , Nociceptores/fisiología , Nervio Oftálmico/anatomía & histología , Nervio Oftálmico/fisiología , Dolor/patología , Dolor/fisiopatología , Corteza Somatosensorial/anatomía & histología , Corteza Somatosensorial/fisiología , Tegmento Mesencefálico/anatomía & histología , Tegmento Mesencefálico/fisiología , Núcleo Caudal del Trigémino/anatomía & histología , Núcleo Caudal del Trigémino/fisiología , Ganglio del Trigémino/anatomía & histología , Ganglio del Trigémino/fisiología , Nervio Trigémino/fisiología , Núcleos del Trigémino/anatomía & histología , Núcleos del Trigémino/fisiología
3.
Neuroimage ; 102 Pt 2: 381-92, 2014 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-25087481

RESUMEN

In this study we combined ultra-high field diffusion MRI fiber tracking and super-resolution track density imaging (TDI) to map the relay locations and connectivity of the somatosensory pathway in paraformaldehyde fixed, C57Bl/6J mouse brains. Super-resolution TDI was used to achieve 20 µm isotropic resolution to inform the 3D topography of the relay locations including thalamic barreloids and brainstem barrelettes, not described previously using MRI methodology. TDI-guided mapping results for thalamo-cortical connectivity were consistent with thalamo-cortical projections labeled using virus mediated fluorescent protein expression. Trigemino-thalamic TDI connectivity maps were concordant with results obtained using anterograde dye tracing from brainstem to thalamus. Importantly, TDI mapping overcame the constraint of tissue distortion observed in mechanically sectioned tissue, enabling 3D reconstruction and long-range connectivity data. In conclusion, our results showed that diffusion micro-imaging at ultra-high field MRI revealed the stereotypical pattern of somatosensory connectivity and is a valuable tool to complement histologic methods, achieving 3D spatial preservation of whole brain networks for characterization in mouse models of human disease.


Asunto(s)
Imagen de Difusión por Resonancia Magnética , Corteza Somatosensorial/anatomía & histología , Tálamo/anatomía & histología , Núcleos del Trigémino/anatomía & histología , Animales , Encéfalo/anatomía & histología , Imagenología Tridimensional , Masculino , Ratones , Ratones Endogámicos C57BL , Vías Nerviosas/anatomía & histología , Vibrisas
5.
J Comp Neurol ; 529(14): 3410-3428, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34176123

RESUMEN

The dorsal ventricular ridge (DVR), which is the largest component of the avian pallium, contains discrete partitions receiving tectovisual, auditory, and trigeminal ascending projections. Recent studies have shown that the auditory and the tectovisual regions can be regarded as complexes composed of three highly interconnected layers: an internal senso-recipient one, an intermediate afferent/efferent one, and a more external re-entrant one. Cells located in homotopic positions in each of these layers are reciprocally linked by an interlaminar loop of axonal processes, forming columnar-like local circuits. Whether this type of organization also extends to the trigemino-recipient DVR is, at present, not known. This question is of interest, since afferents forming this sensory pathway, exceptional among amniotes, are not thalamic but rhombencephalic in origin. We investigated this question by placing minute injections of neural tracers into selected locations of vital slices of the chicken telencephalon. We found that neurons of the trigemino-recipient nucleus basorostralis pallii (Bas) establish reciprocal, columnar and homotopical projections with cells located in the overlying ventral mesopallium (MV). "Column-forming" axons originated in B and MV terminate also in the intermediate strip, the fronto-trigeminal nidopallium (NFT), in a restricted manner. We also found that the NFT and an internal partition of B originate substantial, coarse-topographic projections to the underlying portion of the lateral striatum. We conclude that all sensory areas of the DVR are organized according to a common neuroarchitectonic motif, which bears a striking resemblance to that of the radial/laminar intrinsic circuits of the sensory cortices of mammals.


Asunto(s)
Pollos/fisiología , Red Nerviosa/anatomía & histología , Red Nerviosa/fisiología , Núcleos del Trigémino/anatomía & histología , Núcleos del Trigémino/fisiología , Vías Aferentes/fisiología , Animales , Axones/fisiología , Mapeo Encefálico , Femenino , Inmunohistoquímica , Masculino , Neostriado/anatomía & histología , Neostriado/fisiología , Vías Nerviosas/fisiología , Sensación/fisiología
6.
Odontology ; 98(1): 26-30, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20155504

RESUMEN

The purpose of this study was to demonstrate a micro-computed tomography (CT) method for observations of the mouse embryo. At 13.0 days post-coitum, mouse embryos were fixed in 4% paraformaldehyde for 24 h and stained en bloc by osmium tetroxide overnight. The embryos were then embedded in paraffin using standard methods for 24 h. Specimens were analyzed by micro-CT and image processing was performed. Organs containing nervous and blood systems could be viewed as a result of different osmium-staining densities. The trigeminal ganglion was imaged using three-dimensional techniques. Observation of the embryo was possible by micro-CT with osmium tetroxide staining.


Asunto(s)
Embrión de Mamíferos/anatomía & histología , Desarrollo Embrionario , Imagenología Tridimensional/veterinaria , Núcleos del Trigémino/embriología , Microtomografía por Rayos X/veterinaria , Anatomía Transversal/métodos , Animales , Vasos Sanguíneos/embriología , Desarrollo Fetal , Ratones , Organogénesis , Núcleos del Trigémino/anatomía & histología
7.
Brain Behav Evol ; 74(4): 280-94, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-20051684

RESUMEN

In vertebrates, sensory specializations are usually correlated with increases in the brain areas associated with that specialization. This correlation is called the 'principle of proper mass' whereby the size of a neural structure is a reflection of the complexity of the behavior that it subserves. In recent years, several comparative studies have revealed examples of this principle in the visual and auditory system of birds, but somatosensory specializations have largely been ignored. Many species rely heavily on tactile information during feeding. Input from the beak, tongue and face, conveyed via the trigeminal, facial, glossopharyngeal and hypoglossal nerves, is first processed in the brain by the principal sensory nucleus of the trigeminal nerve (PrV) in the brainstem. Previous studies report that PrV is enlarged in some species that rely heavily on tactile input when feeding, but no extensive comparative studies have been performed. In this study, we assessed the volume of PrV in 73 species of birds to present a detailed analysis of the relative size variation of PrV using both conventional and phylogenetically based statistics. Overall, our results indicate that three distinct groups of birds have a hypertrophied PrV: waterfowl (Anseriformes), beak-probing shorebirds (Charadriiformes), and parrots (Psittaciformes). These three groups have different sensory requirements from the orofacial region. For example, beak-probing shorebirds use pressure information from the tip of the beak to find buried prey in soft substrates, whereas waterfowl, especially filter-feeding ducks, use information from the beak, palate, and tongue when feeding. Parrots likely require increased sensitivity in the tongue to manipulate food items. Thus, despite all sharing an enlarged PrV and feeding behaviors dependent on tactile input, each group has different requirements that have led to the independent evolution of a large PrV.


Asunto(s)
Evolución Biológica , Aves/fisiología , Núcleos del Trigémino/fisiología , Animales , Anseriformes , Encéfalo/anatomía & histología , Columbiformes , Falconiformes , Conducta Alimentaria , Galliformes , Ganglios Sensoriales/anatomía & histología , Ganglios Sensoriales/fisiología , Bulbo Olfatorio/anatomía & histología , Bulbo Olfatorio/fisiología , Passeriformes , Filogenia , Psittaciformes , Núcleos del Trigémino/anatomía & histología , Núcleos del Trigémino/crecimiento & desarrollo
8.
Eur J Oral Sci ; 117(6): 676-84, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20121930

RESUMEN

Mandibular movements occur through the triggering of trigeminal motoneurons. Aberrant movements by orofacial muscles are characteristic of orofacial motor disorders, such as nocturnal bruxism (clenching or grinding of the dentition during sleep). Previous studies have suggested that autonomic changes occur during bruxism episodes. Although it is known that emotional responses increase jaw movement, the brain pathways linking forebrain limbic nuclei and the trigeminal motor nucleus remain unclear. Here we show that neurons in the lateral hypothalamic area, in the central nucleus of the amygdala, and in the parasubthalamic nucleus, project to the trigeminal motor nucleus or to reticular regions around the motor nucleus (Regio h) and in the mesencephalic trigeminal nucleus. We observed orexin co-expression in neurons projecting from the lateral hypothalamic area to the trigeminal motor nucleus. In the central nucleus of the amygdala, neurons projecting to the trigeminal motor nucleus are innervated by corticotrophin-releasing factor immunoreactive fibers. We also observed that the mesencephalic trigeminal nucleus receives dense innervation from orexin and corticotrophin-releasing factor immunoreactive fibers. Therefore, forebrain nuclei related to autonomic control and stress responses might influence the activity of trigeminal motor neurons and consequently play a role in the physiopathology of nocturnal bruxism.


Asunto(s)
Tronco Encefálico/fisiología , Mandíbula/fisiología , Prosencéfalo/fisiología , Amígdala del Cerebelo/anatomía & histología , Amígdala del Cerebelo/fisiología , Animales , Tronco Encefálico/anatomía & histología , Colorantes , Hormona Liberadora de Corticotropina/análisis , Técnica del Anticuerpo Fluorescente , Área Hipotalámica Lateral/fisiología , Péptidos y Proteínas de Señalización Intracelular/análisis , Sistema Límbico/fisiología , Masculino , Neuronas Motoras/citología , Neuronas Motoras/fisiología , Movimiento , Fibras Nerviosas/fisiología , Fibras Nerviosas/ultraestructura , Vías Nerviosas/anatomía & histología , Vías Nerviosas/fisiología , Neuronas Eferentes/fisiología , Neuronas Eferentes/ultraestructura , Neuropéptidos/análisis , Orexinas , Prosencéfalo/anatomía & histología , Ratas , Ratas Wistar , Formación Reticular/anatomía & histología , Formación Reticular/fisiología , Técnicas Estereotáxicas , Núcleo Subtalámico/anatomía & histología , Núcleo Subtalámico/fisiología , Núcleos del Trigémino/anatomía & histología , Núcleos del Trigémino/fisiología
9.
J Clin Neurosci ; 16(5): 679-82, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19269826

RESUMEN

The trigeminocerebellar artery (TCA) is a unique branch of the basilar artery supplying both the trigeminal nerve root and the cerebellar hemisphere. In this study, we describe and demonstrate the microanatomy of the TCA in 45 brainstems and discuss the neurological, neuroradiological and neurosurgical significance. This is the largest series of cadavers in the literature. The close relationship of the TCA to the trigeminal nerve root may have clinical implications including for the etiology of trigeminal neuralgia, thus the neurosurgeon must be aware of the vasculature of the trigeminal nerve root area and the anatomical variations.


Asunto(s)
Cerebelo/patología , Arterias Cerebrales/anatomía & histología , Nervio Trigémino/anatomía & histología , Núcleos del Trigémino/anatomía & histología , Adulto , Anciano , Femenino , Humanos , Masculino , Microcirugia , Persona de Mediana Edad
10.
Brain Res Bull ; 75(2-4): 371-4, 2008 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-18331900

RESUMEN

The aim of this study was to investigate whether primary vestibular afferent fibers establish direct connections with the motor and sensory trigeminal system in the brainstem of the frog. The experiments were carried out on Rana esculenta. In anaesthetized animals the trigeminal and vestibular nerves were prepared, and their proximal stumps were labeled either with fluorescein binding dextran amine (trigeminal nerve) or tetramethylrhodamine dextran amine (vestibulocochlear nerve). With a confocal laser scanning microscope we could detect close connections between the vestibular fibers and branches of the dorsal dendritic array of the jaw-closing motoneurons, suggestive of monosynaptic contacts. In the other parts of the brainstem, vestibular terminals were detected in the termination areas of the mesencephalic trigeminal nucleus and of the Gasserian (Vth) ganglion and they were probably involved in polysynaptic connections. In agreement with the results obtained in mammalian species, the present findings suggest that the vestibulotrigeminal relationship is quite complex and uses multiple pathways to connect the vestibular apparatus with the motor and sensory nuclei of the trigeminal nerve in the anurans as well.


Asunto(s)
Rana esculenta/anatomía & histología , Núcleos del Trigémino/anatomía & histología , Vestíbulo del Laberinto/anatomía & histología , Animales , Dextranos/metabolismo , Fluoresceínas/metabolismo , Vías Nerviosas/anatomía & histología , Vías Nerviosas/fisiología , Núcleos del Trigémino/metabolismo , Vestíbulo del Laberinto/metabolismo
11.
Somatosens Mot Res ; 25(1): 33-47, 2008 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-18344146

RESUMEN

Mice lacking the growth-associated protein GAP-43 (KO) show disrupted cortical topography and no barrels. Whisker-related patterns of cells are normal in the KO brainstem trigeminal complex (BSTC), while the pattern in KO ventrobasal thalamus (VB) is somewhat compromised. To better understand the basis for VB and cortical abnormalities, we used small placements of DiI to trace axonal projections between BSTC, VB, and barrel cortex in wildtype (WT) and GAP-43 KO mice. The trigeminothalamic (TT) pathway consists of axons from cells in the Nucleus Prinicipalis that project to the contralateral VB thalamus. DiI-labeled KO TT axons crossed the midline from BSTC and projected to contralateral VB normally, consistent with normal BSTC cytoarchitecture. By contrast, the KO thalamocortical axons (TCA) projection was highly abnormal. KO TCAs showed delays of 1-2 days in initial ingrowth to cortex. Postnatally, KO TCAs showed multiple pathfinding errors near intermediate targets, and were abnormally fasciculated within the internal capsule (IC). Interestingly, most individually labeled KO TCAs terminated in deep layers instead of in layer IV as in WT. This misprojection is consistent with birthdating analysis in KO mice, which revealed that neurons normally destined for layer IV remain in deep cortical layers. Early outgrowth of KO corticofugal (CF) axons was similar for both genotypes. However, at P7 KO CF fibers remained bundled as they entered the IC, and exhibited few terminal branches in VB. Thus, the establishment of axonal projections between thalamus and cortex are disrupted in GAP-43 KO mice.


Asunto(s)
Axones/diagnóstico por imagen , Proteína GAP-43/fisiología , Mecanorreceptores/anatomía & histología , Transducción de Señal/fisiología , Corteza Somatosensorial/anatomía & histología , Núcleos del Trigémino/anatomía & histología , Núcleos Talámicos Ventrales/anatomía & histología , Vibrisas/inervación , Vías Aferentes/anatomía & histología , Animales , Dominancia Cerebral/fisiología , Femenino , Proteína GAP-43/genética , Edad Gestacional , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microscopía Confocal , Neuronas/diagnóstico por imagen , Embarazo , Terminales Presinápticos/diagnóstico por imagen , Ultrasonografía
12.
Neuroscience ; 147(2): 325-33, 2007 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-17543462

RESUMEN

It has been suggested that in mammals, trigeminal lamina I neurons play a role in the processing and transmission of sensory information from the orofacial region. We investigated the physiological and morphological properties of trigeminal subnucleus caudalis (Sp5C) lamina I neurons in slices prepared from the medulla oblongata of 13- to 15-day-old postnatal rats using patch-clamp recordings and subsequent biocytin-streptavidin-Alexa labeling. Twenty-five neurons were recorded and immunohistochemically stained. The Sp5C lamina I consisted of several types of neurons which, on the basis of their responses to somatic current injection, can be classified into four groups: tonic neurons, which fired throughout the depolarizing pulse; phasic neurons, which expressed an initial burst of action potentials; delayed onset neurons, which showed a significant delay of the first action potential; and single spike neurons, characterized by only one to five action potentials at the very beginning of the depolarizing pulse even at high levels of stimulation intensity. Electrical stimulation of the spinal trigeminal tract evoked AMPA receptor-mediated excitatory postsynaptic currents (EPSC) exhibiting a strong polysynaptic component. AMPA receptor-mediated miniature excitatory postsynaptic currents (mEPSC) were characterized by a 10-90% rise time of 0.50+/-0.06 ms and a decay time constant of 2.5+/-0.5 ms. The kinetic properties of NMDA receptor-mediated EPSCs were measured at +40 mV. The 10-90% rise time was 8+/-2 ms and the deactivation time constants were 94+/-31 and 339+/-72 ms, respectively. Intracellular staining and morphological analysis revealed three groups of neurons: fusiform, pyramidal, and multipolar. Statistical analysis indicated that the electrophysiological properties and morphological characteristics are correlated. Tonic and phasic neurons were fusiform or pyramidal and delayed onset and single spike neurons were multipolar. Our results show that both the physiological and morphological properties of Sp5C lamina I neurons exhibit significant differences, indicating their specific integration in the processing and transmission of sensory information from the orofacial region.


Asunto(s)
Núcleos del Trigémino/anatomía & histología , Núcleos del Trigémino/fisiología , Algoritmos , Animales , Polaridad Celular/fisiología , Interpretación Estadística de Datos , Electrofisiología , Potenciales Postsinápticos Excitadores/fisiología , Inmunohistoquímica , Potenciales de la Membrana/fisiología , Técnicas de Placa-Clamp , Células Piramidales/fisiología , Ratas , Ratas Wistar , Receptores AMPA/fisiología , Receptores de N-Metil-D-Aspartato/fisiología , Sinapsis/fisiología
13.
Congenit Anom (Kyoto) ; 47(2): 63-7, 2007 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-17504389

RESUMEN

Morphometric and histological studies of the pons were performed by light microscopy in 28 cases of externally normal human fetuses ranging from 90 to 246 mm in crown-rump length (CRL) and from 13 to 28 weeks of gestation. The brainstems of fetuses were embedded in celloidin or paraffin, and transverse sections were prepared. The pons was divided into two regions at the most ventral margin of the medial lemniscus at the level of the motor trigeminal nucleus. The relationships between the total dorsoventral length, ventral length, and dorsal length of the pons versus CRL and gestational ages were calculated, and empiric formulas were fitted. It was found that the ventral portion increased in size more rapidly than the dorsal portion. The proportion of the ventral portion in the total dorsoventral length was constitutively higher than that of the dorsal portion in the present range of CRL. In the pontine nuclei, from 235 mm in the CRL, some large cells with rich cytoplasm, pale nuclei, and a distinct nucleolus appeared on the dorsal side of the pyramidal tract. According to Weigert stained preparations, the first myelinated fibers in each motor root of the trigeminal, abducent, and facial nerves were recognized at 130-140 mm in CRL and the medial lemniscus at 230-235 mm.


Asunto(s)
Biología Evolutiva/métodos , Feto/anatomía & histología , Puente/embriología , Tronco Encefálico/anatomía & histología , Tronco Encefálico/embriología , Diferenciación Celular , Largo Cráneo-Cadera , Femenino , Edad Gestacional , Humanos , Masculino , Vaina de Mielina/metabolismo , Neuronas/metabolismo , Puente/anatomía & histología , Embarazo , Factores de Tiempo , Núcleos del Trigémino/anatomía & histología , Núcleos del Trigémino/embriología
14.
J Comp Neurol ; 525(13): 2820-2831, 2017 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-28542900

RESUMEN

Our knowledge of the avian sensory trigeminal system has been largely restricted to the principal trigeminal nucleus (PrV) and its ascending projections to the forebrain. Studies addressing the cytoarchitecture and organization of afferent input to the sensory trigeminal complex, which includes both the PrV and the nuclei of the descending trigeminal tract (nTTD), have only been performed in pigeons and ducks. Here we extend such an analysis to a songbird, the zebra finch (Taeniopygia guttata). We describe the cytoarchitecture of the sensory trigeminal complex, the patterns of calbindin-like and substance P-like immunoreactivity, and the organization of afferents from the three branches of the trigeminal nerve and from the lingual branch of the hypoglossal nerve. On the basis of cytoarchitecture and immunohistochemistry, the sensory trigeminal column can be subdivided from caudal to rostral, as in other species, into cervical dorsal horn, subnucleus caudalis, subnucleus interpolaris, subnucleus oralis, and nucleus principalis. The relative positions of the terminal fields of the three trigeminal branches move from medial to lateral in the dorsal horn to dorsomedial to ventrolateral in nTTD, whereas in PrV there is considerable overlap of mandibular and ophthalmic terminal fields, with only a small maxillary input ventrally. The hypoglossal afferents, which terminate medially in the dorsal horn and dorsolaterally in nTTD, terminate in specific cell groups in the dorsolateral nTTDo and in PrV. This work sets the grounds for further analyses of the ascending connections of the nTTD and the afferents from the syrinx to the trigeminal sensory column.


Asunto(s)
Vías Aferentes/fisiología , Mapeo Encefálico , Pinzones/anatomía & histología , Nervio Trigémino/anatomía & histología , Nervio Trigémino/fisiología , Núcleos del Trigémino/anatomía & histología , Animales , Calbindina 1/metabolismo , Toxina del Cólera/metabolismo , Masculino , Sustancia P/metabolismo , Núcleos del Trigémino/fisiología
15.
J Comp Neurol ; 525(13): 2832-2846, 2017 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-28543449

RESUMEN

In our traditional view of the avian somatosensory system, input from the beak and head reaches the telencephalon via a disynaptic pathway, involving projections from the principal sensory nucleus (PrV) directly to nucleus basorostralis (previously called nucleus basalis), whereas input from the rest of the body follows a trisynatic pathway similar to that in mammals, involving projections from the dorsal column nuclei to the thalamus, and thence to somatosensory wulst. However, the role of the nuclei of the descending trigeminal tract (nTTD) in this scenario is unclear, partly because their ascending projections have been examined in only one species, the mallard duck. Here we examine the ascending projections of the nTTD in the zebra finch, using in vivo injections of biotinylated dextran amine and verification of projections by means of retrograde transport of the beta subunit of cholera toxin. The results show a high degree of interconnectivity within the nTTD, and that these nuclei project to PrV. We also find a projection from nTTD to the contralateral thalamic nucleus uvaeformis, a multi-sensory nucleus connected to the song system. Furthermore, our finding of a projection from nTTD to the contralateral somatosensory thalamic nucleus dorsalis intermedius ventralis anterior (DIVA) is consistent with the well-known projection in mammals from nTTD to the ventrobasal thalamus, suggesting that the ascending trigeminal pathways in birds and mammals are more similar than previously thought.


Asunto(s)
Vías Aferentes/fisiología , Mapeo Encefálico , Cerebelo/fisiología , Pinzones/anatomía & histología , Núcleos Talámicos/anatomía & histología , Núcleos del Trigémino/anatomía & histología , Núcleos del Trigémino/fisiología , Animales , Biotina/análogos & derivados , Biotina/metabolismo , Cerebelo/metabolismo , Toxina del Cólera/metabolismo , Dextranos/metabolismo , Femenino , Masculino
16.
J Comp Neurol ; 495(3): 279-98, 2006 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-16440296

RESUMEN

The sensory trigeminal nucleus of teleosts is the rostralmost nucleus among the trigeminal sensory nuclear group in the rhombencephalon. The sensory trigeminal nucleus is known to receive the somatosensory afferents of the ophthalmic, maxillar, and mandibular nerves. However, the central connections of the sensory trigeminal nucleus remain unclear. Efferents of the sensory trigeminal nucleus were examined by means of tract-tracing methods, in a percomorph teleost, tilapia. After tracer injections to the sensory trigeminal nucleus, labeled terminals were seen bilaterally in the ventromedial thalamic nucleus, periventricular pretectal nucleus, medial part of preglomerular nucleus, stratum album centrale of the optic tectum, ventrolateral nucleus of the semicircular torus, lateral valvular nucleus, prethalamic nucleus, tegmentoterminal nucleus, and superior and inferior reticular formation, with preference for the contralateral side. Labeled terminals were also found bilaterally in the oculomotor nucleus, trochlear nucleus, trigeminal motor nucleus, facial motor nucleus, facial lobe, descending trigeminal nucleus, medial funicular nucleus, and contralateral sensory trigeminal nucleus and inferior olive. Labeled terminals in the oculomotor nucleus and trochlear nucleus showed similar densities on both sides of the brain. However, labelings in the trigeminal motor nucleus, facial motor nucleus, facial lobe, descending trigeminal nucleus, and medial funicular nucleus showed a clear ipsilateral dominance. Reciprocal tracer injection experiments to the ventromedial thalamic nucleus, optic tectum, and semicircular torus resulted in labeled cell bodies in the sensory trigeminal nucleus, with a few also in the descending trigeminal nucleus.


Asunto(s)
Cíclidos/anatomía & histología , Vías Eferentes/anatomía & histología , Núcleos del Trigémino/anatomía & histología , Animales
17.
Brain Res ; 1111(1): 153-61, 2006 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-16890921

RESUMEN

Post-weaning mice fed exclusively milk display low-frequency exploratory behavior [Ishii, T., Itou, T., and Nishimura, M. (2005) Life Sci. 78, 174-179] compared to mice fed a food pellet diet. This low-frequency exploratory behavior switched to high-frequency exploration after a switch from exclusively milk formula to a food pellet diet. Acquisition of the high-frequency exploratory behavior was irreversible. Recently, we demonstrated that the mesencephalic trigeminal nucleus (Me5) is involved in the control of feeding and exploratory behavior in mice without modulating the emotional state [Ishii, T., Furuoka, H., Itou, T., Kitamura, N., and Nishimura, M. (2005) Brain Res. 1048, 80-86]. We therefore investigated whether the Me5 is involved in acquisition of high-frequency exploratory behavior induced by the switch in diet from an exclusively milk formula to food pellets. Mouse feeding and exploratory behaviors were analyzed using a food search compulsion apparatus, which was designed to distinguish between the two behaviors under standard living conditions. Immunohistochemical analysis of immediate early genes indicated that the Me5, which receives signals from oral proprioceptors, is transiently activated after the diet change. The change from low-frequency to high-frequency exploratory behavior was prevented in milk-fed mice by bilateral lesion of the Me5. These results suggest that the Me5 is activated by signals associated with mastication-induced proprioception and contributes to the acquisition of active exploratory behavior.


Asunto(s)
Ingestión de Alimentos/fisiología , Conducta Exploratoria/fisiología , Alimentos Formulados , Mesencéfalo/crecimiento & desarrollo , Núcleos del Trigémino/crecimiento & desarrollo , Destete , Vías Aferentes/anatomía & histología , Vías Aferentes/crecimiento & desarrollo , Animales , Conducta Animal/fisiología , Peso Corporal/fisiología , Desnervación , Alimentos , Regulación de la Expresión Génica/fisiología , Inmunohistoquímica , Masculino , Masticación/fisiología , Mesencéfalo/anatomía & histología , Mesencéfalo/lesiones , Ratones , Leche/metabolismo , Boca/inervación , Boca/fisiología , Proteínas Proto-Oncogénicas c-fos/metabolismo , Factores de Tiempo , Nervio Trigémino/anatomía & histología , Nervio Trigémino/crecimiento & desarrollo , Núcleos del Trigémino/anatomía & histología , Núcleos del Trigémino/lesiones
18.
Anat Rec A Discov Mol Cell Evol Biol ; 288(2): 121-34, 2006 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-16432893

RESUMEN

The perception of external sensory information by the brain requires highly ordered synaptic connectivity between peripheral sensory neurons and their targets in the central nervous system. Since the discovery of the whisker-related barrel patterns in the mouse cortex, the trigeminal system has become a favorite model for study of how its connectivity and somatotopic maps are established during development. The trigeminal brainstem nuclei are the first CNS regions where whisker-specific neural patterns are set up by the trigeminal afferents that innervate the whiskers. In particular, barrelette patterns in the principal sensory nucleus of the trigeminal nerve provide the template for similar patterns in the face representation areas of the thalamus and subsequently in the primary somatosensory cortex. Here, we describe and review studies of neurotrophins, multiple axon guidance molecules, transcription factors, and glutamate receptors during early development of trigeminal connections between the whiskers and the brainstem that lead to emergence of patterned face maps. Studies from our laboratories and others' showed that developing trigeminal ganglion cells and their axons depend on a variety of molecular signals that cooperatively direct them to proper peripheral and central targets and sculpt their synaptic terminal fields into patterns that replicate the organization of the whiskers on the muzzle. Similar mechanisms may also be used by trigeminothalamic and thalamocortical projections in establishing patterned neural modules upstream from the trigeminal brainstem.


Asunto(s)
Tronco Encefálico/anatomía & histología , Núcleos del Trigémino/anatomía & histología , Animales , Axones/metabolismo , Mapeo Encefálico , Tronco Encefálico/metabolismo , Humanos , Factores de Crecimiento Nervioso/metabolismo , Receptores de Glutamato/metabolismo , Factores de Transcripción/metabolismo , Núcleos del Trigémino/metabolismo
19.
Prog Neurobiol ; 66(1): 19-59, 2002 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-11897404

RESUMEN

A characteristic peculiarity of the trigeminal sensory system is the presence of two distinct populations of primary afferent neurons. Most of their cell bodies are located in the trigeminal ganglion (TG) but part of them lie in the mesencephalic trigeminal nucleus (MTN). This review compares the neurochemical content of central versus peripheral trigeminal primary afferent neurons. In the TG, two subpopulations of primary sensory neurons, containing immunoreactive (IR) material, are identified: a number of glutamate (Glu)-, substance P (SP)-, neurokinin A (NKA)-, calcitonin gene-related peptide (CGRP)-, cholecystokinin (CCK)-, somatostatin (SOM)-, vasoactive intestinal polypeptide (VIP)- and galanin (GAL)-IR ganglion cells with small and medium-sized somata, and relatively less numerous larger-sized neuropeptide Y (NPY)- and peptide 19 (PEP 19)-IR trigeminal neurons. In addition, many nitric oxide synthase (NOS)- and parvalbumin (PV)-IR cells of all sizes as well as fewer, mostly large, calbindin D-28k (CB)-containing neurons are seen. The majority of the large ganglion cells are surrounded by SP-, CGRP-, SOM-, CCK-, VIP-, NOS- and serotonin (SER)-IR perisomatic networks. In the MTN, the main subpopulation of large-sized neurons display Glu-immunoreactivity. Additionally, numerous large MTN neurons exhibit PV- and CB-immunostaining. On the other hand, certain small MTN neurons, most likely interneurons, are found to be GABAergic. Furthermore, NOS-containing neurons can be detected in the caudal and the mesencephalic-pontine junction portions of the nucleus. Conversely, no immunoreactivity to any of the examined neuropeptides is observed in the cell bodies of MTN neurons but these are encircled by peptidergic, catecholaminergic, serotonergic and nitrergic perineuronal arborizations in a basket-like manner. Such a discrepancy in the neurochemical features suggests that the differently fated embryonic migration, synaptogenesis, and peripheral and central target field innervation can possibly affect the individual neurochemical phenotypes of trigeminal primary afferent neurons.


Asunto(s)
Ganglio del Trigémino/anatomía & histología , Ganglio del Trigémino/metabolismo , Núcleos del Trigémino/anatomía & histología , Núcleos del Trigémino/metabolismo , Animales , Antígenos de Diferenciación/biosíntesis , Humanos , Mamíferos , Factores de Crecimiento Nervioso/metabolismo , Neuronas Aferentes/clasificación , Neuronas Aferentes/citología , Neuronas Aferentes/metabolismo , Neuropéptidos/metabolismo , Neurotransmisores/metabolismo , Receptores de Superficie Celular/metabolismo , Sistemas de Mensajero Secundario/fisiología
20.
Brain Res ; 1630: 183-97, 2016 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-26592775

RESUMEN

Trigeminal mesencephalic nucleus (Vmes) neurons are primary afferents conveying deep sensation from the masticatory muscle spindles or the periodontal mechanoreceptors, and are crucial for controlling jaw movements. Their cell bodies exist in the brain and receive descending commands from a variety of cortical and subcortical structures involved in limbic (emotional) systems. However, it remains unclear how the lateral habenula (LHb), a center of negative emotions (e.g., pain, stress and anxiety), can influence the control of jaw movements. To address this issue, we examined whether and how the LHb directly projects to the Vmes by means of neuronal tract tracing techniques in rats. After injections of a retrograde tracer Fluorogold in the rostral and caudal Vmes, a number of neurons were labeled in the lateral division of LHb (LHbl) bilaterally, whereas a few neurons were labeled in the medial division of LHb (LHbm) bilaterally. After injections of an anterograde tracer, biotinylated dextranamine (BDA) in the LHbl, a small number of labeled axons were distributed bilaterally in the rostral and caudal levels of Vmes, where some labeled axonal boutons contacted the cell body of rostral and caudal levels of Vmes neurons bilaterally. After the BDA injection into the LHbm, however, no axons were labeled bilaterally in the rostral and caudal levels of Vmes. Therefore, the present study for the first time demonstrated the direct projection from the LHbl to the Vmes and the detailed projection patterns, suggesting that jaw movements are modulated by negative emotions that are signaled by LHbl neurons.


Asunto(s)
Habénula/anatomía & histología , Ratas Wistar/anatomía & histología , Tegmento Mesencefálico/anatomía & histología , Núcleos del Trigémino/anatomía & histología , Vías Aferentes/anatomía & histología , Vías Aferentes/fisiología , Animales , Biotina/análogos & derivados , Dextranos , Habénula/fisiología , Maxilares/inervación , Maxilares/fisiología , Masculino , Actividad Motora/fisiología , Técnicas de Trazados de Vías Neuroanatómicas , Trazadores del Tracto Neuronal , Neuronas/citología , Neuronas/fisiología , Fotomicrografía , Ratas Wistar/fisiología , Estilbamidinas , Tegmento Mesencefálico/fisiología , Núcleos del Trigémino/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA