Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 227
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
BMC Genomics ; 25(1): 765, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39107708

RESUMEN

Macrobrachium nipponense is an important commercial freshwater species in China. However, the ability of alkali tolerance of M. nipponense is insufficient to culture in the major saline-alkali water source in China. Thus, it is urgently needed to perform the genetic improvement of alkali tolerance in this species. In the present study, we aimed to analyse the effects of alkali treatment on gills in this species after 96 h alkalinity exposure under the alkali concentrations of 0 mmol/L, 4 mmol/L, 8 mmol/L, and 12 mmol/L through performing the histological observations, measurement of antioxidant enzymes, metabolic profiling analysis, and transcriptome profiling analysis. The results of the present study revealed that alkali treatment stimulated the contents of malondialdehyde, glutathione, glutathione peroxidase in gills, indicating these antioxidant enzymes plays essential roles in the protection of body from the damage, caused by the alkali treatment. In addition, high concentration of alkali treatment (> 8 mmol/L) resulted in the damage of gill membrane and haemolymph vessel, affecting the normal respiratory function of gill. Metabolic profiling analysis revealed that Metabolic pathways, Biosynthesis of secondary metabolites, Biosynthesis of plant secondary metabolites, Microbial metabolism in diverse environments, Biosynthesis of amino acids were identified as the main enriched metabolic pathways of differentially expressed metabolites, which are consistent with the previous publications, treated by the various environmental factors. Transcriptome profiling analyses revealed that the alkali concentration of 12 mmol/L has more regulatory effects on the changes of gene expression than the other alkali concentrations. KEGG analysis revealed that Phagosome, Lysosome, Glycolysis/Gluconeogenesis, Purine Metabolism, Amino sugar and nucleotide sugar metabolism, and Endocytosis were identified as the main enriched metabolic pathways in the present study, predicting these metabolic pathways may be involved in the adaption of alkali treatment in M. nipponense. Phagosome, Lysosome, Purine Metabolism, and Endocytosis are immune-related metabolic pathways, while Glycolysis/Gluconeogenesis, and Amino sugar and nucleotide sugar metabolism are energy metabolism-related metabolic pathways. Quantitative PCR analyses of differentially expressed genes (DEGs) verified the accuracy of the RNA-Seq. Alkali treatment significantly stimulated the expressions of DEGs from the metabolic pathways of Phagosome and Lysosome, suggesting Phagosome and Lysosome play essential roles in the regulation of alkali tolerance in this species, as well as the genes from these metabolic pathways. The present study identified the effects of alkali treatment on gills, providing valuable evidences for the genetic improvement of alkali tolerance in M. nipponense.


Asunto(s)
Álcalis , Branquias , Palaemonidae , Animales , Branquias/metabolismo , Branquias/efectos de los fármacos , Palaemonidae/genética , Palaemonidae/efectos de los fármacos , Palaemonidae/metabolismo , Perfilación de la Expresión Génica , Transcriptoma/efectos de los fármacos , Redes y Vías Metabólicas/efectos de los fármacos
2.
Fish Shellfish Immunol ; 124: 82-91, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35367377

RESUMEN

Banana (Musa acuminata) blossom contains high nutritional value and bioactive compounds. In this study, Macrobrachium rosenbergii were fed with diets containing banana blossom powder (BBP) at 10 and 20 g kg-1, hot-banana blossom (BBH) extract at 10 and 20 g kg-1, and the basal diet for 56 days. The growth performance, physiological response and immune parameters were evaluated. The results showed that a significantly higher percentage weight gain (PWG) and percentage length gain (PLG) in prawns fed with BBH diet. The feed efficiency (FE) significantly increased in prawns fed BBP. The prawn fed both BBH and BBP diet showed higher survival rate than control group. The prawn fed with BBH showed a significant increase in total haemocyte count (THC) and different haemocyte count (DHC), whereas phenoloxidase (PO) activity and respiratory bursts (RBs) significant increase in prawns fed both BBP and BBH diet. Furthermore, M. rosenbergii fed with both BBP and BBH diets showed significantly higher phagocytic activity and clearance efficiency against Lactococcus garvieae infection. At the end of the 56 days of feeding trial, the susceptibility of prawns to L. garvieae infection and hypothermal (18 °C) stress were evaluated. The results showed that prawns fed BBH diets had a significantly higher survival rate against L. garvieae than those of fed with the basal diet. Anti-hypothermal stress was observed in prawns fed both BBP and BBH diets showing no significant difference in haemolymph glucose in prawns subjected to 18 °C and 28 °C, whereas the norepinephrine level in haemolymph of prawns fed with BBH diets subjected to 18 °C was significantly lower than in prawns subjected to 28 °C. In summary, we recommend addition of hot-banana blossom extract to the diet of M. rosenbergii at 20 g kg-1 to promote growth performance, improve physiological function, enhance immunity, increase anti-hypothermal stress, and to increase resistance against L. gavieae.


Asunto(s)
Musa , Palaemonidae , Extractos Vegetales , Animales , Resistencia a la Enfermedad , Flores/química , Musa/química , Palaemonidae/efectos de los fármacos , Palaemonidae/inmunología , Extractos Vegetales/farmacología
3.
Ecotoxicol Environ Saf ; 214: 112067, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33640724

RESUMEN

Deltamethrin (DM) is a synthetic pyrethroid used for agricultural purposes to control insects. However, its extensive use contaminates the aquatic environment and results in serious health problems in aquatic organisms. Knowledge about the toxic effect of DM in freshwater prawns is limited; therefore, this study aims to assess the toxicity of DM in Macrobrachium rosenbergii based on multiple biomarkers. Four-day acute toxicity tests showed that DM was highly toxic to M. rosenbergii with the 24 h, 48 h, 72 h and 96 h LC50 values to be 1.919, 0.603, 0.539, and 0.449 µg/L, respectively. According to 96 h LC50, prawns were exposed to DM at three concentrations (0.02, 0.08, and 0.32 µg/L) for 4 days, and then moved into fresh water for decontamination to investigate the toxic effect of DM in M. rosenbergii. At low concentration (0.02 µg/L and 0.08 µg/L), DM did not cause obvious histopathological damage to hepatopancreas and gill tissue, while at high concentration (0.32 µg/L), the histopathological harm was serious and the damage did not recover to the initial level after 7-day decontamination. 0.02 µg/L DM exposure did not induce significant changes in most of the biomarkers except the increased lactate dehydrogenase (LDH) activity, lactic acid (LD) level, and the first increased then decreased mRNA expression of immune-related genes, indicating the stimulation of DM on energy production and immunity. 0.08 µg/L and 0.32 µg/L DM exposure resulted in varying degrees of damage on prawns, but overall, their toxic effects showed similar trends based on the biomarkers. Increase in malonaldehyde (MDA) and hydrogen peroxide (H2O2) content and decrease in superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activity after DM exposure demonstrated the oxidative stress caused by DM. The significantly increased acid phosphatase (ACP), alkaline phosphatase (AKP), LDH activity and LD level indicated hepatopancreatic dysfunction and respiration disruption. The first increased and then decreased expression pattern of immune-related genes indicated the immunosuppression caused by DM. After 7-day decontamination in freshwater, the activity/level of the biomarkers partly recovered. This study revealed the severe toxic effect of DM on Macrobrachium rosenbergii based on multiple biomarkers, providing fundamental knowledge for the establishment of DM toxicity assessment system with proper parameters in freshwater crustaceans.


Asunto(s)
Nitrilos/toxicidad , Palaemonidae/fisiología , Piretrinas/toxicidad , Contaminantes Químicos del Agua/toxicidad , Animales , Organismos Acuáticos/metabolismo , Biomarcadores/metabolismo , Agua Dulce , Branquias/metabolismo , Hepatopáncreas/efectos de los fármacos , Peróxido de Hidrógeno/metabolismo , Malondialdehído/metabolismo , Estrés Oxidativo/efectos de los fármacos , Palaemonidae/efectos de los fármacos , Piretrinas/farmacología , Superóxido Dismutasa/metabolismo
4.
Fish Shellfish Immunol ; 98: 1-9, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31904540

RESUMEN

Tyramine (TA), a biogenic monoamine, plays various important physiological roles including immunological regulation in invertebrates. In this study, the effects of TA on the regulation of immune resistance, carbohydrate metabolism and biogenic monoamine, as well as its signaling pathway in Macrobrachium rosenbergii were determined. Results showed that total haemocyte count, hyaline cells, semigranular cells, and phenoloxidase activity per 50 µL of haemolymph and per granulocyte (the sum of semigranular and granular cells) at 0.5 h as well as phagocytic activity and clearance efficiency to Lactococcus garvieae at 1 h of prawn injected with TA at 1 nmol prawn-1 significantly increased, but the significantly decreased plasma lysozyme activity, phagocytic activity, clearance efficiency, and haemolymph glucose and dopamine were observed in prawn injected with TA at 10 nmol prawn-1 for 0.5 h. Respiratory bursts and haemolymph lactate in two TA-injection treatments at 0.5 h and 0.5-1 h, respectively, were significantly higher than those of the saline control, and in addition, TA depressed dopamine release in a dose-dependent manner after 0.5 h of TA injection. All the examined parameters returned to control levels after prawn injected with TA for 2 h. The inhibited effect of TA (at 10 nmol prawn-1 injection) on the phagocytic activity and clearance efficiency to pathogens was blocked by prazosin (an α1 adrenoceptors antagonist). For prawn received TA for 1 h then challenged with Lactococcus garvieae at 2 × 105 colony-forming units prawn-1, the survival ratio of TA 1 nmol prawn-1-injected prawn significantly increased by 20%, compared to the saline-challenged control or TA 10 nmol prawn-1-injected prawn after 144 h of challenge. These results suggested that the level of dopamine release suppression regulated by TA resulted in the immunoenhancing or immunosuppressive effects in prawn, and the signaling pathways of TA in mediating immune function were through octopamine (OA)/TA receptors.


Asunto(s)
Metabolismo de los Hidratos de Carbono/efectos de los fármacos , Catecolaminas/metabolismo , Inmunidad Innata/efectos de los fármacos , Palaemonidae/efectos de los fármacos , Tiramina/administración & dosificación , Animales , Lactococcus/fisiología , Palaemonidae/inmunología
5.
Ecotoxicol Environ Saf ; 204: 111096, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32805503

RESUMEN

The hepatopancreas is the digestive organ of crustaceans, and plays important roles also in the synthesis and secretion of sexual hormones, immunological defenses and xenobiotic detoxification. Although the importance of this organ in crustaceans cannot be underestimated, the effects of ultraviolet B (UVB) radiation on hepatopancreas are poorly understood. Moreover, Macrobrachium prawns, have a transparent carapace, which make them more susceptible to UVB radiation, since their internal organs, such as hepatopancreas, are easily reached by solar radiation. Therefore, we aimed to evaluate UVB radiation toxicity on the morphology and morphometry of hepatopancreatic epithelial cells, and to investigate these UVB effects in subcellular compartments of the ecologically-important freshwater decapod, Macrobrachium olfersii. Hepatopancreas from the UVB-irradiated group showed a granular cytoplasm, with non-defined cell limits. Morphometric analyses revealed that the UVB-irradiated group exhibited a higher frequency of fibrillar (F-cell), resorptive (R-cell) and midget (M-cell), and decreased the blister-like (B-cell). It was also observed increased vacuole frequencies and increased F-, B- and R-cell volumes in the UVB-irradiated group. In addition, it was observed increased B-cell vacuolar volumes and decreased R-cell vacuolar volumes. Ultrastructural alterations occurred in subcellular compartments in F- and R-cells, e.g. loss of mitochondrial crests, morphologically compatible with mitochondrial fission, rough endoplasmic reticulum cisternae dilation, dilation of Golgi lamellar sacs, and increased vacuole and concentric membrane formation in the UVB-irradiated group. Our data showed that the hepatopancreas is an important target of UVB radiation, as demonstrated by a series of organ-specific morphological and morphometric impairments. Therefore, cell damage caused by UVB radiation can compromise metabolic functions in epithelial cells from the hepatopancreas, potentially affecting absorption, secretion and digestion processes, vitellogenin synthesis, immune responses and xenobiotic detoxification.


Asunto(s)
Decápodos/efectos de la radiación , Hepatopáncreas/efectos de la radiación , Rayos Ultravioleta , Animales , Decápodos/ultraestructura , Células Epiteliales , Epitelio , Agua Dulce/química , Hepatopáncreas/efectos de los fármacos , Hepatopáncreas/ultraestructura , Dinámicas Mitocondriales , Palaemonidae/efectos de los fármacos , Vitelogeninas/metabolismo , Xenobióticos/metabolismo
6.
Ecotoxicol Environ Saf ; 189: 110046, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31835043

RESUMEN

Ammonia nitrogen elevated is one of the commonest problem in the aquatic system, which caused a great threat to the survival and growth of prawn. However, little is know about the ammonia metabolism and detoxification strategy of prawn. In this study, the effects of ammonia-N (0, 0.108, 0.216, 0.324, or 0.54 mg L-1) on growth and metabolizing enzymes in hepatopancreas of Macrobrachium rosenbergii, including glutamine synthetase (GS), alanine aminotransferase (ALT), aspartate aminotransferase (AST), and glutamate dehydrogenase (GDH), were investigated. The metabolome of its muscle was also analyzed after exposure to ammonia-N (0, 0.108, 0.324, or 0.54 mg L-1) for 20 days. The survival rate of M. rosenbergii decreased significantly after treatment with 0.54 mg L-1 ammonia-N compared with that in the other groups. However, ammonia-N had no significant effect on the growth of the river prawn after exposure for 20 days. GS activity increased significantly after exposure to 0.108 mg L-1 ammonia-N compared with the control and other ammonia-N-treated groups. Hepatopancreatic GDH activity was lower in the prawns treated with 0.216, 0.324, or 0.54 mg L-1 ammonia-N than in the control by 34.70%, 38.80%, or 41.94%, respectively. Ammonia-N had no significant effect on hepatopancreatic AST or ALT activity. Urea nitrogen was higher in the prawns treated with 0.216 mg L-1 ammonia-N than in the control or those treated with 0.54 mg L-1 ammonia-N. Ammonia-N had significant effects on the lipid, carbohydrate. and protein metabolism of M. rosenbergii, including purine metabolism, amino sugar and nucleotide sugar metabolism, α-linolenic acid metabolism, arginine and proline metabolism, glutathione metabolism, and phosphonate and phosphate metabolism, and on the terpenoid biosynthesis, lysine degradation, and lysine biosynthesis pathways. High concentrations of ammonia-N stress increased the content of glutamate and arginine, which may participate in the urea cycle, which synthesizes glutamine or urea to eliminate ammonia toxicity.


Asunto(s)
Amoníaco/toxicidad , Hepatopáncreas/enzimología , Metaboloma/efectos de los fármacos , Nitrógeno/toxicidad , Palaemonidae/efectos de los fármacos , Contaminantes Químicos del Agua/toxicidad , Alanina Transaminasa/metabolismo , Animales , Aspartato Aminotransferasas/metabolismo , Glutamato Deshidrogenasa/metabolismo , Glutamato-Amoníaco Ligasa/metabolismo , Glutamina/biosíntesis , Hepatopáncreas/efectos de los fármacos , Palaemonidae/enzimología , Palaemonidae/crecimiento & desarrollo , Urea/metabolismo
7.
Ecotoxicol Environ Saf ; 190: 110086, 2020 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-31864119

RESUMEN

Glyphosate-based herbicides (GBH), including Roundup®, are the most used herbicides in agricultural and non-agricultural areas, which can reach aquatic environments through drift during application or surface runoff. Some studies, mostly in fish, demonstrated that GBH caused oxidative stress in non-target animals. However, only few information is available on the GBH effects in the antioxidant and stress proteins of many other organisms, such as freshwater crustaceans. Thus, we aimed to investigate the effects of environmentally relevant GBH concentrations on the relative transcript expression (RTE) of the superoxide dismutase (sod1), catalase (cat), selenium-dependent glutathione peroxidase (gpx), glutathione-S-transferase (gst), thioredoxin (txn), heat shock protein (hsp70 and hsp90) in the hepatopancreas of the ecologically important freshwater prawn Macrobrachium potiuna. Moreover, this study aimed to assess the gender-differences responses to GBH exposure. Male and female prawns were exposed to three Roundup WG® concentrations (0.0065, 0.065 and 0.28 mg of glyphosate/L) and a control group (0.0 mg/L) for 7 and 14 days. In general, males had an under-expression of the studied genes, indicating an oxidative stress and possible accumulation of ROS in the hepatopancreas. In the opposite, females had an overexpression of the same genes, indicating a more robust antioxidant system, in order to cope with the possible ROS increase after Roundup WG® exposure. Therefore, results confirmed that gender could be a confounding factor in ecotoxicological assessment of GBH effects. Additionally, this work highlights that sod1, cat, gpx, gst, txn, hsp70 and hsp90 gene expressions seem to be useful biomarkers to investigate the oxidative stress caused by Roundup WG® in Macrobrachium sp.


Asunto(s)
Glicina/análogos & derivados , Herbicidas/toxicidad , Palaemonidae/fisiología , Animales , Antioxidantes/metabolismo , Biomarcadores/metabolismo , Catalasa/metabolismo , Decápodos , Femenino , Agua Dulce , Expresión Génica , Glutatión Peroxidasa/metabolismo , Glutatión Transferasa/metabolismo , Glicina/toxicidad , Hepatopáncreas/efectos de los fármacos , Herbicidas/metabolismo , Masculino , Estrés Oxidativo/efectos de los fármacos , Palaemonidae/efectos de los fármacos , Selenio/metabolismo , Superóxido Dismutasa/metabolismo , Glifosato
8.
Ecotoxicol Environ Saf ; 199: 110751, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32446104

RESUMEN

Tonalide or acetyl hexamethyl tetralin (AHTN) is used as a fragrance additive in various household products. Recently, AHTN has drawn attention owing to its negative health effects on aquatic organisms. Data on AHTN toxicity toward aquatic species are limited. Therefore, this study tested the oxidative stress induced by AHTN exposure on the Rhodeinae sinensis Gunther and Macrobrachium nipponense. In this study, malonaldehyde (MDA) content and the activities of acetyl cholinesterase (AchE), superoxide dismutase (SOD), glutathione S-transferase (GST), and catalase (CAT) in R. sinensis Gunther were tested after 30 days of exposure to 30.093, 34.005, 38.426, 43.421, 49.067, 55.444, 62.652, 70.800, and 80.000 µg/L AHTN, respectively. The MDA, AchE, SOD, GST and CAT in M. nipponense were tested after 40 days of exposure to 60.000, 72.000, 86.400, 103.680, 124.416, 149.299, 179.159, 214.991, and 257.989 µg/L AHTN, respectively. In addition, an integrated biomarker response (IBR) index was utilised to evaluate the integrated toxic effects of AHTN on R. sinensis Gunther and M. nipponense. Finally, the predicted no-effect concentrations (PNECs) of AHTN, based on reproduction, biochemistry, survival, chronic toxicity, and acute toxicity endpoints were derived. The results indicated that low concentrations of AHTN can induce significant changes of oxidative stress biomarkers. The no observed effect concentrations (NOECs) of SOD, GST, AchE, CAT, and MDA were 103.680, 72.000, <60.000, 72.000, and <60.000 µg/L for R. sinensis Gunther and 38.426, 43.421, 30.093, 30.093, and 38.426 µg/L for M. nipponense, respectively. The IBR calculation results showed that 149.299 µg/L AHTN caused the highest toxic effect on R. sinensis Gunther after 30 days of exposure, whereas 70.797 µg/L AHTN caused the greatest damage to M. nipponense after 40 days of exposure. The PNECs of AHTN based on the non-traditional endpoints of biochemistry and reproduction were 0.00145 µg/L and 0.000395 µg/L, respectively, which were significantly lower than the PNEC of 2.636 µg/L for traditional endpoint survival. Therefore, the protection of aquatic organisms based on non-traditional toxicity endpoints should be considered in ecological risk assessment.


Asunto(s)
Antioxidantes/metabolismo , Organismos Acuáticos/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Palaemonidae/efectos de los fármacos , Perfumes/toxicidad , Tetrahidronaftalenos/toxicidad , Contaminantes Químicos del Agua/toxicidad , Acetilcolinesterasa/metabolismo , Animales , Organismos Acuáticos/enzimología , Catalasa/metabolismo , Relación Dosis-Respuesta a Droga , Determinación de Punto Final , Glutatión Transferasa/metabolismo , Malondialdehído/metabolismo , Nivel sin Efectos Adversos Observados , Palaemonidae/enzimología , Valor Predictivo de las Pruebas , Superóxido Dismutasa/metabolismo
9.
Arch Environ Contam Toxicol ; 78(2): 245-253, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31858197

RESUMEN

Open-air landfill's may be are considered as a potential source of human environmental exposure to chemical substances such as, polycyclic aromatic hydrocarbons and toxic metals. Due to possible availability of mercury in the environment caused by open landfill emissions, this study evaluates the spatiality and seasonality of macroinvertebrates, in particular shrimps (Macrobrachium amazonicum), exposure to mercury (Hg). Information regarding Hg accumulation in this crustacean may be important for the development of public policies aiming conservation and preservation of ecosystems surrounding landfills in Amazon, and around the world. Sampling occurred quarterly in the following months: November/2015; February/2016; May/2016 and; August/2016. In each of these months, three points were selected: P1, P2 and P3. The samples were processed via acid digestion and the quantification of metal was performed by inductively coupled plasma mass spectrometry. The average concentration of total mercury (T-Hg) was 24.565 ± 6.610 µg kg-1 wet weight, with minimum and maximum limits of 12.742 ± 11.367 (P3) and 35.509 ± 14.761 µg kg-1 wet weight (P1) in November/2015 and August/2016, respectively. The concentration of total mercury (T-Hg) in shrimps was different between points (p = 0.004) and months (p = 0.000). The T-Hg concentrations were significantly higher in May and August 2016, which corresponds to the dry season. The presence of landfills promotes large accumulation of T-Hg in the aquatic biota and represents a risk to human health. However, seasonal changes in T-Hg levels were observed. In the wettest period, bioconcentration factor levels decrease in aquatic organisms.


Asunto(s)
Monitoreo del Ambiente/métodos , Mercurio/análisis , Palaemonidae/efectos de los fármacos , Contaminantes Químicos del Agua/análisis , Animales , Organismos Acuáticos/efectos de los fármacos , Organismos Acuáticos/metabolismo , Bioacumulación , Brasil , Ecosistema , Biomarcadores Ambientales , Mercurio/farmacocinética , Mercurio/toxicidad , Músculos/efectos de los fármacos , Músculos/metabolismo , Palaemonidae/metabolismo , Ríos , Estaciones del Año , Instalaciones de Eliminación de Residuos , Contaminantes Químicos del Agua/farmacocinética , Contaminantes Químicos del Agua/toxicidad
10.
J Exp Biol ; 222(Pt 13)2019 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-31171603

RESUMEN

Most aquatic animals use infochemicals from both conspecifics and heterospecifics to assess local predation risks and enhance predator detection. Released substances from injured conspecifics and other species (chemical alarm cues) are reliable cues to indicate an imminent danger in a specific habitat and often mediate the development of inducible defenses. Amphibian and fish embryos have been shown to acquire this information while at the embryonic stage of development, in relation to the developing nervous system and sensory development. With the exception of Daphnia, there is no information on chemically mediated responses to alarm cues in embryos of any crustacean groups. Therefore, we tested whether embryo exposure to chemical cues simulating predation on conspecifics or heterospecifics (closely related, non-coexisting species), or a mixture of both, alters embryonic developmental time, size and morphology of the first larval instar in Palaemon argentinus (Crustacea: Decapoda). Embryonic exposure to chemical alarm cues from conspecifics shortened the embryonic developmental time and elicited larger larvae with a longer rostrum. Rostrum length of the first larval instar changed independently of their size, thus elongated rostra can be considered a defensive feature. Embryonic developmental time was not altered by chemical alarm cues from either heterospecifics or the mixed cues treatment; however, exposure to these cues resulted in larger larvae compared with the control group. Chemically induced morphological plasticity in larvae in response to alarm cues from con- and heterospecifics suggests that such cues are conserved in palaemonids shrimps, providing embryos with an innate recognition of heterospecific alarm cues as predicted by the phylogenetic relatedness hypothesis.


Asunto(s)
Palaemonidae/crecimiento & desarrollo , Conducta Predatoria , Animales , Señales (Psicología) , Femenino , Larva/efectos de los fármacos , Larva/crecimiento & desarrollo , Larva/fisiología , Rasgos de la Historia de Vida , Palaemonidae/anatomía & histología , Palaemonidae/efectos de los fármacos , Palaemonidae/fisiología , Reconocimiento en Psicología
11.
Fish Shellfish Immunol ; 89: 586-594, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30991147

RESUMEN

Microcystins (MCs), produced by cyanobacteria, can strongly inhibit the activity of protein phosphatase, and exhibit strong hepatotoxicity. Macrobrachium rosenbergii is an important aquaculture economic species. Cyanobacterial blooms occur frequently during the culture of M. rosenbergii. However, the effects of MCs on the M. rosenbergii immune function have not been studied. In the present study, M. rosenbergii were exposed to environment-related concentrations of MC-LR type (0.5 and 5 µg/L) for 3 weeks. Hepatopancreatic histology was investigated, and antioxidant enzymes activity, acid phosphatase, alkaline phosphatase and lysozyme activity in hepatopancreas were also analyzed. Results showed that MC-LR could damage M. rosenbergii hepatopancreas, induce hepatopancreatic apoptosis and antioxidant dysfunctions. The expression profiles of major immune-related genes after MC-LR exposure were also detected. Some genes with antibacterial functions were suppressed, and the expression of apoptosis-related genes were up-regulated. After MC-LR exposure, the cumulative mortality of M. rosenbergii infected with Vibrio vulnificus and Aeromonas hydrophila were much higher than the control in a time-dose dependent manner. These results indicated the potential negative influence of MC-LR on the immune function of M. rosenbergii.


Asunto(s)
Hepatopáncreas/efectos de los fármacos , Inmunidad Innata/efectos de los fármacos , Microcistinas/efectos adversos , Palaemonidae/inmunología , Animales , Hepatopáncreas/enzimología , Hepatopáncreas/ultraestructura , Toxinas Marinas , Microscopía Electrónica de Transmisión , Palaemonidae/efectos de los fármacos
12.
Fish Shellfish Immunol ; 93: 82-89, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31326585

RESUMEN

White spot disease caused by white spot syndrome virus (WSSV) is responsible for harming shrimp aquaculture industry and results in a pandemic throughout the world. Cathelicidin 5 treatment enhanced immune parameters including antioxidant enzyme activity and immune-related genes expression in shrimp Exopalaemon modestus. Shrimp treated with cathelicidin 5 and inoculated with white spot syndrome virus (WSSV) exhibited a significantly lower mortality rate and lower viral VP28 amplification and expression than control. This study addresses the role of cathelicidin 5 in immune stimulatory and antiviral activities that could protect E. modestus from WSSV infection.


Asunto(s)
Adyuvantes Inmunológicos/farmacología , Caimanes y Cocodrilos , Antivirales/farmacología , Catelicidinas/farmacología , Palaemonidae/inmunología , Proteínas de Reptiles/farmacología , Virus del Síndrome de la Mancha Blanca 1/efectos de los fármacos , Animales , Catelicidinas/administración & dosificación , Relación Dosis-Respuesta a Droga , Palaemonidae/efectos de los fármacos , Palaemonidae/virología , Distribución Aleatoria , Proteínas de Reptiles/administración & dosificación , Virus del Síndrome de la Mancha Blanca 1/fisiología
13.
Fish Shellfish Immunol ; 93: 223-231, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31319208

RESUMEN

The oriental river prawn, Macrobrachium nipponense, is an economically and nutritionally important species of the Palaemonidae family of decapod crustaceans. Ammonia is a major aquatic environmental pollutant that negatively affects the health of prawns and their associated commercial productivity. Here, we used high-throughput sequencing techniques for detecting the effects of ammonia stress (22.1 mg/L ammonia-N for 48 h) on gene expression in the hepatopancreas of M. nipponense. We generated 176,228,782 high-quality reads after eliminating adapter sequences and filtering out low-quality reads, which were assembled into 63453 unigenes. Comparative analysis of the expression profiles of the ammonia-treated and control groups identified 887 differentially expressed genes (P < 0.05), including 481 upregulated genes and 406 downregulated genes. Analyses of the GO and KEGG databases revealed significant differences between the two groups in 32 pathways. Immune-related pathways under ammonia stress included Complement and coagulation cascades, Platelet activation, B cell receptor signaling pathway, Antigen processing and presentation, Chemokine signaling pathway, NOD-like receptor signaling pathway, RIG-I-like receptor signaling pathway, T cell receptor signaling pathway and Toll-like receptor signaling pathway. Remarkably, ammonia stress altered the expression patterns of key immune genes (lectin3, syntenin, alpha-2-macroglobulin, cathepsin L, PIM3, serine protease inhibitor, suppressor of cytokine signaling-2 like protein), indicating that ammonia-stress induce immune response. These data provide new insights into the immune response of M. nipponense and pave a new way for fighting ammonia stress. The genes and pathways identified here represent valuable genetic resources for development of molecular markers and genetic breeding studies.


Asunto(s)
Amoníaco/efectos adversos , Proteínas de Artrópodos/genética , Regulación de la Expresión Génica/inmunología , Inmunidad Innata/genética , Palaemonidae/efectos de los fármacos , Transcriptoma/efectos de los fármacos , Contaminantes Químicos del Agua/efectos adversos , Animales , Proteínas de Artrópodos/metabolismo , Perfilación de la Expresión Génica , Hepatopáncreas/efectos de los fármacos , Hepatopáncreas/metabolismo , Palaemonidae/genética , Palaemonidae/metabolismo , Transcriptoma/genética
14.
Fish Shellfish Immunol ; 87: 144-154, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30630047

RESUMEN

The oriental river prawn Macrobrachium nipponense is a highly adaptable, tolerant, and fecund freshwater prawn that inhabits a wide range of aquatic environments. The hepatopancreas of crustaceans is not only a site for secretion of digestive enzymes, and also plays important roles in several metabolic processes, such as lipid and carbohydrate metabolism. It is the main organ for the detoxification and immunity. In this study, high-throughput sequencing techniques were used to detect the effect of nitrite stress (10 mg/L nitrite-N for 48 h) on gene expression in the hepatopancreas of M. nipponense. A total of 13,769 million reads were harvested, and 94,534 transcripts were de novo assembled using Trinity software and produced 56,054 non-redundant transcripts. A total of 825 differentially expressed genes were obtained comparing 48 h nitrite stress with control group. In the analysis of GO and KEGG database, significant differences were found in 49 pathways. Immune-related pathways under nitrite stress included arginine and proline metabolism, glutamate metabolism, Jak-Stat signaling pathway, endocytosis, wnt signaling pathway, RIG-I-like receptor signaling pathway, TGF-beta signaling pathway, GnRH signaling pathway and phagosome. Apoptosis-related pathway was also significantly altered, such as lysosome and apoptosis. Remarkably, nitrite stress altered the expression patterns of key apoptosis genes (tetraspanins-like protein, LAMP, CD63, caspase 3C and Caspase 1) and immune genes (Serine proteinase-like protein, C-type lectin, daf-36, SOCS-2, alpha-2-macroglobulin), confirmed that nitrite-stress induce immune response and eventually even apoptosis. This study provided a new insight into the role of hepatopancreas in crustaceans, and further investigation will continue.


Asunto(s)
Hepatopáncreas/efectos de los fármacos , Nitritos/toxicidad , Palaemonidae/efectos de los fármacos , Contaminantes Químicos del Agua/toxicidad , Animales , Apoptosis/efectos de los fármacos , Proteínas de Artrópodos/metabolismo , Perfilación de la Expresión Génica , Hepatopáncreas/metabolismo , Inmunidad Innata/efectos de los fármacos , Palaemonidae/genética , Palaemonidae/metabolismo , Transducción de Señal , Estrés Fisiológico
15.
Fish Shellfish Immunol ; 89: 603-613, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30902724

RESUMEN

In order to study the effects of Moringa oleifera leaf extract on Macrobrachium rosenbergii under high ammonia exposure, freshwater prawns were randomly divided into five groups: a control group was fed with basal diet, and four treatment groups fed with basal diet supplemented with 0.25%, 0.5% and 1.0% M. oleifera leaf extract and 0.025% Enrofloxacin for 60 days, respectively. Then, freshwater prawns were exposed to high ammonia stress for 72 h and Vibro anguillarum infection. The growth, antioxidant capabilities, related immune genes as well as resistance to infection by V. anguillarum were determined. The results showed that compared with the control group, the weight gain, specific growth rate and protein efficiency rate, haemolymph catalase (CAT), superoxide dismutase (SOD) and inducible nitric oxide synthase (iNOS) increased while feed conversion ratio, haemolymph aspartate aminotransferase, alanine aminotransferase, nitrogen oxide (NO), hepatopancreas heat shock proteins (HSP70), immune deficiency (IMD) expression levels decreased in the group of 0.5% M. oleifera leaf extract before the stress. After ammonia stress, the group of 0.5% M. oleifera leaf extract also could improve the haemolymph SOD, glutathione peroxidase, NO, iNOS, hepatopancreas HSP70 expression levels and reduce haemolymph CAT, hepatopancreas peroxiredoxin 5 and NF kappa B inhibitor alpha expression level compared with the control group. The rate of mortality of the prawns challenged with V. anguillarum was lower in the supplemented groups in comparison with the control group with the lowest being in the group of 0.5% M. oleifera leaf extract. Antioxidant activities as well as biochemical parameters in the enrofloxacin group (0.025%E) were not significantly enhanced both pre and post challenge in comparison with the M. oleifera leaf extract groups, showing the superiority of the natural herb over the synthetic antibiotic. In summary, this study suggested that at an inclusion rate of 0.5%, M. oleifera leaf extract could increase the growth performance, even has positive effects on physiological and immune function and prevents high ammonia stress in the Freshwater prawn, M.rosenbergii.


Asunto(s)
Amoníaco/efectos adversos , Expresión Génica/efectos de los fármacos , Expresión Génica/inmunología , Moringa oleifera/química , Palaemonidae/efectos de los fármacos , Extractos Vegetales/metabolismo , Vibrio/efectos de los fármacos , Alimentación Animal/análisis , Animales , Proteínas de Artrópodos/genética , Proteínas de Artrópodos/metabolismo , Dieta , Suplementos Dietéticos/análisis , Relación Dosis-Respuesta a Droga , Palaemonidae/genética , Palaemonidae/crecimiento & desarrollo , Palaemonidae/inmunología , Extractos Vegetales/administración & dosificación , Hojas de la Planta/química , Distribución Aleatoria , Estrés Fisiológico/efectos de los fármacos , Vibrio/fisiología
16.
Artículo en Inglés | MEDLINE | ID: mdl-30936021

RESUMEN

We examined the effects of exogenous dopamine on gill (Na+, K+)-ATPase activity in vitro in microsomal preparations from juvenile or adult freshwater shrimp, Macrobrachium amazonicum. Dopamine had no effect on enzyme activity in juveniles but stimulated activity in adult shrimp gills by ≈35%. Stimulation of the gill (Na+, K+)-ATPase in adult shrimps by 100 mmol L-1 dopamine was characterized kinetically by varying ATP, MgATP, and Na+ and K+ concentrations, together with inhibition by ouabain. Dopamine stimulated ATP hydrolysis by ≈40% obeying Michaelis-Menten kinetics, reaching VM = 190.5 ±â€¯15.7 nmol Pi min-1 mg-1 protein, KM remaining unaltered. Stimulation by Na+ (≈50%) and K+ (≈25%) revealed distinct kinetic profiles: although KM values were similar, Na+ stimulation followed cooperative kinetics, contrasting with the Michaelian kinetics seen for K+. Stimulation by MgATP increased activity by ≈30% with little change in KM. Similar saturation profiles were seen for ouabain inhibition with very similar calculated KI values. Our findings suggest that dopamine may be involved in hemolymph sodium homeostasis by directly binding to the gill (Na+, K+)-ATPase at a site different from ouabain, thus stimulating enzyme activity in an ontogenetic stage-specific manner. However, dopamine binding does not affect enzyme affinity for cations and ouabain. This is the first report of the direct action of dopamine in stimulating the crustacean gill (Na+, K+)-ATPase.


Asunto(s)
Dopamina/farmacología , Branquias/efectos de los fármacos , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Agua Dulce , Branquias/metabolismo , Palaemonidae/efectos de los fármacos , Palaemonidae/metabolismo , Potasio/metabolismo , Sodio/metabolismo , ATPasa Intercambiadora de Sodio-Potasio/química
17.
Ecotoxicol Environ Saf ; 171: 665-676, 2019 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-30658302

RESUMEN

A key question to be asked when developing regional water quality criteria with scarce toxicity data is whether such data need to be locally derived. To address this, ammonia toxicity data from local aquatic species in the Liao River were compared against data from species native and non-native to China, based on comparisons of the overall trends of species sensitivity distributions and derived water quality criteria. Liao River data were acquired by acute and chronic tests using five local freshwater invertebrate species, and then compiled alongside published data from Chinese national guidelines and international literature. Models of best fit using three species sensitivity distribution approaches (log-logistic, log-normal, and Burr III) did not vary markedly (r2 >0.9), and no specific model provided a best fit across all data sets. The comparisons of the overall trend of species sensitivity distribution curves showed no significant differences at either a national (Chinese native taxa tested in China versus non-native taxa) or regional level (Liao River taxa versus non-Liao River taxa). The comparisons also revealed that the inclusion or exclusions of different ecological groups had little influence on the overall trends of species sensitivity distributions. These findings suggested data on non-local and non-native species, and data from local species tested elsewhere, could be appropriate for guiding the derivation of ammonia water quality criteria for regions such as Liao River. However, caution is needed when using hazardous concentration 5% values in the development of site-specific water quality criteria for a river basin due to the considerable variation observed for ammonia (16.8-56.6 mg/L), although these differences were not statistically significant. Based on the toxicity test evaluation, a preliminary acute value of 10.0 mg/L and chronic value of 1.7 mg/L (at pH of 7.0 and 20 °C) are proposed as site-specific ammonia water quality criteria for the Liao River, China.


Asunto(s)
Amoníaco/toxicidad , Contaminantes Químicos del Agua/toxicidad , Calidad del Agua/normas , Animales , China , Chironomidae/efectos de los fármacos , Copépodos/efectos de los fármacos , Daphnia/efectos de los fármacos , Bases de Datos Factuales , Determinación de Punto Final , Peces , Agua Dulce/química , Sedimentos Geológicos/química , Modelos Teóricos , Palaemonidae/efectos de los fármacos , Ríos/química , Pruebas de Toxicidad
18.
Ecotoxicol Environ Saf ; 169: 344-352, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30458401

RESUMEN

Giant freshwater prawn Macrobrachium rosenbergii is an economically important species. However, its growth retardant have brought serious economic losses in recent years. Antibiotics abuse is suggested as a reason for M. rosenbergii's growth retardant, while few studies focused on the toxic effect of antibiotics on M. rosenbergii. To investigate the effect of enrofloxacin, a widely used antibiotic, on juvenile M. rosenbergii, a 14 days exposure study was carried out within 0.2, 1 and 5 mg/L enrofloxacin and followed by 7 days decontamination. Results showed that during the test period, enrofloxacin had the largest accumulation in juvenile shrimp at day 3, and gradually decreased at day 7 and 14, and almost all the drugs are cleared after 3 days decontamination. Short-term exposure to low dose enrofloxacin can promote the growth of juveniles. High dose enrofloxacin inhibited the growth of juvenile shrimp, to gill and liver damage, and induced apoptosis of the hepatopancreatic cells. These adverse effects was possibly caused by enrofloxacin-induced oxidative stress. Moreover, we also found the damage caused by high concentrations of enrofloxacin was irreversible in the short term. Collectively, these data indicated that enrofloxacin did affect the juvenile shrimp growth and development, and high level enrofloxacin abuse may contributed to M. rosenbergii's growth retardant.


Asunto(s)
Antibacterianos/toxicidad , Enrofloxacina/toxicidad , Agua Dulce/química , Palaemonidae/efectos de los fármacos , Contaminantes Químicos del Agua/toxicidad , Animales , Antibacterianos/análisis , China , Enrofloxacina/análisis , Estrés Oxidativo/efectos de los fármacos , Palaemonidae/crecimiento & desarrollo , Contaminantes Químicos del Agua/análisis
19.
Bull Environ Contam Toxicol ; 103(5): 689-696, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31506728

RESUMEN

To test the toxic effects of tributyltin (TBT), Macrobrachium rosenbergii were exposed to three concentrations of TBT viz. 10 ng/L, 100 ng/L and 1000 ng/L for 90 days. The bioaccumulation of TBT level varied in hepatopancreas based upon dose dependent manner. Histopathological results revealed the reduction in basement membrane thickness, disruption of the hepatopancreatic tubules and abnormal lumen in hepatopancreas of TBT treated prawns. The ultrastructure of the control prawn showed normal architecture of cellular organelles with prominent nuclei in hepatocytes. On the other hand, many vacuoles, irregular arrangements of microvilli, swollen mitochondria, distorted rough endoplasmic reticulum cisternaes and abnormal nucleus were seen in the TBT treated group. Further, the biochemical and vitellogenin content were altered remarkably due to TBT exposure. It directly indicated that TBT had conspicuously inhibited the vitellogenesis. Therefore, it was inferred that the administration of TBT has considerably affected the hepatopancreatic functions in M. rosenbergii.


Asunto(s)
Bioacumulación , Agua Dulce/química , Hepatopáncreas/efectos de los fármacos , Palaemonidae/efectos de los fármacos , Compuestos de Trialquiltina/toxicidad , Contaminantes Químicos del Agua/toxicidad , Animales , Relación Dosis-Respuesta a Droga , Hepatopáncreas/metabolismo , Palaemonidae/metabolismo , Palaemonidae/ultraestructura , Compuestos de Trialquiltina/metabolismo , Vitelogeninas/metabolismo , Contaminantes Químicos del Agua/metabolismo
20.
Bull Environ Contam Toxicol ; 103(5): 729-733, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31531704

RESUMEN

Accumulation of nonylphenol (NP) in hepatopancreas, gonad, eyestalk, and muscle of freshwater prawn Macrobrachium rosenbergii following 72 h exposure to 100 µg/L NP, and depuration of NP in these tissues at 0.5-192 h post exposure were examined. We also examined the expressions of vitellogenin (Vg) and vitellogenin receptor (VgR) of prawn following 0-20 days exposure to 0, 1, 10, and 100 µg/L NP. NP accumulation in hepatopancreas and gonad with high concentration, and low concentration in muscle, but depurated faster in eyestalk and muscle. The expressions of vitellogenin (Vg) and vitellogenin receptor (VgR) increased directly with dose and time. In conclusion, NP accumulated significantly in gonad together with high Vg and VgR expressions, and depurated slow in hepatopancreas and gonad when prawns were removed back to control water. The induction of Vg and VgR under NP exposure might be a stress response in M. rosenbergii.


Asunto(s)
Proteínas del Huevo/genética , Agua Dulce/química , Palaemonidae/efectos de los fármacos , Fenoles/toxicidad , Receptores de Superficie Celular/genética , Vitelogeninas/genética , Contaminantes Químicos del Agua/toxicidad , Animales , Bioacumulación/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Expresión Génica/efectos de los fármacos , Gónadas/efectos de los fármacos , Gónadas/metabolismo , Hepatopáncreas/efectos de los fármacos , Hepatopáncreas/metabolismo , Tasa de Depuración Metabólica , Palaemonidae/metabolismo , Fenoles/metabolismo , Contaminantes Químicos del Agua/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA