Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 116
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Biol Inorg Chem ; 29(4): 395-405, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38782786

RESUMEN

Periplasmic nitrate reductase NapA from Campylobacter jejuni (C. jejuni) contains a molybdenum cofactor (Moco) and a 4Fe-4S cluster and catalyzes the reduction of nitrate to nitrite. The reducing equivalent required for the catalysis is transferred from NapC → NapB → NapA. The electron transfer from NapB to NapA occurs through the 4Fe-4S cluster in NapA. C. jejuni NapA has a conserved lysine (K79) between the Mo-cofactor and the 4Fe-4S cluster. K79 forms H-bonding interactions with the 4Fe-4S cluster and connects the latter with the Moco via an H-bonding network. Thus, it is conceivable that K79 could play an important role in the intramolecular electron transfer and the catalytic activity of NapA. In the present study, we show that the mutation of K79 to Ala leads to an almost complete loss of activity, suggesting its role in catalytic activity. The inhibition of C. jejuni NapA by cyanide, thiocyanate, and azide has also been investigated. The inhibition studies indicate that cyanide inhibits NapA in a non-competitive manner, while thiocyanate and azide inhibit NapA in an uncompetitive manner. Neither inhibition mechanism involves direct binding of the inhibitor to the Mo-center. These results have been discussed in the context of the loss of catalytic activity of NapA K79A variant and a possible anion binding site in NapA has been proposed.


Asunto(s)
Campylobacter jejuni , Lisina , Nitrato-Reductasa , Lisina/metabolismo , Lisina/química , Campylobacter jejuni/enzimología , Campylobacter jejuni/genética , Nitrato-Reductasa/metabolismo , Nitrato-Reductasa/química , Nitrato-Reductasa/genética , Periplasma/metabolismo , Periplasma/enzimología , Biocatálisis
2.
Inorg Chem ; 63(29): 13191-13196, 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-38984973

RESUMEN

Mo K-edge X-ray absorption spectroscopy (XAS) is used to probe the structure of wild-type Campylobacter jejuni nitrate reductase NapA and the C176A variant. The results of extended X-ray absorption fine structure (EXAFS) experiments on wt NapA support an oxidized Mo(VI) hexacoordinate active site coordinated by a single terminal oxo donor, four sulfur atoms from two separate pyranopterin dithiolene ligands, and an additional S atom from a conserved cysteine amino acid residue. We found no evidence of a terminal sulfido ligand in wt NapA. EXAFS analysis shows the C176A active site to be a 6-coordinate structure, and this is supported by EPR studies on C176A and small molecule analogs of Mo(V) enzyme forms. The SCys is replaced by a hydroxide or water ligand in C176A, and we find no evidence of a coordinated sulfhydryl (SH) ligand. Kinetic studies show that this variant has completely lost its catalytic activity toward nitrate. Taken together, the results support a critical role for the conserved C176 in catalysis and an oxygen atom transfer mechanism for the catalytic reduction of nitrate to nitrite that does not employ a terminal sulfido ligand in the catalytic cycle.


Asunto(s)
Campylobacter jejuni , Dominio Catalítico , Nitrato-Reductasa , Campylobacter jejuni/enzimología , Nitrato-Reductasa/química , Nitrato-Reductasa/metabolismo , Modelos Moleculares , Espectroscopía de Absorción de Rayos X
3.
Chem Pharm Bull (Tokyo) ; 72(5): 507-511, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38811194

RESUMEN

Amaryllidaceae alkaloids are structurally diverse natural products with a wide range biological properties, and based on the partial identification of the biosynthetic enzymes, norbelladine would be a common intermediate in the biosynthetic pathways. Previous studies suggested that norbelladine synthase (NBS) catalyzed the condensation reaction of 3,4-dihydroxybenzaldehyde and tyramine to form norcraugsodine, and subsequently, noroxomaritidine/norcraugsodine reductase (NR) catalyzed the nicotinamide adenine dinucleotide phosphate (NADPH)-dependent reduction of norcraugsodine to generate norbelladine. However, recent studies have highlighted possible alternative Amaryllidaceae alkaloid biosynthetic pathways via the formation of isovanillin and vanillin from the 4-O- and 3-O-methylation reactions of 3,4-dihydroxybenzaldehyde, respectively. Herein, we focused on NpsNBS and NpsNR, which were initially identified from Narcissus pseudonarcissus, and explored their substrate recognition tolerance by performing condensation reactions of tyramine with various benzaldehyde derivatives, to shed light on the Amaryllidaceae alkaloid biosynthetic pathway from the viewpoint of the enzymatic properties. The assays revealed that both NpsNBS and NpsNR lacked the abilities to produce 4'-O- and 3'-O-methylnorbelladine from isovanillin and vanillin with tyramine, respectively. These observations thus suggested that Amaryllidaceae alkaloids are biosynthesized from norbelladine, formed through the condensation/reduction reaction of 3,4-dihydroxybenzaldehyde with tyramine.


Asunto(s)
Aldehídos , Aldehídos/química , Aldehídos/metabolismo , Hidroxilación , Estructura Molecular , Especificidad por Sustrato , Nitrato-Reductasa/química , Nitrato-Reductasa/metabolismo
4.
J Biol Chem ; 295(15): 5051-5066, 2020 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-32111737

RESUMEN

Nitrate is one of the major inorganic nitrogen sources for microbes. Many bacterial and archaeal lineages have the capacity to express assimilatory nitrate reductase (NAS), which catalyzes the rate-limiting reduction of nitrate to nitrite. Although a nitrate assimilatory pathway in mycobacteria has been proposed and validated physiologically and genetically, the putative NAS enzyme has yet to be identified. Here, we report the characterization of a novel NAS encoded by Mycolicibacterium smegmatis Msmeg_4206, designated NasN, which differs from the canonical NASs in its structure, electron transfer mechanism, enzymatic properties, and phylogenetic distribution. Using sequence analysis and biochemical characterization, we found that NasN is an NADPH-dependent, diflavin-containing monomeric enzyme composed of a canonical molybdopterin cofactor-binding catalytic domain and an FMN-FAD/NAD-binding, electron-receiving/transferring domain, making it unique among all previously reported hetero-oligomeric NASs. Genetic studies revealed that NasN is essential for aerobic M. smegmatis growth on nitrate as the sole nitrogen source and that the global transcriptional regulator GlnR regulates nasN expression. Moreover, unlike the NADH-dependent heterodimeric NAS enzyme, NasN efficiently supports bacterial growth under nitrate-limiting conditions, likely due to its significantly greater catalytic activity and oxygen tolerance. Results from a phylogenetic analysis suggested that the nasN gene is more recently evolved than those encoding other NASs and that its distribution is limited mainly to Actinobacteria and Proteobacteria. We observed that among mycobacterial species, most fast-growing environmental mycobacteria carry nasN, but that it is largely lacking in slow-growing pathogenic mycobacteria because of multiple independent genomic deletion events along their evolution.


Asunto(s)
Coenzimas/metabolismo , Flavina-Adenina Dinucleótido/metabolismo , Metaloproteínas/metabolismo , Mycobacterium smegmatis/enzimología , NAD/metabolismo , Nitrato-Reductasa/metabolismo , Nitratos/metabolismo , Pteridinas/metabolismo , Electrones , Regulación Bacteriana de la Expresión Génica , Cofactores de Molibdeno , Mycobacterium smegmatis/genética , Mycobacterium smegmatis/crecimiento & desarrollo , Nitrato-Reductasa/química , Nitrato-Reductasa/genética , Nitritos/metabolismo , Filogenia , Receptores de Neurotransmisores/metabolismo
5.
J Biol Inorg Chem ; 26(1): 13-28, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33131003

RESUMEN

The molybdopterin enzyme family catalyzes a variety of substrates and plays a critical role in the cycling of carbon, nitrogen, arsenic, and selenium. The dimethyl sulfoxide reductase (DMSOR) subfamily is the most diverse family of molybdopterin enzymes and the members of this family catalyze a myriad of reactions that are important in microbial life processes. Enzymes in the DMSOR family can transform multiple substrates; however, quantitative information about the substrate preference is sparse, and, more importantly, the reasons for the substrate selectivity are not clear. Molybdenum coordination has long been proposed to impact the catalytic activity of the enzyme. Specifically, the molybdenum-coordinating residue may tune substrate preference. As such, molybdopterin enzyme periplasmic nitrate reductase (Nap) is utilized as a vehicle to understand the substrate preference and delineate the kinetic underpinning of the differences imposed by exchanging the molybdenum ligands. To this end, NapA from Campylobacter jejuni has been heterologously overexpressed, and a series of variants, where the molybdenum coordinating cysteine has been replaced with another amino acid, has been produced. The kinetic properties of these variants are discussed and compared with those of the native enzyme, providing quantitative information to understand the function of the molybdenum-coordinating residue.


Asunto(s)
Dimetilsulfóxido/química , Metilaminas/química , Nitrato-Reductasa/química , Nitratos/química , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Campylobacter jejuni/enzimología , Concentración de Iones de Hidrógeno , Cinética , Ligandos , Molibdeno/química , Mutagénesis Sitio-Dirigida , Mutación , Nitrato-Reductasa/genética , Oxidación-Reducción , Periplasma/enzimología , Especificidad por Sustrato
6.
Molecules ; 26(21)2021 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-34770764

RESUMEN

In this work, the design of a microfluidic paper-based analytical device (µPAD) for the quantification of nitrate in urine samples was described. Nitrate monitoring is highly relevant due to its association to some diseases and health conditions. The nitrate determination was achieved by combining the selectivity of the nitrate reductase enzymatic reaction with the colorimetric detection of nitrite by the well-known Griess reagent. For the optimization of the nitrate determination µPAD, several variables associated with the design and construction of the device were studied. Furthermore, the interference of the urine matrix was evaluated, and stability studies were performed, under different conditions. The developed µPAD enabled us to obtain a limit of detection of 0.04 mM, a limit of quantification of 0.14 mM and a dynamic concentration range of 0.14-1.0 mM. The designed µPAD proved to be stable for 24 h when stored at room temperature in air or vacuum atmosphere, and 60 days when stored in vacuum at -20 °C. The accuracy of the nitrate µPAD measurements was confirmed by analyzing four certified samples (prepared in synthetic urine) and performing recovery studies using urine samples.


Asunto(s)
Diseño de Equipo , Microfluídica/instrumentación , Microfluídica/métodos , Nitrato-Reductasa/química , Nitratos/orina , Papel , Urinálisis/instrumentación , Urinálisis/métodos , Humanos , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
7.
Nitric Oxide ; 97: 33-47, 2020 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-32045686

RESUMEN

The present study unravels origin of nitric oxide (NO) and the interaction between 24-Epibrassinolide (EBL) and nitrate reductase (NR) for NO production in Indian mustard (Brassica juncea L.) under salinity stress. Two independent experiments were performed to check whether (i) Nitrate reductase or Nitric oxide synthase takes part in the biosynthesis of endogenous NO and (ii) EBL has any regulatory effect on NR-dependent NO biosynthesis in the alleviation of salinity stress. Results revealed that NR-inhibitor tungstate significantly (P ≤ 0.05) decreased the NR activity and endogenous NO content, while NOS inhibitor l-NAME did not influence NO biosynthesis and plant growth. Under salinity stress, inhibition in NR activity decreased the activities of antioxidant enzymes, increased H2O2, MDA, protein carbonyl content and caused DNA damage, implying that antioxidant defense might be related to NO signal. EBL supplementation enhanced the NR activity but did not influence NOS activity, suggesting that NR was involved in endogenous NO production. EBL supplementation alleviated the inhibitory effects of salinity stress and improved the plant growth by enhancing nutrients, photosynthetic pigments, compatible osmolytes, and performance of AsA-GSH cycle. It also decreased the superoxide ion accumulation, leaf epidermal damages, cell death, DNA damage, and ABA content. Comet assay revealed significant (P ≤ 0.05) enhancement in tail length and olive tail moment, while flow cytometry did not showed any significant (P ≤ 0.05) changes in genome size and ploidy level under salinity stress. Moreover, EBL supplementation increased the G6PDH activity and S-nitrosothiol content which further boosted the antioxidant responses under salinity stress. Taken together, these results suggested that NO production in mustard occurred in NR-dependent manner and EBL in association with endogenous NO activates the antioxidant system to counter salinity stress.


Asunto(s)
Brasinoesteroides/metabolismo , Planta de la Mostaza/química , Nitrato-Reductasa/metabolismo , Óxido Nítrico/biosíntesis , Estrés Salino , Esteroides Heterocíclicos/metabolismo , Brasinoesteroides/química , Inhibidores Enzimáticos/farmacología , India , Planta de la Mostaza/metabolismo , NG-Nitroarginina Metil Éster/farmacología , Nitrato-Reductasa/química , Óxido Nítrico/química , Óxido Nítrico Sintasa/antagonistas & inhibidores , Óxido Nítrico Sintasa/metabolismo , Hojas de la Planta/química , Hojas de la Planta/metabolismo , Esteroides Heterocíclicos/química
8.
J Biol Chem ; 292(37): 15468-15480, 2017 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-28765283

RESUMEN

Under oxygen-limiting conditions, the marine bacterium Dinoroseobacter shibae DFL12T generates energy via denitrification, a respiratory process in which nitric oxide (NO) is an intermediate. Accumulation of NO may cause cytotoxic effects. The response to this nitrosative (NO-triggered) stress is controlled by the Crp/Fnr-type transcriptional regulator DnrF. We analyzed the response to NO and the mechanism of NO sensing by the DnrF regulator. Using reporter gene fusions and transcriptomics, here we report that DnrF selectively repressed nitrate reductase (nap) genes, preventing further NO formation. In addition, DnrF induced the expression of the NO reductase genes (norCB), which promote NO consumption. We used UV-visible and EPR spectroscopy to characterize heme binding to DnrF and subsequent NO coordination. DnrF detects NO via its bound heme cofactor. We found that the dimeric DnrF bound one molecule of heme per subunit. Purified recombinant apo-DnrF bound its target promoter sequences (napD, nosR2, norC, hemA, and dnrE) in electromobility shift assays, and we identified a specific palindromic DNA-binding site 5'-TTGATN4ATCAA-3' in these target sequences via mutagenesis studies. Most importantly, successive addition of heme as well as heme and NO to purified recombinant apo-DnrF protein increased affinity of the holo-DnrF for its specific binding motif in the napD promoter. On the basis of these results, we propose a model for the DnrF-mediated NO stress response of this marine bacterium.


Asunto(s)
Organismos Acuáticos/fisiología , Proteínas Bacterianas/metabolismo , Hemo/metabolismo , Nitrato-Reductasa/metabolismo , Óxido Nítrico/metabolismo , Regiones Promotoras Genéticas , Rhodobacteraceae/fisiología , Transactivadores/metabolismo , Apoproteínas/química , Apoproteínas/genética , Apoproteínas/metabolismo , Organismos Acuáticos/enzimología , Organismos Acuáticos/crecimiento & desarrollo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Sitios de Unión , Dimerización , Ensayo de Cambio de Movilidad Electroforética , Eliminación de Gen , Regulación Bacteriana de la Expresión Génica , Genes Reporteros , Hemo/química , Secuencias Invertidas Repetidas , Cinética , Familia de Multigenes , Mutación , Nitrato-Reductasa/química , Nitrato-Reductasa/genética , Óxido Nítrico/química , Oxidorreductasas/genética , Oxidorreductasas/metabolismo , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo , Regulón , Rhodobacteraceae/enzimología , Rhodobacteraceae/crecimiento & desarrollo , Estrés Fisiológico , Transactivadores/química , Transactivadores/genética
9.
Angew Chem Int Ed Engl ; 57(5): 1366-1370, 2018 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-29227566

RESUMEN

Approaching protein structural dynamics and protein-protein interactions in the cellular environment is a fundamental challenge. Owing to its absolute sensitivity and to its selectivity to paramagnetic species, site-directed spin labeling (SDSL) combined with electron paramagnetic resonance (EPR) has the potential to evolve into an efficient method to follow conformational changes in proteins directly inside cells. Until now, the use of nitroxide-based spin labels for in-cell studies has represented a major hurdle because of their short persistence in the cellular context. The design and synthesis of the first maleimido-proxyl-based spin label (M-TETPO) resistant towards reduction and being efficient to probe protein dynamics by continuous wave and pulsed EPR is presented. In particular, the extended lifetime of M-TETPO enabled the study of structural features of a chaperone in the absence and presence of its binding partner at endogenous concentration directly inside cells.


Asunto(s)
Óxidos de Nitrógeno/química , Oocitos/metabolismo , Proteínas de Xenopus/química , Animales , Espectroscopía de Resonancia por Spin del Electrón , Maleimidas/química , Chaperonas Moleculares/química , Chaperonas Moleculares/metabolismo , Mutagénesis Sitio-Dirigida , Nitrato-Reductasa/química , Nitrato-Reductasa/genética , Nitrato-Reductasa/metabolismo , Marcadores de Spin , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo , Xenopus laevis/crecimiento & desarrollo
10.
Biochemistry ; 56(41): 5582-5592, 2017 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-28520412

RESUMEN

An in silico model for the 1:1 ferredoxin (Fd)/nitrate reductase (NR) complex, using the known structure of Synechocystis sp. PCC 6803 Fd and the in silico model of Synechococcus sp. PCC 7942 NR, is used to map the interaction sites that define the interface between Fd and NR. To test the electrostatic interactions predicted by the model complex, five positively charged NR amino acids (Arg43, Arg46, Arg197, Lys201, and Lys614) and a negatively charged amino acid (Glu219) were altered using site-directed mutagenesis and characterized by activity measurements, metal analysis, and electron paramagnetic resonance (EPR) studies. All of the charge replacement variants retained wild-type levels of activity with reduced methyl viologen (MV), but a significant decrease in activity was observed for the R43Q, R46Q, K201Q, and K614Q variants when reduced Fd served as the electron donor. EPR analysis as well as the Fe and Mo analyses showed that loss of activity observed with these variants was not the consequence of perturbation of the Mo center or [4Fe-4S] cluster. Therefore, the loss of the Fd-linked specific activity observed with these variants can be explained only by invoking a role for Arg43, Arg46, Lys201, and Lys614 in Fd binding. The R43Q, R46Q, K201Q, and K614Q NR variants also showed a decreased binding affinity for Fd, compared to that of wild-type NR, supporting a key role of these four positively charged residues in the productive binding of Fd.


Asunto(s)
Ferredoxinas/metabolismo , Modelos Moleculares , Nitrato-Reductasa/metabolismo , Synechococcus/metabolismo , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Sitios de Unión , Biología Computacional , Bases de Datos de Proteínas , Espectroscopía de Resonancia por Spin del Electrón , Sistemas Especialistas , Ferredoxinas/química , Hierro/análisis , Simulación del Acoplamiento Molecular , Molibdeno/análisis , Mutagénesis Sitio-Dirigida , Mutación , Nitrato-Reductasa/química , Nitrato-Reductasa/genética , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Electricidad Estática , Synechococcus/enzimología
11.
Biochim Biophys Acta ; 1857(9): 1506-1513, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27060250

RESUMEN

We report the first direct (unmediated) catalytic electrochemistry of a eukaryotic nitrate reductase (NR). NR from the filamentous fungus Neurospora crassa, is a member of the mononuclear molybdenum enzyme family and contains a Mo, heme and FAD cofactor which are involved in electron transfer from NAD(P)H to the (Mo) active site where reduction of nitrate to nitrite takes place. NR was adsorbed on an edge plane pyrolytic graphite (EPG) working electrode. Non-turnover redox responses were observed in the absence of nitrate from holo NR and three variants lacking the FAD, heme or Mo cofactor. The FAD response is due to dissociated cofactor in all cases. In the presence of nitrate, NR shows a pronounced cathodic catalytic wave with an apparent Michaelis constant (KM) of 39µM (pH7). The catalytic cathodic current increases with temperature from 5 to 35°C and an activation enthalpy of 26kJmol(-1) was determined. In spite of dissociation of the FAD cofactor, catalytically activity is maintained.


Asunto(s)
Neurospora crassa/enzimología , Nitrato-Reductasa/química , Catálisis , Electroquímica , Concentración de Iones de Hidrógeno , Oxidación-Reducción , Oxígeno/farmacología , Temperatura
12.
J Phycol ; 53(5): 1035-1043, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28650572

RESUMEN

Ulva spp. dominates green tides around the world, which are occurring at an accelerated rate. The competitive nitrogen assimilation efficiency in Ulva is suggested to result in ecological success against other seaweeds. However, molecular characterization of genes involved in nitrogen assimilation has not been conducted. Here, we describe the identification of the nitrate reductase (NR) gene from a green seaweed Ulva prolifera, an alga which is responsible for the world's largest green tide in the Yellow Sea. Using rapid amplification of cDNA ends and genome walking, the NR gene from U. prolifera (UpNR) was cloned, which consisted of six introns and seven exons encoding 863 amino acids. According to sequence alignment, the NR in U. prolifera was shown to possess all five essential domains and 21 key invariant residues in plant NRs. The GC content of third codon position of UpNR (82.75%) was as high as those of green microalgae, and the intron number supported a potential loss issue from green microalga to land plant. Real-time quantitative PCR results showed that UpNR transcript level was induced by nitrate and repressed by ammonium, which could not be removed by addition of extra nitrate, indicating that U. prolifera preferred ammonium to nitrate. Urea would not repress NR transcription by itself, while it weakened the induction effect of nitrate, implying it possibly inhibited nitrate uptake rather than nitrate reduction. These results suggest the use of UpNR as a gene-sensor to probe the N assimilation process in green tides caused by Ulva.


Asunto(s)
Proteínas Algáceas/genética , Nitrato-Reductasa/genética , Ulva/genética , Proteínas Algáceas/química , Proteínas Algáceas/metabolismo , Secuencia de Aminoácidos , China , Nitrato-Reductasa/química , Nitrato-Reductasa/metabolismo , Filogenia , Algas Marinas/genética , Algas Marinas/metabolismo , Alineación de Secuencia , Ulva/metabolismo
13.
J Biol Chem ; 290(41): 25164-73, 2015 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-26297003

RESUMEN

We test the hypothesis that pyranopterin (PPT) coordination plays a critical role in defining molybdenum active site redox chemistry and reactivity in the mononuclear molybdoenzymes. The molybdenum atom of Escherichia coli nitrate reductase A (NarGHI) is coordinated by two PPT-dithiolene chelates that are defined as proximal and distal based on their proximity to a [4Fe-4S] cluster known as FS0. We examined variants of two sets of residues involved in PPT coordination: (i) those interacting directly or indirectly with the pyran oxygen of the bicyclic distal PPT (NarG-Ser(719), NarG-His(1163), and NarG-His(1184)); and (ii) those involved in bridging the two PPTs and stabilizing the oxidation state of the proximal PPT (NarG-His(1092) and NarG-His(1098)). A S719A variant has essentially no effect on the overall Mo(VI/IV) reduction potential, whereas the H1163A and H1184A variants elicit large effects (ΔEm values of -88 and -36 mV, respectively). Ala variants of His(1092) and His(1098) also elicit large ΔEm values of -143 and -101 mV, respectively. An Arg variant of His(1092) elicits a small ΔEm of +18 mV on the Mo(VI/IV) reduction potential. There is a linear correlation between the molybdenum Em value and both enzyme activity and the ability to support anaerobic respiratory growth on nitrate. These data support a non-innocent role for the PPT moieties in controlling active site metal redox chemistry and catalysis.


Asunto(s)
Escherichia coli/enzimología , Molibdeno/química , Nitrato-Reductasa/química , Nitrato-Reductasa/metabolismo , Pterinas/metabolismo , Dominio Catalítico , Electroquímica , Modelos Moleculares , Molibdeno/metabolismo , Mutagénesis Sitio-Dirigida , Nitrato-Reductasa/genética , Oxidación-Reducción
14.
Acc Chem Res ; 48(11): 2875-84, 2015 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-26509703

RESUMEN

It is remarkable how nature has been able to construct enzymes that, despite sharing many similarities, have simple but key differences that tune them for completely different functions in living cells. Periplasmic nitrate reductase (Nap) and formate dehydrogenase (Fdh) from the DMSOr family are representative examples of this. Both enzymes share almost identical three-dimensional protein foldings and active sites, in terms of coordination number, geometry and nature of the ligands. The substrates of both enzymes (nitrate and formate) are polyatomic anions that also share similar charge and stereochemistry. In terms of the catalytic mechanism, both enzymes have a common activation mechanism (the sulfur-shift mechanism) that ensures a constant coordination number around the metal ion during the catalytic cycle. In spite of these similarities, they catalyze very different reactions: Nap abstracts an oxygen atom from nitrate releasing nitrite, whereas FdH catalyzes a hydrogen atom transfer from formate and releases carbon dioxide. In this Account, a critical analysis of structure, function, and catalytic mechanism of the molybdenum enzymes periplasmic nitrate reductase (Nap) and formate dehydrogenase (Fdh) is presented. We conclude that the main structural driving force that dictates the type of reaction, catalyzed by each enzyme, is a key difference on one active site residue that is located in the top region of the active sites of both enzymes. In both enzymes, the active site is centered on the metal ion of the cofactor (Mo in Nap and Mo or W in Fdh) that is coordinated by four sulfur atoms from two pyranopterin guanosine dinucleotide (PGD) molecules and by a sulfido. However, while in Nap there is a Cys directly coordinated to the Mo ion, in FdH there is a SeCys instead. In Fdh there is also an important His that interacts very closely with the SeCys, whereas in Nap the same position is occupied by a Met. The role of Cys in Nap and SeCys in FdH is similar in both enzymes; however, Met and His have different roles. His participates directly on catalysis, and it is therefore detrimental for the catalytic cycle of FdH. Met only participates in substrate binding. We concluded that this small but key difference dictates the type of reaction that is catalyzed by each enzyme. In addition, it allows explaining why formate can bind in the Nap active site in the same way as the natural substrate (nitrate), but the reaction becomes stalled afterward.


Asunto(s)
Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/ultraestructura , Formiato Deshidrogenasas/química , Formiato Deshidrogenasas/ultraestructura , Hidrogenasas/química , Hidrogenasas/ultraestructura , Complejos Multienzimáticos/química , Complejos Multienzimáticos/ultraestructura , Nitrato-Reductasa/química , Nitrato-Reductasa/ultraestructura , Desulfovibrio desulfuricans , Modelos Químicos
15.
Biochim Biophys Acta ; 1837(2): 277-86, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24212053

RESUMEN

In Rhodobacter sphaeroides periplasmic nitrate reductase NapAB, the major Mo(V) form (the "high g" species) in air-purified samples is inactive and requires reduction to irreversibly convert into a catalytically competent form (Fourmond et al., J. Phys. Chem., 2008). In the present work, we study the kinetics of the activation process by combining EPR spectroscopy and direct electrochemistry. Upon reduction, the Mo (V) "high g" resting EPR signal slowly decays while the other redox centers of the protein are rapidly reduced, which we interpret as a slow and gated (or coupled) intramolecular electron transfer between the [4Fe-4S] center and the Mo cofactor in the inactive enzyme. Besides, we detect spin-spin interactions between the Mo(V) ion and the [4Fe-4S](1+) cluster which are modified upon activation of the enzyme, while the EPR signatures associated to the Mo cofactor remain almost unchanged. This shows that the activation process, which modifies the exchange coupling pathway between the Mo and the [4Fe-4S](1+) centers, occurs further away than in the first coordination sphere of the Mo ion. Relying on structural data and studies on Mo-pyranopterin and models, we propose a molecular mechanism of activation which involves the pyranopterin moiety of the molybdenum cofactor that is proximal to the [4Fe-4S] cluster. The mechanism implies both the cyclization of the pyran ring and the reduction of the oxidized pterin to give the competent tricyclic tetrahydropyranopterin form.


Asunto(s)
Coenzimas/metabolismo , Metaloproteínas/metabolismo , Molibdeno/metabolismo , Nitrato-Reductasa/metabolismo , Periplasma/enzimología , Pteridinas/metabolismo , Rhodobacter sphaeroides/enzimología , Coenzimas/química , Técnicas Electroquímicas , Espectroscopía de Resonancia por Spin del Electrón , Activación Enzimática , Iones , Proteínas Hierro-Azufre/metabolismo , Cinética , Ligandos , Metaloproteínas/química , Modelos Moleculares , Cofactores de Molibdeno , Nitrato-Reductasa/química , Oxidación-Reducción , Pteridinas/química , Pterinas/química , Pterinas/metabolismo , Marcadores de Spin , Temperatura
16.
Fungal Genet Biol ; 80: 10-8, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25914160

RESUMEN

We established an expression and purification procedure for recombinant protein production in Neurospora crassa (N. crassa). This Strep-tag® based system was successfully used for purifying recombinant N. crassa nitrate reductase (NR), whose enzymatic activity was compared to recombinant N. crassa NR purified from Escherichia coli. The purity of the two different NR preparations was similar but NR purified from N. crassa showed a significantly higher nitrate turnover rate. Two phosphorylation sites were identified for NR purified from the endogenous expression system. We conclude that homologous expression of N. crassa NR yields a higher active enzyme and propose that NR phosphorylation causes enhanced enzymatic activity.


Asunto(s)
Neurospora crassa/genética , Nitrato-Reductasa/genética , Nitrato-Reductasa/aislamiento & purificación , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Anticuerpos Monoclonales/química , Escherichia coli , Expresión Génica , Vectores Genéticos , Mutación , Neurospora crassa/metabolismo , Nitrato-Reductasa/química , Fosforilación
17.
J Biol Inorg Chem ; 20(2): 385-93, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24986777

RESUMEN

Nitrate reductase (NR) from the plant Arabidopsis thaliana has been employed in the development of an amperometric nitrate biosensor that functions at physiological pH. The anion anthraquinone-2-sulfonate (AQ) is used as an effective artificial electron transfer partner for NR at a glassy carbon (GC) electrode. Nitrate is enzymatically reduced to nitrite and the oxidized form of NR is electrochemically reduced by the hydroquinone form of the mediator (AQH2). The GC/NR electrode shows a pronounced cathodic wave for nitrate reduction and the catalytic current increases linearly in the nitrate concentration range of 10-400 µM with a correlation coefficient of 0.989. Using an amperometric method, a low detection limit of 0.76 nM (S/N = 3) was achieved. The practical application of the present electrochemical biosensor was demonstrated by the determination of nitrate concentration in natural water samples and the results agreed well with a standard spectroscopic method.


Asunto(s)
Técnicas Biosensibles , Nitrato-Reductasa/química , Nitratos/aislamiento & purificación , Arabidopsis/química , Arabidopsis/enzimología , Hidroquinonas/química , Nitratos/química
18.
J Biol Inorg Chem ; 20(2): 323-35, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25698503

RESUMEN

Modeling of molybdoenzymes began even before the knowledge of the three-dimensional structure of these enzymes. The theoretical and experimental knowledge on these enzymes is vast and newer investigation is regularly pursued to understand the electronic aspect of these proteins using computational means. The present review deals with some unique observation regarding the structure, function and reactivity of some models and native proteins in rationalizing the choice of diverse substrates in seemingly similar enzymes such as Nap (nitrate reductase) and Fdh (formate dehydrogenase) and the dual form of a specific substrate of an enzyme like trimethylamine N-oxide reductase (TAMOR) and providing the electronic reason for the inhibition in the oxypurinol-inhibited xanthine oxidase (XO).


Asunto(s)
Sistema Enzimático del Citocromo P-450/química , Formiato Deshidrogenasas/química , Molibdeno/química , Nitrato-Reductasa/química , Xantina Oxidasa/química , Cinética , Modelos Teóricos , Conformación Molecular , Óxido Nítrico/química , Conformación Proteica , Especificidad por Sustrato
19.
J Biol Inorg Chem ; 20(2): 277-86, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25578809

RESUMEN

14-3-3 proteins represent a family of ubiquitous eukaryotic proteins involved in numerous signal transduction processes and metabolic pathways. One important 14-3-3 target in higher plants is nitrate reductase (NR), whose activity is regulated by different physiological conditions. Intra-molecular electron transfer in NR is inhibited following 14-3-3 binding to a conserved phospho-serine motif located in hinge 1, a surface exposed loop between the catalytic molybdenum and central heme domain. Here we describe a novel 14-3-3 binding site within the NR N-terminus, an acidic motif conserved in NRs of higher plants, which significantly contributes to 14-3-3-mediated inhibition of NR. Deletion or mutation of the N-terminal acidic motif resulted in a significant loss of 14-3-3 mediated inhibition of Ser534 phosphorylated NR-Mo-heme (residues 1-625), a previously established model of NR regulation. Co-sedimentation and crosslinking studies with NR peptides comprising each of the two binding motifs demonstrated direct binding of either peptide to 14-3-3. Surface plasmon resonance spectroscopy disclosed high-affinity binding of 14-3-3ω to the well-known phospho-hinge site and low-affinity binding to the N-terminal acidic motif. A binding groove-deficient 14-3-3ω variant retained interaction to the acidic motif, but lost binding to the phospho-hinge motif. To our knowledge, NR is the first enzyme that harbors two independent 14-3-3 binding sites with different affinities, which both need to be occupied by 14-3-3ω to confer full inhibition of NR activity under physiological conditions.


Asunto(s)
Proteínas 14-3-3/metabolismo , Arabidopsis/enzimología , Nitrato-Reductasa/metabolismo , Proteínas 14-3-3/química , Proteínas 14-3-3/genética , Arabidopsis/genética , Sitios de Unión , Transporte de Electrón , Mutación , Nitrato-Reductasa/química , Nitrato-Reductasa/genética , Unión Proteica , Homología de Secuencia de Aminoácido
20.
Biochemistry ; 53(28): 4549-56, 2014 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-24960296

RESUMEN

We have investigated the role of redox cooperativity in defining the functional relationship among the three membrane-associated prosthetic groups of Escherichia coli nitrate reductase A: the two hemes (bD and bP) of the membrane anchor subunit (NarI) and the [3Fe-4S] cluster (FS4) of the electron-transfer subunit (NarH). Previously published analyses of potentiometric titrations have exhibited the following anomalous behaviors: (i) fits of titration data for heme bp and the [3Fe-4S] cluster exhibited two apparent components; (ii) heme bD titrated with an apparent electron stoichiometry (n) of <1.0; and (iii) the binding of quinol oxidation inhibitors shifted the reduction potentials of both hemes despite there being only a single quinol oxidation site (Q-site) in close juxtaposition with heme bD. Furthermore, both hemes appeared to be affected despite the absence of major structural shifts upon inhibitor binding, as judged by X-ray crystallography, or evidence of a second Q-site in the vicinity of heme bP. In a re-examination of the redox behavior of hemes bD and bP and FS4, we have developed a cooperative redox model of cofactor interaction. We show that anticooperative interactions provide an explanation for the anomalous behavior. We propose that the role of such anticooperative redox behavior in vivo is to facilitate transmembrane electron transfer across an energy-conserving membrane against an electrochemical potential.


Asunto(s)
Proteínas de Escherichia coli/química , Escherichia coli/enzimología , Hemo/química , Modelos Químicos , Nitrato-Reductasa/química , Cristalografía por Rayos X , Oxidación-Reducción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA