Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.174
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 179(3): 703-712.e7, 2019 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-31587897

RESUMEN

Peptidoglycan (PG) is a defining feature of bacteria, involved in cell division, shape, and integrity. We previously reported that several genes related to PG biosynthesis were horizontally transferred from bacteria to the nuclear genome of mealybugs. Mealybugs are notable for containing a nested bacteria-within-bacterium endosymbiotic structure in specialized insect cells, where one bacterium, Moranella, lives in the cytoplasm of another bacterium, Tremblaya. Here we show that horizontally transferred genes on the mealybug genome work together with genes retained on the Moranella genome to produce a PG layer exclusively at the Moranella cell periphery. Furthermore, we show that an insect protein encoded by a horizontally transferred gene of bacterial origin is transported into the Moranella cytoplasm. These results provide a striking parallel to the genetic and biochemical mosaicism found in organelles, and prove that multiple horizontally transferred genes can become integrated into a functional pathway distributed between animal and bacterial endosymbiont genomes.


Asunto(s)
Bacterias/genética , Transferencia de Gen Horizontal , Hemípteros/genética , Peptidoglicano/biosíntesis , Simbiosis , Animales , Bacterias/patogenicidad , Genes Bacterianos , Hemípteros/microbiología , Interacciones Huésped-Patógeno , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Peptidoglicano/genética
2.
Annu Rev Biochem ; 87: 991-1014, 2018 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-29596002

RESUMEN

Peptidoglycan is an essential component of the cell wall that protects bacteria from environmental stress. A carefully coordinated biosynthesis of peptidoglycan during cell elongation and division is required for cell viability. This biosynthesis involves sophisticated enzyme machineries that dynamically synthesize, remodel, and degrade peptidoglycan. However, when and where bacteria build peptidoglycan, and how this is coordinated with cell growth, have been long-standing questions in the field. The improvement of microscopy techniques has provided powerful approaches to study peptidoglycan biosynthesis with high spatiotemporal resolution. Recent development of molecular probes further accelerated the growth of the field, which has advanced our knowledge of peptidoglycan biosynthesis dynamics and mechanisms. Here, we review the technologies for imaging the bacterial cell wall and its biosynthesis activity. We focus on the applications of fluorescent d-amino acids, a newly developed type of probe, to visualize and study peptidoglycan synthesis and dynamics, and we provide direction for prospective research.


Asunto(s)
Bacterias/metabolismo , Pared Celular/metabolismo , Peptidoglicano/biosíntesis , Aminoácidos/química , Bacterias/ultraestructura , Pared Celular/ultraestructura , Colorantes Fluorescentes/química , Microscopía de Fuerza Atómica , Microscopía Electrónica , Microscopía Fluorescente
3.
Cell ; 172(4): 758-770.e14, 2018 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-29425492

RESUMEN

The means by which the physicochemical properties of different cellular components together determine bacterial cell shape remain poorly understood. Here, we investigate a programmed cell-shape change during Bacillus subtilis sporulation, when a rod-shaped vegetative cell is transformed to an ovoid spore. Asymmetric cell division generates a bigger mother cell and a smaller, hemispherical forespore. The septum traps the forespore chromosome, which is translocated to the forespore by SpoIIIE. Simultaneously, forespore size increases as it is reshaped into an ovoid. Using genetics, timelapse microscopy, cryo-electron tomography, and mathematical modeling, we demonstrate that forespore growth relies on membrane synthesis and SpoIIIE-mediated chromosome translocation, but not on peptidoglycan or protein synthesis. Our data suggest that the hydrated nucleoid swells and inflates the forespore, displacing ribosomes to the cell periphery, stretching septal peptidoglycan, and reshaping the forespore. Our results illustrate how simple biophysical interactions between core cellular components contribute to cellular morphology.


Asunto(s)
División Celular Asimétrica/fisiología , Bacillus subtilis/fisiología , Cromosomas Bacterianos/metabolismo , Esporas Bacterianas/metabolismo , Translocación Genética , Bacillus subtilis/ultraestructura , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Cromosomas Bacterianos/genética , Peptidoglicano/biosíntesis , Peptidoglicano/genética , Biosíntesis de Proteínas/fisiología , Esporas Bacterianas/genética , Esporas Bacterianas/ultraestructura
4.
Nature ; 615(7951): 300-304, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36859542

RESUMEN

Gram-negative bacteria surround their cytoplasmic membrane with a peptidoglycan (PG) cell wall and an outer membrane (OM) with an outer leaflet composed of lipopolysaccharide (LPS)1. This complex envelope presents a formidable barrier to drug entry and is a major determinant of the intrinsic antibiotic resistance of these organisms2. The biogenesis pathways that build the surface are also targets of many of our most effective antibacterial therapies3. Understanding the molecular mechanisms underlying the assembly of the Gram-negative envelope therefore promises to aid the development of new treatments effective against the growing problem of drug-resistant infections. Although the individual pathways for PG and OM synthesis and assembly are well characterized, almost nothing is known about how the biogenesis of these essential surface layers is coordinated. Here we report the discovery of a regulatory interaction between the committed enzymes for the PG and LPS synthesis pathways in the Gram-negative pathogen Pseudomonas aeruginosa. We show that the PG synthesis enzyme MurA interacts directly and specifically with the LPS synthesis enzyme LpxC. Moreover, MurA was shown to stimulate LpxC activity in cells and in a purified system. Our results support a model in which the assembly of the PG and OM layers in many proteobacterial species is coordinated by linking the activities of the committed enzymes in their respective synthesis pathways.


Asunto(s)
Membrana Externa Bacteriana , Pared Celular , Pseudomonas aeruginosa , Pared Celular/metabolismo , Lipopolisacáridos/metabolismo , Membrana Externa Bacteriana/química , Membrana Externa Bacteriana/metabolismo , Pseudomonas aeruginosa/citología , Pseudomonas aeruginosa/enzimología , Pseudomonas aeruginosa/metabolismo , Peptidoglicano/biosíntesis , Peptidoglicano/metabolismo
5.
Nature ; 606(7916): 953-959, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35705811

RESUMEN

Linkages between the outer membrane of Gram-negative bacteria and the peptidoglycan layer are crucial for the maintenance of cellular integrity and enable survival in challenging environments1-5. The function of the outer membrane is dependent on outer membrane proteins (OMPs), which are inserted into the membrane by the ß-barrel assembly machine6,7 (BAM). Growing Escherichia coli cells segregate old OMPs towards the poles by a process known as binary partitioning, the basis of which is unknown8. Here we demonstrate that peptidoglycan underpins the spatiotemporal organization of OMPs. Mature, tetrapeptide-rich peptidoglycan binds to BAM components and suppresses OMP foldase activity. Nascent peptidoglycan, which is enriched in pentapeptides and concentrated at septa9, associates with BAM poorly and has little effect on its activity, leading to preferential insertion of OMPs at division sites. The synchronization of OMP biogenesis with cell wall growth results in the binary partitioning of OMPs as cells divide. Our study reveals that Gram-negative bacteria coordinate the assembly of two major cell envelope layers by rendering OMP biogenesis responsive to peptidoglycan maturation, a potential vulnerability that could be exploited in future antibiotic design.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa , Membrana Celular , Escherichia coli , Peptidoglicano , Proteínas de la Membrana Bacteriana Externa/química , Proteínas de la Membrana Bacteriana Externa/metabolismo , Membrana Celular/química , Membrana Celular/metabolismo , Pared Celular/metabolismo , Escherichia coli/química , Escherichia coli/citología , Escherichia coli/crecimiento & desarrollo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Peptidoglicano/biosíntesis , Peptidoglicano/metabolismo , Pliegue de Proteína
6.
Annu Rev Biochem ; 81: 451-78, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22663080

RESUMEN

The peptidoglycan biosynthetic pathway is a critical process in the bacterial cell and is exploited as a target for the design of antibiotics. This pathway culminates in the production of the peptidoglycan layer, which is composed of polymerized glycan chains with cross-linked peptide substituents. This layer forms the major structural component of the protective barrier known as the cell wall. Disruption in the assembly of the peptidoglycan layer causes a weakened cell wall and subsequent bacterial lysis. With bacteria responsible for both properly functioning human health (probiotic strains) and potentially serious illness (pathogenic strains), a delicate balance is necessary during clinical intervention. Recent research has furthered our understanding of the precise molecular structures, mechanisms of action, and functional interactions involved in peptidoglycan biosynthesis. This research is helping guide our understanding of how to capitalize on peptidoglycan-based therapeutics and, at a more fundamental level, of the complex machinery that creates this critical barrier for bacterial survival.


Asunto(s)
Bacterias/metabolismo , Infecciones Bacterianas/microbiología , Peptidoglicano/biosíntesis , Animales , Infecciones Bacterianas/tratamiento farmacológico , Pared Celular/química , Pared Celular/metabolismo , Interacciones Huésped-Patógeno , Humanos
7.
PLoS Biol ; 22(4): e3002589, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38683856

RESUMEN

Peptidoglycan (PG) and most surface glycopolymers and their modifications are built in the cytoplasm on the lipid carrier undecaprenyl phosphate (UndP). These lipid-linked precursors are then flipped across the membrane and polymerized or directly transferred to surface polymers, lipids, or proteins. Despite its essential role in envelope biogenesis, UndP is maintained at low levels in the cytoplasmic membrane. The mechanisms by which bacteria distribute this limited resource among competing pathways is currently unknown. Here, we report that the Bacillus subtilis transcription factor SigM and its membrane-anchored anti-sigma factor respond to UndP levels and prioritize its use for the synthesis of the only essential surface polymer, the cell wall. Antibiotics that target virtually every step in PG synthesis activate SigM-directed gene expression, confounding identification of the signal and the logic of this stress-response pathway. Through systematic analyses, we discovered 2 distinct responses to these antibiotics. Drugs that trap UndP, UndP-linked intermediates, or precursors trigger SigM release from the membrane in <2 min, rapidly activating transcription. By contrasts, antibiotics that inhibited cell wall synthesis without directly affecting UndP induce SigM more slowly. We show that activation in the latter case can be explained by the accumulation of UndP-linked wall teichoic acid precursors that cannot be transferred to the PG due to the block in its synthesis. Furthermore, we report that reduction in UndP synthesis rapidly induces SigM, while increasing UndP production can dampen the SigM response. Finally, we show that SigM becomes essential for viability when the availability of UndP is restricted. Altogether, our data support a model in which the SigM pathway functions to homeostatically control UndP usage. When UndP levels are sufficiently high, the anti-sigma factor complex holds SigM inactive. When levels of UndP are reduced, SigM activates genes that increase flux through the PG synthesis pathway, boost UndP recycling, and liberate the lipid carrier from nonessential surface polymer pathways. Analogous homeostatic pathways that prioritize UndP usage are likely to be common in bacteria.


Asunto(s)
Bacillus subtilis , Proteínas Bacterianas , Pared Celular , Peptidoglicano , Transducción de Señal , Pared Celular/metabolismo , Bacillus subtilis/metabolismo , Bacillus subtilis/genética , Bacillus subtilis/efectos de los fármacos , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Peptidoglicano/metabolismo , Peptidoglicano/biosíntesis , Fosfatos de Poliisoprenilo/metabolismo , Antibacterianos/farmacología , Regulación Bacteriana de la Expresión Génica , Membrana Celular/metabolismo
8.
EMBO J ; 40(19): e108126, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34382698

RESUMEN

Bacteria resist to the turgor pressure of the cytoplasm through a net-like macromolecule, the peptidoglycan, made of glycan strands connected via peptides cross-linked by penicillin-binding proteins (PBPs). We recently reported the emergence of ß-lactam resistance resulting from a bypass of PBPs by the YcbB L,D-transpeptidase (LdtD), which form chemically distinct 3→3 cross-links compared to 4→3 formed by PBPs. Here we show that peptidoglycan expansion requires controlled hydrolysis of cross-links and identify among eight endopeptidase paralogues the minimum enzyme complements essential for bacterial growth with 4→3 (MepM) and 3→3 (MepM and MepK) cross-links. Purified Mep endopeptidases unexpectedly displayed a 4→3 and 3→3 dual specificity implying recognition of a common motif in the two cross-link types. Uncoupling of the polymerization of glycan chains from the 4→3 cross-linking reaction was found to facilitate the bypass of PBPs by YcbB. These results illustrate the plasticity of the peptidoglycan polymerization machinery in response to the selective pressure of ß-lactams.


Asunto(s)
Endopeptidasas/metabolismo , Escherichia coli/metabolismo , Peptidoglicano/biosíntesis , Antibacterianos/farmacología , Catálisis , Endopeptidasas/química , Endopeptidasas/genética , Activación Enzimática , Escherichia coli/efectos de los fármacos , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica , Regulación Enzimológica de la Expresión Génica , Hidrólisis , Espectrometría de Masas , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Mutación , Peptidil Transferasas/genética , Peptidil Transferasas/metabolismo , Resistencia betalactámica
9.
Cell ; 143(7): 1097-109, 2010 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-21183073

RESUMEN

Growth of the mesh-like peptidoglycan (PG) sacculus located between the bacterial inner and outer membranes (OM) is tightly regulated to ensure cellular integrity, maintain cell shape, and orchestrate division. Cytoskeletal elements direct placement and activity of PG synthases from inside the cell, but precise spatiotemporal control over this process is poorly understood. We demonstrate that PG synthases are also controlled from outside of the sacculus. Two OM lipoproteins, LpoA and LpoB, are essential for the function, respectively, of PBP1A and PBP1B, the major E. coli bifunctional PG synthases. Each Lpo protein binds specifically to its cognate PBP and stimulates its transpeptidase activity, thereby facilitating attachment of new PG to the sacculus. LpoB shows partial septal localization, and our data suggest that the LpoB-PBP1B complex contributes to OM constriction during cell division. LpoA/LpoB and their PBP-docking regions are restricted to γ-proteobacteria, providing models for niche-specific regulation of sacculus growth.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/citología , Escherichia coli/metabolismo , Peptidoglicano/biosíntesis , Proteínas de la Membrana Bacteriana Externa/química , División Celular , Pared Celular/metabolismo , Escherichia coli/enzimología , Proteínas de Escherichia coli/química , Lipoproteínas/química , Lipoproteínas/metabolismo , Proteínas de Unión a las Penicilinas/metabolismo , Peptidoglicano Glicosiltransferasa/metabolismo , Dominios y Motivos de Interacción de Proteínas
10.
Cell ; 143(7): 1110-20, 2010 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-21183074

RESUMEN

Most bacteria surround themselves with a peptidoglycan (PG) exoskeleton synthesized by polysaccharide polymerases called penicillin-binding proteins (PBPs). Because they are the targets of penicillin and related antibiotics, the structure and biochemical functions of the PBPs have been extensively studied. Despite this, we still know surprisingly little about how these enzymes build the PG layer in vivo. Here, we identify the Escherichia coli outer-membrane lipoproteins LpoA and LpoB as essential PBP cofactors. We show that LpoA and LpoB form specific trans-envelope complexes with their cognate PBP and are critical for PBP function in vivo. We further show that LpoB promotes PG synthesis by its partner PBP in vitro and that it likely does so by stimulating glycan chain polymerization. Overall, our results indicate that PBP accessory proteins play a central role in PG biogenesis, and like the PBPs they work with, these factors are attractive targets for antibiotic development.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/metabolismo , Pared Celular/enzimología , Escherichia coli/metabolismo , Lipoproteínas/metabolismo , Proteínas de Unión a las Penicilinas/metabolismo , Peptidoglicano/biosíntesis , Pared Celular/metabolismo , Escherichia coli/citología , Escherichia coli/enzimología , Proteínas de Escherichia coli/metabolismo , Peptidoglicano/metabolismo , Peptidoglicano Glicosiltransferasa/metabolismo , D-Ala-D-Ala Carboxipeptidasa de Tipo Serina/metabolismo
11.
PLoS Genet ; 18(1): e1009993, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34986161

RESUMEN

SEDS (Shape, Elongation, Division and Sporulation) proteins are widely conserved peptidoglycan (PG) glycosyltransferases that form complexes with class B penicillin-binding proteins (bPBPs, with transpeptidase activity) to synthesize PG during bacterial cell growth and division. Because of their crucial roles in bacterial morphogenesis, SEDS proteins are one of the most promising targets for the development of new antibiotics. However, how SEDS proteins recognize their substrate lipid II, the building block of the PG layer, and polymerize it into glycan strands is still not clear. In this study, we isolated and characterized dominant-negative alleles of FtsW, a SEDS protein critical for septal PG synthesis during bacterial cytokinesis. Interestingly, most of the dominant-negative FtsW mutations reside in extracellular loops that are highly conserved in the SEDS family. Moreover, these mutations are scattered around a central cavity in a modeled FtsW structure, which has been proposed to be the active site of SEDS proteins. Consistent with this, we found that these mutations blocked septal PG synthesis but did not affect FtsW localization to the division site, interaction with its partners nor its substrate lipid II. Taken together, these results suggest that the residues corresponding to the dominant-negative mutations likely constitute the active site of FtsW, which may aid in the design of FtsW inhibitors.


Asunto(s)
Bacterias/enzimología , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Mutación , Sustitución de Aminoácidos , Bacterias/genética , Proteínas Bacterianas/genética , Dominio Catalítico , Proteínas de la Membrana/genética , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Peptidoglicano/biosíntesis , Conformación Proteica , Uridina Difosfato Ácido N-Acetilmurámico/análogos & derivados , Uridina Difosfato Ácido N-Acetilmurámico/metabolismo
12.
Chembiochem ; 25(19): e202400037, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-38688858

RESUMEN

Our gut microbiota directly influences human physiology in health and disease. The myriad of surface glycoconjugates in both the bacterial cell envelope and our gut cells dominate the microbiota-host interface and play a critical role in host response and microbiota homeostasis. Among these, peptidoglycan is the basic glycan polymer offering the cell rigidity and a basis on which many other glycoconjugates are anchored. To directly study peptidoglycan in gut commensals and obtain the molecular insight required to understand their functional activities we need effective techniques like chemical probes to label peptidoglycan in live bacteria. Here we report a chemically guided approach to study peptidoglycan in a key mucin-degrading gut microbiota member of the Verrucomicrobia phylum, Akkermansia muciniphila. Two novel non-toxic tetrazine click-compatible peptidoglycan probes with either a cyclopropene or isonitrile handle allowed for the detection and imaging of peptidoglycan synthesis in this intestinal species.


Asunto(s)
Akkermansia , Microbioma Gastrointestinal , Peptidoglicano , Peptidoglicano/metabolismo , Peptidoglicano/química , Peptidoglicano/biosíntesis , Akkermansia/metabolismo , Humanos , Sondas Moleculares/química , Sondas Moleculares/metabolismo , Química Clic , Ciclopropanos/química , Ciclopropanos/metabolismo
13.
Nature ; 554(7693): 528-532, 2018 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-29443967

RESUMEN

Peptidoglycan is the main component of the bacterial wall and protects cells from the mechanical stress that results from high intracellular turgor. Peptidoglycan biosynthesis is very similar in all bacteria; bacterial shapes are therefore mainly determined by the spatial and temporal regulation of peptidoglycan synthesis rather than by the chemical composition of peptidoglycan. The form of rod-shaped bacteria, such as Bacillus subtilis or Escherichia coli, is generated by the action of two peptidoglycan synthesis machineries that act at the septum and at the lateral wall in processes coordinated by the cytoskeletal proteins FtsZ and MreB, respectively. The tubulin homologue FtsZ is the first protein recruited to the division site, where it assembles in filaments-forming the Z ring-that undergo treadmilling and recruit later divisome proteins. The rate of treadmilling in B. subtilis controls the rates of both peptidoglycan synthesis and cell division. The actin homologue MreB forms discrete patches that move circumferentially around the cell in tracks perpendicular to the long axis of the cell, and organize the insertion of new cell wall during elongation. Cocci such as Staphylococcus aureus possess only one type of peptidoglycan synthesis machinery, which is diverted from the cell periphery to the septum in preparation for division. The molecular cue that coordinates this transition has remained elusive. Here we investigate the localization of S. aureus peptidoglycan biosynthesis proteins and show that the recruitment of the putative lipid II flippase MurJ to the septum, by the DivIB-DivIC-FtsL complex, drives peptidoglycan incorporation to the midcell. MurJ recruitment corresponds to a turning point in cytokinesis, which is slow and dependent on FtsZ treadmilling before MurJ arrival but becomes faster and independent of FtsZ treadmilling after peptidoglycan synthesis activity is directed to the septum, where it provides additional force for cell envelope constriction.


Asunto(s)
Citocinesis , Peptidoglicano/biosíntesis , Proteínas de Transferencia de Fosfolípidos/metabolismo , Staphylococcus aureus/citología , Staphylococcus aureus/metabolismo , Proteínas Bacterianas/metabolismo , Pared Celular/química , Pared Celular/metabolismo , Proteínas del Citoesqueleto/metabolismo , Cinética , Microscopía Fluorescente , Piridinas/farmacología , Análisis de la Célula Individual , Staphylococcus aureus/efectos de los fármacos , Tiazoles/farmacología , Uridina Difosfato Ácido N-Acetilmurámico/análogos & derivados , Uridina Difosfato Ácido N-Acetilmurámico/metabolismo
14.
Biosci Biotechnol Biochem ; 88(6): 585-593, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38439669

RESUMEN

In bacteria, d-amino acids are primarily synthesized from l-amino acids by amino acid racemases, but some bacteria use d-amino acid aminotransferases to synthesize d-amino acids. d-Amino acids are peptidoglycan components in the cell wall involved in several physiological processes, such as bacterial growth, biofilm dispersal, and peptidoglycan metabolism. Therefore, their metabolism and physiological roles have attracted increasing attention. Recently, we identified novel bacterial d-amino acid metabolic pathways, which involve amino acid racemases, with broad substrate specificity, as well as multifunctional enzymes with d-amino acid-metabolizing activity. Here, I review these multifunctional enzymes and their related d- and l-amino acid metabolic pathways in Escherichia coli and the hyperthermophile Thermotoga maritima.


Asunto(s)
Aminoácidos , Escherichia coli , Thermotoga maritima , Aminoácidos/metabolismo , Thermotoga maritima/enzimología , Thermotoga maritima/metabolismo , Escherichia coli/metabolismo , Escherichia coli/genética , Especificidad por Sustrato , Isomerasas de Aminoácido/metabolismo , Peptidoglicano/metabolismo , Peptidoglicano/biosíntesis , Transaminasas/metabolismo , Proteínas Bacterianas/metabolismo
15.
Proc Natl Acad Sci U S A ; 118(47)2021 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-34785593

RESUMEN

Emerging antibiotic resistance demands identification of novel antibacterial compound classes. A bacterial whole-cell screen based on pneumococcal autolysin-mediated lysis induction was developed to identify potential bacterial cell wall synthesis inhibitors. A hit class comprising a 1-amino substituted tetrahydrocarbazole (THCz) scaffold, containing two essential amine groups, displayed bactericidal activity against a broad range of gram-positive and selected gram-negative pathogens in the low micromolar range. Mode of action studies revealed that THCz inhibit cell envelope synthesis by targeting undecaprenyl pyrophosphate-containing lipid intermediates and thus simultaneously inhibit peptidoglycan, teichoic acid, and polysaccharide capsule biosynthesis. Resistance did not readily develop in vitro, and the ease of synthesizing and modifying these small molecules, as compared to natural lipid II-binding antibiotics, makes THCz promising scaffolds for development of cell wall-targeting antimicrobials.


Asunto(s)
Antiinfecciosos/química , Antiinfecciosos/farmacología , Pared Celular/química , Pared Celular/efectos de los fármacos , Lípidos/química , Antibacterianos/química , Antibacterianos/farmacología , Bacterias/efectos de los fármacos , Farmacorresistencia Bacteriana/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , N-Acetil Muramoil-L-Alanina Amidasa , Peptidoglicano/biosíntesis , Fosfatos de Poliisoprenilo , Streptococcus pneumoniae/efectos de los fármacos , Ácidos Teicoicos/química , Uridina Difosfato Ácido N-Acetilmurámico/análogos & derivados
16.
Nucleic Acids Res ; 49(2): 684-699, 2021 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-33367813

RESUMEN

The sequence of tRNAs is submitted to evolutionary constraints imposed by their multiple interactions with aminoacyl-tRNA synthetases, translation elongation factor Tu in complex with GTP (EF-Tu•GTP), and the ribosome, each being essential for accurate and effective decoding of messenger RNAs. In Staphylococcus aureus, an additional constraint is imposed by the participation of tRNAGly isoacceptors in the addition of a pentaglycine side chain to cell-wall peptidoglycan precursors by transferases FmhB, FemA and FemB. Three tRNAGly isoacceptors poorly interacting with EF-Tu•GTP and the ribosome were previously identified. Here, we show that these 'non-proteogenic' tRNAs are preferentially recognized by FmhB based on kinetic analyses and on synthesis of stable aminoacyl-tRNA analogues acting as inhibitors. Synthesis of chimeric tRNAs and of helices mimicking the tRNA acceptor arms revealed that this discrimination involves identity determinants exclusively present in the D and T stems and loops of non-proteogenic tRNAs, which belong to an evolutionary lineage only present in the staphylococci. EF-Tu•GTP competitively inhibited FmhB by sequestration of 'proteogenic' aminoacyl-tRNAs in vitro. Together, these results indicate that competition for the Gly-tRNAGly pool is restricted by both limited recognition of non-proteogenic tRNAs by EF-Tu•GTP and limited recognition of proteogenic tRNAs by FmhB.


Asunto(s)
Peptidoglicano/biosíntesis , ARN Bacteriano/metabolismo , ARN de Transferencia de Glicerina/metabolismo , Staphylococcus aureus/metabolismo , Proteínas Bacterianas/metabolismo , Secuencia de Bases , Unión Competitiva , Pared Celular/metabolismo , Guanosina Trifosfato/metabolismo , Modelos Moleculares , Conformación de Ácido Nucleico , Factor Tu de Elongación Peptídica/metabolismo , Unión Proteica
17.
J Biol Chem ; 296: 100700, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33895137

RESUMEN

YhcB, a poorly understood protein conserved across gamma-proteobacteria, contains a domain of unknown function (DUF1043) and an N-terminal transmembrane domain. Here, we used an integrated approach including X-ray crystallography, genetics, and molecular biology to investigate the function and structure of YhcB. The Escherichia coli yhcB KO strain does not grow at 45 °C and is hypersensitive to cell wall-acting antibiotics, even in the stationary phase. The deletion of yhcB leads to filamentation, abnormal FtsZ ring formation, and aberrant septum development. The Z-ring is essential for the positioning of the septa and the initiation of cell division. We found that YhcB interacts with proteins of the divisome (e.g., FtsI, FtsQ) and elongasome (e.g., RodZ, RodA). Seven of these interactions are also conserved in Yersinia pestis and/or Vibrio cholerae. Furthermore, we mapped the amino acid residues likely involved in the interactions of YhcB with FtsI and RodZ. The 2.8 Å crystal structure of the cytosolic domain of Haemophilus ducreyi YhcB shows a unique tetrameric α-helical coiled-coil structure likely to be involved in linking the Z-ring to the septal peptidoglycan-synthesizing complexes. In summary, YhcB is a conserved and conditionally essential protein that plays a role in cell division and consequently affects envelope biogenesis. Based on these findings, we propose to rename YhcB to ZapG (Z-ring-associated protein G). This study will serve as a starting point for future studies on this protein family and on how cells transit from exponential to stationary survival.


Asunto(s)
Proteínas Bacterianas/metabolismo , Peptidoglicano/biosíntesis , Proteobacteria/citología , Proteobacteria/metabolismo , Proteínas Bacterianas/química , División Celular , Cristalografía por Rayos X , Modelos Moleculares , Conformación Proteica
18.
Mol Microbiol ; 116(2): 707-722, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34097787

RESUMEN

During normal DNA replication, all cells encounter damage to their genetic material. As a result, organisms have developed response pathways that provide time for the cell to complete DNA repair before cell division occurs. In Bacillus subtilis, it is well established that the SOS-induced cell division inhibitor YneA blocks cell division after genotoxic stress; however, it remains unclear how YneA enforces the checkpoint. Here, we identify mutations that disrupt YneA activity and mutations that are refractory to the YneA-induced checkpoint. We find that YneA C-terminal truncation mutants and point mutants in or near the LysM peptidoglycan binding domain render YneA incapable of checkpoint enforcement. In addition, we develop a genetic method which isolated mutations in the ftsW gene that completely bypassed checkpoint enforcement while also finding that YneA interacts with late divisome components FtsL, Pbp2b, and Pbp1. Characterization of an FtsW variant resulted in considerably shorter cells during the DNA damage response indicative of hyperactive initiation of cell division and bypass of the YneA-enforced DNA damage checkpoint. With our results, we present a model where YneA inhibits septal cell wall synthesis by binding peptidoglycan and interfering with interaction between late arriving divisome components causing DNA damage checkpoint activation.


Asunto(s)
Bacillus subtilis/genética , Reparación del ADN/genética , Replicación del ADN/genética , ADN Bacteriano/biosíntesis , Peptidoglicano/biosíntesis , Bacillus subtilis/crecimiento & desarrollo , Proteínas Bacterianas/genética , División Celular/fisiología , Daño del ADN/genética , ADN Bacteriano/genética , Proteínas de la Membrana/genética , Peptidoglicano/metabolismo
19.
Mol Microbiol ; 116(2): 589-605, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33949015

RESUMEN

Surface proteins of Staphylococcus aureus play vital roles in bacterial physiology and pathogenesis. Recent work suggests that surface proteins are spatially regulated by a YSIRK/GXXS signal peptide that promotes cross-wall targeting at the mid-cell, though the mechanisms remain unclear. We previously showed that protein A (SpA), a YSIRK/GXXS protein and key staphylococcal virulence factor, mis-localizes in a ltaS mutant deficient in lipoteichoic acid (LTA) production. Here, we identified that SpA contains another cross-wall targeting signal, the LysM domain, which, in addition to the YSIRK/GXXS signal peptide, significantly enhances SpA cross-wall targeting. We show that LTA synthesis, but not LtaS, is required for SpA septal anchoring and cross-wall deposition. Interestingly, LTA is predominantly found at the peripheral cell membrane and is diminished at the septum of dividing staphylococcal cells, suggesting a restriction mechanism for SpA septal localization. Finally, we show that D-alanylation of LTA abolishes SpA cross-wall deposition by disrupting SpA distribution in the peptidoglycan layer without altering SpA septal anchoring. Our study reveals that multiple factors contribute to the spatial regulation and cross-wall targeting of SpA via different mechanisms, which coordinately ensures efficient incorporation of surface proteins into the growing peptidoglycan during the cell cycle.


Asunto(s)
Lipopolisacáridos/biosíntesis , Peptidoglicano/biosíntesis , Señales de Clasificación de Proteína/fisiología , Proteína Estafilocócica A/metabolismo , Staphylococcus aureus/metabolismo , Ácidos Teicoicos/biosíntesis , Ciclo Celular/fisiología , Membrana Celular/metabolismo , Pared Celular/metabolismo , Proteínas de la Membrana/metabolismo , Dominios Proteicos
20.
Mol Microbiol ; 115(6): 1170-1180, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33278861

RESUMEN

Bacterial cells are surrounded by a peptidoglycan (PG) cell wall. This structure is essential for cell integrity and its biogenesis pathway is a key antibiotic target. Most bacteria utilize two types of synthases that polymerize glycan strands and crosslink them: class A penicillin-binding proteins (aPBPs) and complexes of SEDS proteins and class B PBPs (bPBPs). Although the enzymatic steps of PG synthesis are well characterized, the steps involved in terminating PG glycan polymerization remain poorly understood. A few years ago, the conserved lytic transglycosylase MltG was identified as a potential terminase for PG synthesis in Escherichia coli. However, characterization of the in vivo function of MltG was hampered by the lack of a growth or morphological phenotype in ΔmltG cells. Here, we report the isolation of MltG-defective mutants as suppressors of lethal deficits in either aPBP or SEDS/bPBP PG synthase activity. We used this phenotype to perform a domain-function analysis for MltG, which revealed that access to the inner membrane is important for its in vivo activity. Overall, our results support a model in which MltG functions as a terminase for both classes of PG synthases by cleaving PG glycans as they are being actively synthesized.


Asunto(s)
Pared Celular/metabolismo , Escherichia coli/metabolismo , Proteínas de Unión a las Penicilinas/metabolismo , Peptidoglicano Glicosiltransferasa/metabolismo , Peptidoglicano/biosíntesis , Endodesoxirribonucleasas/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Peptidoglicano Glicosiltransferasa/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA