Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 115
Filtrar
Más filtros

Intervalo de año de publicación
1.
Hum Genet ; 141(1): 81-99, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34797406

RESUMEN

The uptake and efflux of solutes across a plasma membrane is controlled by transporters. There are two main superfamilies of transporters, adenosine 5'-triphosphate (ATP) binding cassettes (ABCs) and solute carriers (SLCs). In the brain, SLC transporters are involved in transporting various solutes across the blood-brain barrier, blood-cerebrospinal fluid barrier, astrocytes, neurons, and other brain cell types including oligodendrocytes and microglial cells. SLCs play an important role in maintaining normal brain function. Hence, mutations in the genes that encode SLC transporters can cause a variety of neurological disorders. We identified the following SLC gene variants in 25 patients in our cohort: SLC1A2, SLC2A1, SLC5A1, SLC6A3, SLC6A5, SLC6A8, SLC9A6, SLC9A9, SLC12A6, SLC13A5, SLC16A1, SLC17A5, SLC19A3, SLC25A12, SLC25A15, SLC27A4, SLC45A1, SLC46A1, and SLC52A3. Eight patients harbored pathogenic or likely pathogenic mutations (SLC5A1, SLC9A6, SLC12A6, SLC16A1, SLC19A3, and SLC52A3), and 12 patients were found to have variants of unknown clinical significance (VOUS); these variants occurred in 11 genes (SLC1A2, SLC2A1, SLC6A3, SLC6A5, SLC6A8, SLC9A6, SLC9A9, SLC13A5, SLC25A12, SLC27A4, and SLC45A1). Five patients were excluded as they were carriers. In the remaining 20 patients with SLC gene variants, we identified 16 possible distinct neurological disorders. Based on the clinical presentation, we categorized them into genes causing intellectual delay (ID) or autism spectrum disorder (ASD), those causing epilepsy, those causing vitamin-related disorders, and those causing other neurological diseases. Several variants were detected that indicated possible personalized therapies: SLC2A1 led to dystonia or epilepsy, which can be treated with a ketogenic diet; SLC6A3 led to infantile parkinsonism-dystonia 1, which can be treated with levodopa; SLC6A5 led to hyperekplexia 3, for which unnecessary treatment with antiepileptic drugs should be avoided; SLC6A8 led to creatine deficiency syndrome type 1, which can be treated with creatine monohydrate; SLC16A1 led to monocarboxylate transporter 1 deficiency, which causes seizures that should not be treated with a ketogenic diet; SLC19A3 led to biotin-thiamine-responsive basal ganglia disease, which can be treated with biotin and thiamine; and SLC52A3 led to Brown-Vialetto-Van-Laere syndrome 1, which can be treated with riboflavin. The present study examines the prevalence of SLC gene mutations in our cohort of children with epilepsy and other neurological disorders. It highlights the diverse phenotypes associated with mutations in this large family of SLC transporter proteins, and an opportunity for personalized genomics and personalized therapeutics.


Asunto(s)
Trastorno del Espectro Autista/genética , Epilepsia/genética , Predisposición Genética a la Enfermedad , Discapacidad Intelectual/genética , Proteínas Transportadoras de Solutos/genética , Adolescente , Pueblo Asiatico/genética , Encéfalo/metabolismo , Parálisis Bulbar Progresiva/genética , Niño , Preescolar , Femenino , Pérdida Auditiva Sensorineural/genética , Humanos , Lactante , Masculino , Proteínas de Transporte de Membrana/genética , Mutación , Fenotipo , Arabia Saudita
2.
Am J Hematol ; 97(11): 1495-1496, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35441393

RESUMEN

We diagnosed a 13-month-old girl with severe neurological deficits and hyporegenerative macrocytic anemiawith Brown-Vialetto-Van Laere syndrome type 2 (BVVL 2), a rare disorder of the riboflavin transporter, caused by variants in the SLC52A2 gene. Bone marrow aspiration revealed hypoplastic erythropoiesis and vacuolization of myelocytes, proerythroblasts, and micromegakaryocytes. We suggest BVVL 2 as an important differential diagnosis in hyporegenerative macrocytic anemia as rapid diagnosis and initiation of therapy are crucial for the remedy of hematological and neurological impairment.


Asunto(s)
Anemia Macrocítica , Parálisis Bulbar Progresiva , Pérdida Auditiva Sensorineural , Anemia Macrocítica/diagnóstico , Anemia Macrocítica/genética , Parálisis Bulbar Progresiva/etiología , Parálisis Bulbar Progresiva/genética , Femenino , Pérdida Auditiva Sensorineural/genética , Humanos , Lactante , Riboflavina
3.
Int J Audiol ; 61(3): 258-264, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33983862

RESUMEN

OBJECTIVE: The purpose of this paper is to describe a child with auditory neuropathy spectrum disorder (ANSD) associated with Brown-Vialetto-Van Laere (BVVL) syndrome, which is a rare, inherited, neurodegenerative disorder that is caused by defects in riboflavin transporter genes. DESIGN: We report the audiological and clinical profile of a child who presented with a complaint of sudden loss of speech understanding associated with an atypical form of ANSD. He was later diagnosed with BVVL. STUDY SAMPLE: An 11-year-old boy with ANSD associated with BVVL. RESULTS: The patient's severe neurological symptoms improved within a year of supplementation with high doses of riboflavin. His fluctuating hearing loss and 0% WDS remained unchanged. The patient was able to use hearing aids without any discomfort after treatment initiation, but he stopped using them again due to a lack of benefit in speech understanding. Although cochlear implantation was recommended, the patient and his family decided not to consider it for another year since they still had hope for complete recovery. CONCLUSIONS: Sudden-onset ANSD can be the earliest sign of undetected BVVL syndrome. Early detection of BVVL is crucial since all symptoms can be reversible with an early intervention of high doses of riboflavin supplementation.


Asunto(s)
Parálisis Bulbar Progresiva , Pérdida Auditiva Sensorineural , Parálisis Bulbar Progresiva/diagnóstico , Parálisis Bulbar Progresiva/tratamiento farmacológico , Parálisis Bulbar Progresiva/genética , Niño , Pérdida Auditiva Central , Pérdida Auditiva Sensorineural/diagnóstico , Pérdida Auditiva Sensorineural/tratamiento farmacológico , Pérdida Auditiva Sensorineural/genética , Humanos , Masculino , Mutación , Riboflavina/genética , Riboflavina/uso terapéutico
4.
Eur J Neurol ; 28(3): 945-954, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33325104

RESUMEN

BACKGROUND: Brown-Vialetto-Van Laere syndrome (BVVLS) and Fazio-Londe disease (FLD) are rare neurological disorders presenting with pontobulbar palsy, muscle weakness and respiratory insufficiency. Mutations in SLC52A2 (hRFVT-2) or SLC52A3 (hRFVT-3) genes can be responsible for these disorders with an autosomal recessive pattern of inheritance. The aim of this study was to screen for mutations in SLC52A2 and SLC52A3 among Indian families diagnosed with BVVLS and FLD. METHODS: SLC52A2 and SLC52A3 were screened in one FLD and three BVVLS patients by exon-specific amplification using PCR and sequencing. In silico predictions using bioinformatics tools and confocal imaging using HEK-293 cells were performed to determine the functional impact of identified mutations. RESULTS: Genetic analysis of a mother and son with BVVLS was identified with a novel homozygous mutation c.710C>T (p.Ala237Val) in SLC52A3. This variant was found to have an autosomal pseudodominant pattern of inheritance, which was neither listed in the Exome Variant Server or in the 1000 Genomes Project database. In silico analysis and confocal imaging of the p.Ala237Val variant showed higher degree of disorderness in hRFVT-3 that could affect riboflavin transport. Furthermore, a common homozygous mutation c.62A>G (p.Asn21Ser) was identified in other BVVLS and FLD patients. Despite having different clinical phenotypes, both BVVLS and FLD can be attributed to this mutation. CONCLUSION: A rare and peculiar pattern of autosomal pseudodominant inheritance is observed for the first time in two genetically related BVVLS cases with Indian origin and a common mutation c.62A>G (p.Asn21Ser) in SLC52A3 can be responsible for both BVVLS and FLD with variable phenotypes.


Asunto(s)
Parálisis Bulbar Progresiva , Pérdida Auditiva Sensorineural , Parálisis Bulbar Progresiva/genética , Células HEK293 , Pérdida Auditiva Sensorineural/genética , Humanos , Proteínas de Transporte de Membrana/genética , Mutación , Fenotipo , Receptores Acoplados a Proteínas G/genética , Síndrome
5.
Biol Pharm Bull ; 44(2): 283-286, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33518683

RESUMEN

Riboflavin (vitamin B2) plays an important role in cellular growth and function. Riboflavin transporter 2 (RFVT2) is widely expressed in several tissues, especially in the brain and salivary glands, and plays an important role in the tissue disruption of riboflavin. During the last 10 years, mutations in SLC52A2 have been documented in patients with a rare neurological disorder known as Brown-Vialetto-Van Laere syndrome. However, no suitable animal model of this disease has been reported. Here, we aimed to clarify the physiological role of RFVT2 using Slc52a2-mutant mice. The appearance, body weight, and plasma riboflavin concentration of Slc52a2 heterozygous mutant (Slc52a2+/-) mice were similar to those of wild-type (WT) mice. However, intercrossing between Slc52a2+/- mice failed to generate Slc52a2 homozygous mutant (Slc52a2-/-) mice. This suggested that Slc52a2 gene deficiency results in early embryonic lethality. Our findings suggested that RFVT2 is essential for growth and development, and its deletion may influence embryonic survival.


Asunto(s)
Parálisis Bulbar Progresiva/genética , Genes Letales , Pérdida Auditiva Sensorineural/genética , Proteínas de Transporte de Membrana/genética , Receptores Acoplados a Proteínas G/genética , Riboflavina/metabolismo , Animales , Modelos Animales de Enfermedad , Desarrollo Embrionario/genética , Femenino , Humanos , Masculino , Proteínas de Transporte de Membrana/deficiencia , Ratones , Ratones Noqueados , Mutación , Receptores Acoplados a Proteínas G/metabolismo
6.
Am J Med Genet A ; 182(11): 2781-2787, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32909658

RESUMEN

Riboflavin transporter deficiency (RTD) (MIM #614707) is a neurogenetic disorder with its most common manifestations including sensorineural hearing loss, peripheral neuropathy, respiratory insufficiency, and bulbar palsy. Here, we present a 2-year-old boy whose initial presentation was severe macrocytic anemia necessitating multiple blood transfusions and intermittent neutropenia; he subsequently developed ataxia and dysarthria. Trio-exome sequencing detected compound heterozygous variants in SLC52A2 that were classified as pathogenic and a variant of uncertain significance. Bone marrow evaluation demonstrated megaloblastic changes. Notably, his anemia and neutropenia resolved after treatment with oral riboflavin, thus expanding the clinical phenotype of this disorder. We reiterate the importance of starting riboflavin supplementation in a young child who presents with macrocytic anemia and neurological features while awaiting biochemical and genetic work up. We detected multiple biochemical abnormalities with the help of untargeted metabolomics analysis associated with abnormal flavin adenine nucleotide function which normalized after treatment, emphasizing the reversible pathomechanisms involved in this disorder. The utility of untargeted metabolomics analysis to monitor the effects of riboflavin supplementation in RTD has not been previously reported.


Asunto(s)
Anemia Macrocítica/patología , Parálisis Bulbar Progresiva/patología , Pérdida Auditiva Sensorineural/patología , Metaboloma , Deficiencia de Riboflavina/patología , Riboflavina/metabolismo , Adulto , Anemia Macrocítica/genética , Anemia Macrocítica/metabolismo , Parálisis Bulbar Progresiva/genética , Parálisis Bulbar Progresiva/metabolismo , Femenino , Pérdida Auditiva Sensorineural/genética , Pérdida Auditiva Sensorineural/metabolismo , Humanos , Lactante , Masculino , Mutación , Receptores Acoplados a Proteínas G/genética , Deficiencia de Riboflavina/genética , Deficiencia de Riboflavina/metabolismo
7.
BMC Med Genet ; 20(1): 76, 2019 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-31064337

RESUMEN

BACKGROUND: Brown-Vialetto-Van Laere Syndrome (BVVLS), a rare neurological disorder characterized by motor, sensory, and cranial neuronopathies, is mainly associated with defective riboflavin transporters encoded by SLC52A2 and SLC52A3 genes. Clinical outcomes have been shown to be improved significantly by high-dose riboflavin supplementation. The aim of this study was to identify genetic causes and further evaluate the clinical course and response to riboflavin in a Chinese pedigree with BVVLS. CASE PRESENTATION: We report the novel compound heterozygous variants c.1328G>A p.(Cys443Tyr) and c.1022_1023insC p. (Leu341Profs*103) of SLC52A2 gene in a female proband who presented in our out-patient clinic at the age of one-year-old with progressive mental and motor regression, breath holding, and brain stem dysfunction including facial weakness, hearing loss, dysphagia. Following high-dose riboflavin supplementation, the respiratory insufficiency and mental, motor, and bulbar function improved. However, sensorineural hearing loss was not improved. The missense variant site was highly conserved. Both variants were not found in the population database gnomAD. The two variants were inherited from her mother and father, respectively. Both variants were predicted to be deleterious by Polyphen2, Mutation taster, and SIFT and were classified as likely pathogenic according to the ACMG guideline. CONCLUSIONS: Two novel pathogenic variations of SLC52A2 gene were firstly found from a Chinese pedigree with BVVLS. Clinical outcomes could be improved by early diagnosis and riboflavin supplementation.


Asunto(s)
Parálisis Bulbar Progresiva/genética , Pérdida Auditiva Sensorineural/genética , Mutación , Receptores Acoplados a Proteínas G/genética , Secuencia de Aminoácidos , China , Femenino , Humanos , Lactante , Masculino , Linaje , Receptores Acoplados a Proteínas G/química , Homología de Secuencia de Aminoácido
8.
J Inherit Metab Dis ; 42(4): 598-607, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30793323

RESUMEN

Riboflavin transporter deficiency (RTD) is a rare neurological condition that encompasses the Brown-Vialetto-Van Laere and Fazio-Londe syndromes since the discovery of pathogenic mutations in the SLC52A2 and SLC52A3 genes that encode human riboflavin transporters RFVT2 and RFVT3. Patients present with a deteriorating progression of peripheral and cranial neuropathy that causes muscle weakness, vision loss, deafness, sensory ataxia, and respiratory compromise which when left untreated can be fatal. Considerable progress in the clinical and genetic diagnosis of RTDs has been made in recent years and has permitted the successful lifesaving treatment of many patients with high dose riboflavin supplementation. In this review, we first outline the importance of riboflavin and its efficient transmembrane transport in human physiology. Reports on 109 patients with a genetically confirmed diagnosis of RTD are then summarized in order to highlight commonly presenting clinical features and possible differences between patients with pathogenic SLC52A2 (RTD2) or SLC52A3 (RTD3) mutations. Finally, we focus attention on recent work with different models of RTD that have revealed possible pathomechanisms contributing to neurodegeneration in patients.


Asunto(s)
Parálisis Bulbar Progresiva/diagnóstico , Pérdida Auditiva Sensorineural/diagnóstico , Deficiencia de Riboflavina/diagnóstico , Parálisis Bulbar Progresiva/genética , Parálisis Bulbar Progresiva/terapia , Pérdida Auditiva Sensorineural/genética , Pérdida Auditiva Sensorineural/terapia , Humanos , Proteínas de Transporte de Membrana/genética , Mutación , Receptores Acoplados a Proteínas G/genética , Deficiencia de Riboflavina/genética , Deficiencia de Riboflavina/terapia
9.
Hum Mol Genet ; 25(9): 1814-23, 2016 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-26976849

RESUMEN

Riboflavin, also known as vitamin B2, is essential for cellular reduction-oxidation reactions, but is not readily synthesized by mammalian cells. It has been proposed that riboflavin absorption occurs through solute carrier family 52 members (SLC52) A1, A2 and A3. These transporters are also candidate genes for the childhood onset-neural degenerative syndrome Brown-Vialetto-Van Laere (BVVL). Although riboflavin is an essential nutrient, why mutations in its transporters result in a neural cell-specific disorder remains unclear. Here, we provide evidence that Slc52a3 is the mouse ortholog of SLC52A3 and show that Slc52a3 deficiency results in early embryonic lethality. Loss of mutant embryos was associated with both defects in placental formation and increased rates of apoptosis in embryonic cells. In contrast, Slc52a3 -/- embryonic stem cell lines could be readily established and differentiated into motor neurons, suggesting that this transporter is dispensable for neural differentiation and short-term maintenance. Consistent with this finding, examination of Slc52a3 gene products in adult tissues revealed expression in the testis and intestine but little or none in the brain and spinal cord. Our results suggest that BVVL patients with SCL52A3 mutations may be good candidates for riboflavin replacement therapy and suggests that either the mutations these individuals carry are hypomorphic, or that in these cases alternative transporters act during human embryogenesis to allow full-term development.


Asunto(s)
Parálisis Bulbar Progresiva/genética , Parálisis Bulbar Progresiva/patología , Diferenciación Celular , Embrión de Mamíferos/citología , Pérdida Auditiva Sensorineural/genética , Pérdida Auditiva Sensorineural/patología , Proteínas de Transporte de Membrana/metabolismo , Neuronas Motoras/citología , Mutación/genética , Animales , Células Cultivadas , Embrión de Mamíferos/metabolismo , Femenino , Humanos , Masculino , Proteínas de Transporte de Membrana/genética , Ratones , Ratones Noqueados , Neuronas Motoras/metabolismo , Neurogénesis
10.
Brain ; 140(11): 2820-2837, 2017 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-29053833

RESUMEN

Brown-Vialetto-Van Laere syndrome represents a phenotypic spectrum of motor, sensory, and cranial nerve neuropathy, often with ataxia, optic atrophy and respiratory problems leading to ventilator-dependence. Loss-of-function mutations in two riboflavin transporter genes, SLC52A2 and SLC52A3, have recently been linked to Brown-Vialetto-Van Laere syndrome. However, the genetic frequency, neuropathology and downstream consequences of riboflavin transporter mutations are unclear. By screening a large cohort of 132 patients with early-onset severe sensory, motor and cranial nerve neuropathy we confirmed the strong genetic link between riboflavin transporter mutations and Brown-Vialetto-Van Laere syndrome, identifying 22 pathogenic mutations in SLC52A2 and SLC52A3, 14 of which were novel. Brain and spinal cord neuropathological examination of two cases with SLC52A3 mutations showed classical symmetrical brainstem lesions resembling pathology seen in mitochondrial disease, including severe neuronal loss in the lower cranial nerve nuclei, anterior horns and corresponding nerves, atrophy of the spinothalamic and spinocerebellar tracts and posterior column-medial lemniscus pathways. Mitochondrial dysfunction has previously been implicated in an array of neurodegenerative disorders. Since riboflavin metabolites are critical components of the mitochondrial electron transport chain, we hypothesized that reduced riboflavin transport would result in impaired mitochondrial activity, and confirmed this using in vitro and in vivo models. Electron transport chain complex I and complex II activity were decreased in SLC52A2 patient fibroblasts, while global knockdown of the single Drosophila melanogaster riboflavin transporter homologue revealed reduced levels of riboflavin, downstream metabolites, and electron transport chain complex I activity. This in turn led to abnormal mitochondrial membrane potential, respiratory chain activity and morphology. Riboflavin transporter knockdown in Drosophila also resulted in severely impaired locomotor activity and reduced lifespan, mirroring patient pathology, and these phenotypes could be partially rescued using a novel esterified derivative of riboflavin. Our findings expand the genetic, clinical and neuropathological features of Brown-Vialetto-Van Laere syndrome, implicate mitochondrial dysfunction as a downstream consequence of riboflavin transporter gene defects, and validate riboflavin esters as a potential therapeutic strategy.


Asunto(s)
Encéfalo/patología , Parálisis Bulbar Progresiva/genética , Pérdida Auditiva Sensorineural/genética , Proteínas de Transporte de Membrana/genética , Receptores Acoplados a Proteínas G/genética , Médula Espinal/patología , Adolescente , Animales , Atrofia , Encéfalo/ultraestructura , Parálisis Bulbar Progresiva/metabolismo , Parálisis Bulbar Progresiva/patología , Niño , Preescolar , Citrato (si)-Sintasa/metabolismo , Drosophila melanogaster , Complejo I de Transporte de Electrón/metabolismo , Complejo II de Transporte de Electrones/metabolismo , Complejo III de Transporte de Electrones/metabolismo , Femenino , Fibroblastos/metabolismo , Técnicas de Silenciamiento del Gen , Pérdida Auditiva Sensorineural/metabolismo , Pérdida Auditiva Sensorineural/patología , Humanos , Técnicas In Vitro , Lactante , Locomoción/genética , Longevidad/genética , Masculino , Microscopía Electrónica , Vías Nerviosas , Riboflavina , Tractos Espinocerebelares/patología , Tractos Espinotalámicos/patología , Adulto Joven
11.
Muscle Nerve ; 56(5): 1001-1005, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28039894

RESUMEN

INTRODUCTION: Progressive bulbar motor neuropathy is primarily caused by bulbar-onset ALS. Hereditary amyloidosis type IV also presents with a bulbar neuropathy that mimics motor neuron disease. The disease is prevalent in Finland only and is not commonly included in the differential diagnosis of ALS. METHODS: We studied 18 members of a family in which some had bulbar motor neuropathy, and we performed exome sequencing. RESULTS: Five affected family members were found to have a D187Y substitution in the GSN gene known to cause hereditary amyloidosis type IV. CONCLUSIONS: This American family presented with progressive bulbar neuropathy due to a gelsolin mutation not found in Finland. Hereditary amyloidosis type IV presents with bulbar motor neuropathy and not with peripheral neuropathy as occurs with common forms of amyloidosis. This report demonstrates the power of exome sequencing to determine the cause of rare hereditary diseases with incomplete or atypical phenotypes. Muscle Nerve 56: 1001-1005, 2017.


Asunto(s)
Amiloidosis Familiar/genética , Parálisis Bulbar Progresiva/genética , Salud de la Familia , Gelsolina/genética , Mutación/genética , Anciano de 80 o más Años , Amiloidosis Familiar/complicaciones , Parálisis Bulbar Progresiva/complicaciones , Análisis Mutacional de ADN , Femenino , Humanos , Persona de Mediana Edad
12.
J Inherit Metab Dis ; 39(4): 559-64, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-26973221

RESUMEN

INTRODUCTION: Riboflavin (vitamin B2) is absorbed in the small intestine by the human riboflavin transporters RFVT1 and RFVT3. A third riboflavin transporter (RFVT2) is expressed in the brain. In 2010 it was demonstrated that mutations in the riboflavin transporter genes SLC52A2 (coding for RFVT2) and SLC52A3 (coding for RFVT3) cause a neurodegenerative disorder formerly known as Brown-Vialetto-Van Laere (BVVL) syndrome, now renamed to riboflavin transporter deficiency. Five years after the diagnosis of the first patient we performed a review of the literature to study the presentation, treatment and outcome of patients with a molecularly confirmed diagnosis of a riboflavin transporter deficiency. METHOD: A search was performed in Medline, Pubmed using the search terms 'Brown-Vialetto-Van Laere syndrome' and 'riboflavin transporter' and articles were screened for case reports of patients with a molecular diagnosis of a riboflavin transporter deficiency. RESULTS: Reports on a total of 70 patients with a molecular diagnosis of a RFVT2 or RTVT3 deficiency were retrieved. The riboflavin transporter deficiencies present with weakness, cranial nerve deficits including hearing loss, sensory symptoms including sensory ataxia, feeding difficulties and respiratory difficulties which are caused by a sensorimotor axonal neuropathy and cranial neuropathy. Biochemical abnormalities may be absent and the diagnosis can only be made or rejected by molecular analysis of all genes. Treatment with oral supplementation of riboflavin is lifesaving. Therefore, if a riboflavin transporter deficiency is suspected, treatment must be started immediately without first awaiting the results of molecular diagnostics.


Asunto(s)
Parálisis Bulbar Progresiva/diagnóstico , Pérdida Auditiva Sensorineural/diagnóstico , Deficiencia de Riboflavina/diagnóstico , Parálisis Bulbar Progresiva/genética , Parálisis Bulbar Progresiva/terapia , Diagnóstico Diferencial , Pérdida Auditiva Sensorineural/genética , Pérdida Auditiva Sensorineural/terapia , Humanos , Proteínas de Transporte de Membrana/genética , Técnicas de Diagnóstico Molecular , Mutación , Pronóstico , Deficiencia de Riboflavina/genética , Deficiencia de Riboflavina/terapia
13.
Dev Med Child Neurol ; 58(8): 848-54, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-26918385

RESUMEN

AIM: Mutations in the genes encoding the riboflavin transporters RFVT2 and RFVT3 have been identified in Brown-Vialetto-Van Laere syndrome, a neurodegenerative disorder characterized by hearing loss and pontobulbar palsy. Treatment with riboflavin has been shown to benefit individuals with the phenotype of RFVT2 deficiency. Understanding the characteristics of hearing loss in riboflavin transporter deficiency would enable early diagnosis and therapy. METHOD: We performed hearing assessments in seven children (from four families) with RFVT2 deficiency and reviewed results from previous assessments. Assessments were repeated after 12 months and 24 months of riboflavin therapy and after cochlear implantation in one individual. RESULTS: Hearing loss in these individuals was due to auditory neuropathy spectrum disorder (ANSD). Hearing loss was identified between 3 years and 8 years of age and progressed rapidly. Hearing aids were not beneficial. Riboflavin therapy resulted in improvement of hearing thresholds during the first year of treatment in those with recent-onset hearing loss. Cochlear implantation resulted in a significant improvement in speech perception in one individual. INTERPRETATION: Riboflavin transporter deficiency should be considered in all children presenting with an auditory neuropathy. Speech perception in children with ANSD due to RFVT2 deficiency may be significantly improved by cochlear implantation.


Asunto(s)
Parálisis Bulbar Progresiva/complicaciones , Parálisis Bulbar Progresiva/etiología , Pérdida Auditiva Central/complicaciones , Pérdida Auditiva Sensorineural/complicaciones , Pérdida Auditiva Sensorineural/etiología , Proteínas de Transporte de Membrana/deficiencia , Deficiencia de Riboflavina/complicaciones , Estimulación Acústica , Edad de Inicio , Audiometría , Parálisis Bulbar Progresiva/genética , Niño , Preescolar , Implantación Coclear/métodos , Electroencefalografía , Potenciales Evocados Auditivos del Tronco Encefálico/efectos de los fármacos , Potenciales Evocados Auditivos del Tronco Encefálico/genética , Femenino , Estudios de Seguimiento , Pérdida Auditiva Central/tratamiento farmacológico , Pérdida Auditiva Central/cirugía , Pérdida Auditiva Sensorineural/genética , Humanos , Masculino , Proteínas de Transporte de Membrana/genética , Mutación/genética , Emisiones Otoacústicas Espontáneas/efectos de los fármacos , Emisiones Otoacústicas Espontáneas/genética , Riboflavina/uso terapéutico , Deficiencia de Riboflavina/tratamiento farmacológico , Percepción del Habla/efectos de los fármacos , Percepción del Habla/genética
14.
Brain ; 137(Pt 1): 44-56, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24253200

RESUMEN

Childhood onset motor neuron diseases or neuronopathies are a clinically heterogeneous group of disorders. A particularly severe subgroup first described in 1894, and subsequently called Brown-Vialetto-Van Laere syndrome, is characterized by progressive pontobulbar palsy, sensorineural hearing loss and respiratory insufficiency. There has been no treatment for this progressive neurodegenerative disorder, which leads to respiratory failure and usually death during childhood. We recently reported the identification of SLC52A2, encoding riboflavin transporter RFVT2, as a new causative gene for Brown-Vialetto-Van Laere syndrome. We used both exome and Sanger sequencing to identify SLC52A2 mutations in patients presenting with cranial neuropathies and sensorimotor neuropathy with or without respiratory insufficiency. We undertook clinical, neurophysiological and biochemical characterization of patients with mutations in SLC52A2, functionally analysed the most prevalent mutations and initiated a regimen of high-dose oral riboflavin. We identified 18 patients from 13 families with compound heterozygous or homozygous mutations in SLC52A2. Affected individuals share a core phenotype of rapidly progressive axonal sensorimotor neuropathy (manifesting with sensory ataxia, severe weakness of the upper limbs and axial muscles with distinctly preserved strength of the lower limbs), hearing loss, optic atrophy and respiratory insufficiency. We demonstrate that SLC52A2 mutations cause reduced riboflavin uptake and reduced riboflavin transporter protein expression, and we report the response to high-dose oral riboflavin therapy in patients with SLC52A2 mutations, including significant and sustained clinical and biochemical improvements in two patients and preliminary clinical response data in 13 patients with associated biochemical improvements in 10 patients. The clinical and biochemical responses of this SLC52A2-specific cohort suggest that riboflavin supplementation can ameliorate the progression of this neurodegenerative condition, particularly when initiated soon after the onset of symptoms.


Asunto(s)
Parálisis Bulbar Progresiva/genética , Pérdida Auditiva Sensorineural/genética , Mutación/genética , Receptores Acoplados a Proteínas G/genética , Adolescente , Encéfalo/patología , Parálisis Bulbar Progresiva/tratamiento farmacológico , Carnitina/análogos & derivados , Carnitina/sangre , Niño , Preescolar , Exoma/genética , Femenino , Genotipo , Pérdida Auditiva Sensorineural/tratamiento farmacológico , Humanos , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Masculino , Análisis por Micromatrices , Enfermedad de la Neurona Motora/fisiopatología , Examen Neurológico , Linaje , ARN/biosíntesis , ARN/genética , Riboflavina/uso terapéutico , Análisis de Secuencia de ADN , Nervio Sural/patología , Vitaminas/uso terapéutico , Adulto Joven
16.
Curr Opin Neurol ; 27(5): 506-14, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25159929

RESUMEN

PURPOSE OF REVIEW: With advances in next-generation gene sequencing, progress in deep phenotyping and a greater understanding of the pathogenesis of motor neuron disease, our knowledge of the progressive bulbar syndromes has significantly increased in recent years. This group of heterogeneous conditions, in which the primary disorder is focused around degeneration of the lower cranial nerves, can occur in children or adults and form a spectrum of severity, based around the common feature of bulbar dysfunction. Early genetic diagnosis may allow treatment in some bulbar syndromes. RECENT FINDINGS: Brown-Vialetto-Van Laere and Fazio-Londe syndromes are the most recent childhood forms of progressive bulbar palsy to be genetically defined. The clinical phenotype of this group of childhood disorders was first reported over 120 years ago. Recently, it was demonstrated that in a third of these patients Brown-Vialetto-Van Laere is caused by mutations in the SLC52A2 and SLC52A3 genes, both of which encode riboflavin transporters. Importantly, supplementation of riboflavin can lead to significant clinical improvement if started early in the disease process. SUMMARY: Here, we outline the clinical features, management and an update on the disease mechanisms and genetic causes of the progressive bulbar syndromes.


Asunto(s)
Parálisis Bulbar Progresiva/tratamiento farmacológico , Parálisis Bulbar Progresiva/genética , Proteínas de Choque Térmico/genética , Mutación/genética , Transportador 2 de Sodio-Glucosa/genética , Simportadores/genética , Animales , Parálisis Bulbar Progresiva/historia , Parálisis Bulbar Progresiva/fisiopatología , Manejo de la Enfermedad , Historia del Siglo XIX , Humanos , Fenotipo , Riboflavina/uso terapéutico , Complejo Vitamínico B/uso terapéutico
17.
Muscle Nerve ; 50(5): 775-9, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24616084

RESUMEN

INTRODUCTION: We have identified a large consanguineous Lebanese family with 5 individuals with severe childhood-onset recessive sensory loss associated with deafness and variable optic atrophy. METHODS: Autozygosity mapping was performed in all affected individuals, followed by whole-exome sequencing (WES) in 2 individuals. RESULTS: WES identified a homozygous missense mutation (c.916G>A, p.G306R) in the cerebral riboflavin transporter SLC52A2, recently shown to cause Brown-Vialetto-Van-Laere syndrome (BVVLS), which is considered primarily a motor neuronopathy. Our patients have a phenotype distinct from BVVLS, characterized by severe progressive sensory loss mainly affecting vibration and proprioception that evolves to include sensorineural hearing loss in childhood, variable degrees of optic atrophy, and marked upper extremity weakness and atrophy. Treatment of 3 patients with 400 mg/day riboflavin over 3 months produced definite clinical improvement. CONCLUSIONS: Mutations in SLC52A2 result in a recognizable phenotype distinct from BVVLS. Early recognition of this disorder is critical, given its potential treatability.


Asunto(s)
Parálisis Bulbar Progresiva/genética , Pérdida Auditiva Sensorineural/genética , Mutación Missense/genética , Receptores Acoplados a Proteínas G/genética , Adolescente , Parálisis Bulbar Progresiva/dietoterapia , Niño , Preescolar , Análisis Mutacional de ADN , Progresión de la Enfermedad , Salud de la Familia , Femenino , Ligamiento Genético , Pérdida Auditiva Sensorineural/dietoterapia , Humanos , Masculino , Examen Neurológico , Riboflavina/administración & dosificación , Riboflavina/sangre , Nervio Sural/patología , Adulto Joven
18.
J Med Genet ; 50(2): 104-7, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23243084

RESUMEN

BACKGROUND: Brown-Vialetto-Van Laere (BVVL) syndrome is a rare disorder characterised by progressive pontobulbar palsy and sensorineural deafness. Causative mutations in genes encoding human riboflavin transporter 2 (hRFT2) and 3 (hRFT3) have been identified in BVVL patients. METHODS AND RESULTS: We report the clinical and molecular features of a severe BVVL patient in whom screening of SLC52A3/hRFT2 was negative. Sequence analysis identified two novel compound heterozygous mutations in SLC52A2/hRFT3, namely c.155C>T and c.1255G>A, leading to the amino acid changes p.S52F and p.G419S, respectively. Functional studies show that these defects impair the gene expression of the corresponding transporter, resulting in a significant reduction of riboflavin transport. CONCLUSIONS: These findings support the pathogenetic role of SLC52A2/hRFT3 in BVVL with important clinical and therapeutic implications.


Asunto(s)
Parálisis Bulbar Progresiva/genética , Pérdida Auditiva Sensorineural/genética , Proteínas de Transporte de Membrana/genética , Receptores Acoplados a Proteínas G/genética , Secuencia de Aminoácidos , Preescolar , Análisis Mutacional de ADN , Resultado Fatal , Humanos , Masculino , Datos de Secuencia Molecular , Alineación de Secuencia
19.
Acta Neurol Belg ; 124(4): 1363-1370, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38965176

RESUMEN

INTRODUCTION: Riboflavin Transporter Deficiency (RTD) is a rare neurological disorder characterized by pontobulbar palsy, hearing loss, and motor cranial nerve involvement. SLC52A3 and SLC52A2 mutations are causes of RTD. SLC52A2 mutations are usually found in childhood onset cases. Fifteen Iranian RTD diagnosed patients without SLC52A2 mutations have been previously described. We aimed to identify causative mutations in two childhood cases. METHODS: We recruited patients with diagnosis of BVVL. Comprehensive clinical evaluations were performed on the patients. SLC52A3 and SLC52A2 genes were PCR-amplified and Sanger sequenced. Candidate disease causing variations were screened for segregation with disease status in the respective families and control individuals. RESULTS: A novel homozygous SLC52A3 mutation (p.Met1Val) and a heterozygous SLC52A2 mutation (p.Ala288Val) were both observed in one proband with typical RTD presentations. The aggregate of presentations in the early stages of disease in the second patient that included weakness in the lower extremities, absence of bulbar or hearing defects, prominent sensory polyneuropathy as evidenced in electrodiagnostic studies, and absence of sensory symptoms including sensory ataxia did not prompt immediate RTD diagnosis. Dysarthria and decreased hearing manifested later in the disease course. A novel homozygous SLC52A2 (p.Val314Met) mutation was identified. CONCLUSION: A literature search found recent reports of other atypical RTD presentations. These include MRI findings, speech understanding difficulties accompanied by normal hearing, anemia, and left ventricular non-compaction. Knowledge of unusual presentations lessens the chance of misdiagnosis or delayed RTD diagnosis which, in light of favorable effects of riboflavin supplementation, is of immense importance.


Asunto(s)
Proteínas de Transporte de Membrana , Mutación , Humanos , Masculino , Mutación/genética , Proteínas de Transporte de Membrana/genética , Parálisis Bulbar Progresiva/genética , Parálisis Bulbar Progresiva/diagnóstico , Femenino , Receptores Acoplados a Proteínas G/genética , Niño , Linaje , Enfermedades de los Ganglios Basales , Pérdida Auditiva Sensorineural
20.
Am J Hum Genet ; 86(3): 485-9, 2010 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-20206331

RESUMEN

Brown-Vialetto-Van Laere syndrome is a rare neurological disorder with a variable age at onset and clinical course. The key features are progressive ponto-bulbar palsy and bilateral sensorineural deafness. A complex neurological phenotype with a mixed picture of upper and lower motor neuron involvement reminiscent of amyotrophic lateral sclerosis evolves with disease progression. We identified a candidate gene, C20orf54, by studying a consanguineous family with multiple affected individuals and subsequently demonstrated that mutations in this gene were the cause of disease in other, unrelated families.


Asunto(s)
Parálisis Bulbar Progresiva/genética , Cromosomas Humanos Par 20/genética , Sordera/genética , Proteínas de la Membrana/genética , Mutación Missense , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Niño , Preescolar , Femenino , Pérdida Auditiva Sensorineural/genética , Humanos , Lactante , Masculino , Proteínas de Transporte de Membrana , Datos de Secuencia Molecular , Enfermedad de la Neurona Motora/genética , Sistemas de Lectura Abierta , Fenotipo , Homología de Secuencia de Aminoácido , Síndrome
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA