Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Am J Hum Genet ; 104(4): 721-730, 2019 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-30929742

RESUMEN

VAMP2 encodes the vesicular SNARE protein VAMP2 (also called synaptobrevin-2). Together with its partners syntaxin-1A and synaptosomal-associated protein 25 (SNAP25), VAMP2 mediates fusion of synaptic vesicles to release neurotransmitters. VAMP2 is essential for vesicular exocytosis and activity-dependent neurotransmitter release. Here, we report five heterozygous de novo mutations in VAMP2 in unrelated individuals presenting with a neurodevelopmental disorder characterized by axial hypotonia (which had been present since birth), intellectual disability, and autistic features. In total, we identified two single-amino-acid deletions and three non-synonymous variants affecting conserved residues within the C terminus of the VAMP2 SNARE motif. Affected individuals carrying de novo non-synonymous variants involving the C-terminal region presented a more severe phenotype with additional neurological features, including central visual impairment, hyperkinetic movement disorder, and epilepsy or electroencephalography abnormalities. Reconstituted fusion involving a lipid-mixing assay indicated impairment in vesicle fusion as one of the possible associated disease mechanisms. The genetic synaptopathy caused by VAMP2 de novo mutations highlights the key roles of this gene in human brain development and function.


Asunto(s)
Discapacidad Intelectual/genética , Hipotonía Muscular/genética , Trastornos del Neurodesarrollo/genética , Neuronas/metabolismo , Sinapsis/metabolismo , Proteína 2 de Membrana Asociada a Vesículas/genética , Adolescente , Trastorno Autístico/genética , Trastorno Autístico/metabolismo , Encéfalo/diagnóstico por imagen , Niño , Preescolar , Epilepsia/metabolismo , Exocitosis , Femenino , Heterocigoto , Humanos , Lípidos/química , Imagen por Resonancia Magnética , Masculino , Fusión de Membrana , Trastornos del Movimiento/genética , Mutación , Trastornos del Neurodesarrollo/metabolismo , Neurotransmisores/metabolismo , Fenotipo , Dominios Proteicos , Proteínas R-SNARE/metabolismo , Proteína 2 de Membrana Asociada a Vesículas/fisiología
2.
J Neurosci ; 39(4): 651-662, 2019 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-30504272

RESUMEN

Lateral inhibition in the vertebrate retina depends on a negative feedback synapse between horizontal cells (HCs) and rod and cone photoreceptors. A change in pH is thought to be the signal for negative feedback, but its spatial profile in the synaptic cleft is unknown. Here we use three different membrane proteins, each fused to the same genetically-encoded pH-sensitive Green Fluorescent Protein (GFP) (pHluorin), to probe synaptic pH in retina from transgenic zebrafish (Danio rerio) of either sex. We used the cone transducin promoter to express SynaptopHluorin (pHluorin on vesicle-associated membrane protein (VAMP2)) or CalipHluorin (pHluorin on an L-type Ca2+ channel) and the HC-specific connexin-55.5 promoter to express AMPApHluorin (pHluorin on an AMPA receptor). Stimulus light led to increased fluorescence of all three probes, consistent with alkalinization of the synaptic cleft. The receptive field size, sensitivity to surround illumination, and response to activation of an alien receptor expressed exclusively in HCs, are consistent with lateral inhibition as the trigger for alkalinization. However, SynaptopHluorin and AMPApHluorin, which are displaced farther from cone synaptic ribbons than CalipHluorin, reported a smaller pH change. Hence, unlike feedforward glutamatergic transmission, which spills over to allow cross talk between terminals in the cone network, the pH change underlying HC feedback is compartmentalized to individual synaptic invaginations within a cone terminal, consistent with private line communication.SIGNIFICANCE STATEMENT Lateral inhibition (LI) is a fundamental feature of information processing in sensory systems, enhancing contrast sensitivity and enabling edge discrimination. Horizontal cells (HCs) are the first cellular substrate of LI in the vertebrate retina, but the synaptic mechanisms underlying LI are not completely understood, despite decades of study. This paper makes a significant contribution to our understanding of LI, by showing that each HC-cone synapse is a "private-line" that operates independently from other HC-cone connections. Using transgenic zebrafish expressing pHluorin, a pH-sensitive GFP variant spliced onto three different protein platforms expressed either in cones or HCs we show that the feedback pH signal is constrained to individual cone terminals, and more stringently, to individual synaptic contact sites within each terminal.


Asunto(s)
Retroalimentación Fisiológica/fisiología , Células Fotorreceptoras Retinianas Conos/fisiología , Células Horizontales de la Retina/fisiología , Sinapsis/fisiología , Animales , Canales de Calcio Tipo L/genética , Canales de Calcio Tipo L/fisiología , Conexinas/metabolismo , Femenino , Glutamatos/fisiología , Concentración de Iones de Hidrógeno , Masculino , Protones , Receptores AMPA/metabolismo , Células Fotorreceptoras Retinianas Conos/ultraestructura , Células Horizontales de la Retina/ultraestructura , Sinapsis/ultraestructura , Transmisión Sináptica/fisiología , Proteína 2 de Membrana Asociada a Vesículas/genética , Proteína 2 de Membrana Asociada a Vesículas/fisiología , Pez Cebra
3.
J Neurosci ; 38(32): 7179-7191, 2018 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-30012692

RESUMEN

The soluble N-ethylmaleimide-sensitive factor attachment receptor (SNARE) proteins synaptobrevin (Syb), syntaxin, and SNAP-25 function in Ca2+-triggered exocytosis in both endocrine cells and neurons. The transmembrane domains (TMDs) of Syb and syntaxin span the vesicle and plasma membrane, respectively, and influence flux through fusion pores in endocrine cells as well as fusion pores formed during SNARE-mediated fusion of reconstituted membranes. These results support a model for exocytosis in which SNARE TMDs form the initial fusion pore. The present study sought to test this model in synaptic terminals. Patch-clamp recordings of miniature EPSCs (mEPSCs) were used to probe fusion pore properties in cultured hippocampal neurons from mice of both sexes. Mutants harboring tryptophan at four different sites in the Syb TMD reduced the rate-of-rise of mEPSCs. A computer model that simulates glutamate diffusion and receptor activation kinetics could account for this reduction in mEPSC rise rate by slowing the flux of glutamate through synaptic fusion pores. TMD mutations introducing positive charge also reduced the mEPSC rise rate, but negatively charged residues and glycine, which should have done the opposite, had no effect. The sensitivity of mEPSCs to pharmacological blockade of receptor desensitization was enhanced by a mutation that slowed the mEPSC rate-of-rise, suggesting that the mutation prolonged the residence of glutamate in the synaptic cleft. The same four Syb TMD residues found here to influence synaptic release were found previously to influence endocrine release, leading us to propose that a similar TMD-lined fusion pore functions widely in Ca2+-triggered exocytosis in mammalian cells.SIGNIFICANCE STATEMENT SNARE proteins function broadly in biological membrane fusion. Evidence from non-neuronal systems suggests that SNARE proteins initiate fusion by forming a fusion pore lined by transmembrane domains, but this model has not yet been tested in synapses. The present study addressed this question by testing mutations in the synaptic vesicle SNARE synaptobrevin for an influence on the rise rate of miniature synaptic currents. These results indicate that synaptobrevin's transmembrane domain interacts with glutamate as it passes through the fusion pore. The sites in synaptobrevin that influence this flux are identical to those shown previously to influence flux through endocrine fusion pores. Thus, SNARE transmembrane domains may function in the fusion pores of Ca2+-triggered exocytosis of both neurotransmitters and hormones.


Asunto(s)
Exocitosis/fisiología , Ácido Glutámico/metabolismo , Potenciales Postsinápticos Miniatura/fisiología , Neuronas/fisiología , Proteína 2 de Membrana Asociada a Vesículas/fisiología , Sustitución de Aminoácidos , Animales , Transporte Biológico , Calcio/fisiología , Simulación por Computador , Difusión , Femenino , Técnicas de Inactivación de Genes , Hipocampo/citología , Cinética , Masculino , Fusión de Membrana , Ratones , Modelos Biológicos , Técnicas de Placa-Clamp , Dominios Proteicos , Proteínas SNARE/fisiología , Triptófano/análisis , Proteína 2 de Membrana Asociada a Vesículas/química , Proteína 2 de Membrana Asociada a Vesículas/genética
4.
Proc Natl Acad Sci U S A ; 113(50): E8031-E8040, 2016 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-27911771

RESUMEN

Synaptic soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) couple their stepwise folding to fusion of synaptic vesicles with plasma membranes. In this process, three SNAREs assemble into a stable four-helix bundle. Arguably, the first and rate-limiting step of SNARE assembly is the formation of an activated binary target (t)-SNARE complex on the target plasma membrane, which then zippers with the vesicle (v)-SNARE on the vesicle to drive membrane fusion. However, the t-SNARE complex readily misfolds, and its structure, stability, and dynamics are elusive. Using single-molecule force spectroscopy, we modeled the synaptic t-SNARE complex as a parallel three-helix bundle with a small frayed C terminus. The helical bundle sequentially folded in an N-terminal domain (NTD) and a C-terminal domain (CTD) separated by a central ionic layer, with total unfolding energy of ∼17 kBT, where kB is the Boltzmann constant and T is 300 K. Peptide binding to the CTD activated the t-SNARE complex to initiate NTD zippering with the v-SNARE, a mechanism likely shared by the mammalian uncoordinated-18-1 protein (Munc18-1). The NTD zippering then dramatically stabilized the CTD, facilitating further SNARE zippering. The subtle bidirectional t-SNARE conformational switch was mediated by the ionic layer. Thus, the t-SNARE complex acted as a switch to enable fast and controlled SNARE zippering required for synaptic vesicle fusion and neurotransmission.


Asunto(s)
Proteínas SNARE/química , Secuencia de Aminoácidos , Animales , Fusión de Membrana , Ratones , Microscopía de Fuerza Atómica , Simulación de Dinámica Molecular , Proteínas Munc18/química , Proteínas Munc18/fisiología , Pinzas Ópticas , Conformación Proteica , Dominios Proteicos , Pliegue de Proteína , Estabilidad Proteica , Proteínas Qa-SNARE/química , Proteínas Qa-SNARE/fisiología , Proteínas SNARE/genética , Proteínas SNARE/fisiología , Transmisión Sináptica/fisiología , Proteína 25 Asociada a Sinaptosomas/química , Proteína 25 Asociada a Sinaptosomas/fisiología , Proteína 2 de Membrana Asociada a Vesículas/química , Proteína 2 de Membrana Asociada a Vesículas/fisiología
5.
Proc Natl Acad Sci U S A ; 110(10): 4087-92, 2013 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-23431141

RESUMEN

Parkinson disease and dementia with Lewy bodies are featured with the formation of Lewy bodies composed mostly of α-synuclein (α-Syn) in the brain. Although evidence indicates that the large oligomeric or protofibril forms of α-Syn are neurotoxic agents, the detailed mechanisms of the toxic functions of the oligomers remain unclear. Here, we show that large α-Syn oligomers efficiently inhibit neuronal SNARE-mediated vesicle lipid mixing. Large α-Syn oligomers preferentially bind to the N-terminal domain of a vesicular SNARE protein, synaptobrevin-2, which blocks SNARE-mediated lipid mixing by preventing SNARE complex formation. In sharp contrast, the α-Syn monomer has a negligible effect on lipid mixing even with a 30-fold excess compared with the case of large α-Syn oligomers. Thus, the results suggest that large α-Syn oligomers function as inhibitors of dopamine release, which thus provides a clue, at the molecular level, to their neurotoxicity.


Asunto(s)
Neuronas/fisiología , Proteínas SNARE/fisiología , alfa-Sinucleína/química , alfa-Sinucleína/fisiología , Animales , Exocitosis/efectos de los fármacos , Exocitosis/fisiología , Metabolismo de los Lípidos/efectos de los fármacos , Modelos Neurológicos , Neuronas/efectos de los fármacos , Neurotoxinas/química , Neurotoxinas/toxicidad , Células PC12 , Unión Proteica , Estructura Cuaternaria de Proteína , Proteolípidos/metabolismo , Ratas , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/toxicidad , Vesículas Secretoras/efectos de los fármacos , Vesículas Secretoras/fisiología , Transducción Genética , Proteína 2 de Membrana Asociada a Vesículas/fisiología , alfa-Sinucleína/genética , alfa-Sinucleína/toxicidad
6.
J Neurosci ; 32(13): 4417-25, 2012 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-22457491

RESUMEN

Loss of sleep causes an increase in sleep drive and deficits in hippocampal-dependent memory. Both of these responses are thought to require activation of adenosine A1 receptors (adorA1Rs) and release of transmitter molecules including ATP, which is rapidly converted to adenosine in the extracellular space, from astrocytes in a process termed gliotransmission. Although it is increasingly clear that astrocyte-derived adenosine plays an important role in driving the homeostatic sleep response and the effects of sleep loss on memory (Halassa et al., 2009; Florian et al., 2011), previous studies have not determined whether the concentration of this signaling molecule increases in response to wakefulness. Here, we show that the level of adorA1R activation increases in response to wakefulness in mice (Mus musculus). We found that this increase affected synaptic transmission in the hippocampus and modulated network activity in the cortex. Direct biosensor-based measurement of adenosine showed that the net extracellular concentration of this transmitter increased in response to normal wakefulness and sleep deprivation. Genetic inhibition of gliotransmission prevented this increase and attenuated the wakefulness-dependent changes in synaptic and network regulation by adorA1R. Consequently, we conclude that wakefulness increases the level of extracellular adenosine in the hippocampus and that this increase requires the release of transmitters from astroctyes.


Asunto(s)
Adenosina/metabolismo , Astrocitos/metabolismo , Líquido Extracelular/metabolismo , Transmisión Sináptica/fisiología , Vigilia/fisiología , Adenosina/fisiología , Animales , Corteza Cerebral/fisiología , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/fisiología , Femenino , Hipocampo/efectos de los fármacos , Hipocampo/fisiología , Técnicas In Vitro , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Receptor de Adenosina A1/efectos de los fármacos , Receptor de Adenosina A1/fisiología , Privación de Sueño/metabolismo , Transmisión Sináptica/efectos de los fármacos , Teofilina/análogos & derivados , Teofilina/farmacología , Proteína 2 de Membrana Asociada a Vesículas/genética , Proteína 2 de Membrana Asociada a Vesículas/metabolismo , Proteína 2 de Membrana Asociada a Vesículas/fisiología
7.
Proc Natl Acad Sci U S A ; 107(43): 18463-8, 2010 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-20937897

RESUMEN

Neurotransmitter release is mediated by the SNARE proteins synaptobrevin II (sybII, also known as VAMP2), syntaxin, and SNAP-25, generating a force transfer to the membranes and inducing fusion pore formation. However, the molecular mechanism by which this force leads to opening of a fusion pore remains elusive. Here we show that the ability of sybII to support exocytosis is inhibited by addition of one or two residues to the sybII C terminus depending on their energy of transfer from water to the membrane interface, following a Boltzmann distribution. These results suggest that following stimulation, the SNARE complex pulls the C terminus of sybII deeper into the vesicle membrane. We propose that this movement disrupts the vesicular membrane continuity leading to fusion pore formation. In contrast to current models, the experiments suggest that fusion pore formation begins with molecular rearrangements at the intravesicular membrane leaflet and not between the apposed cytoplasmic leaflets.


Asunto(s)
Fusión de Membrana/fisiología , Proteína 2 de Membrana Asociada a Vesículas/química , Proteína 2 de Membrana Asociada a Vesículas/fisiología , Secuencia de Aminoácidos , Animales , Fenómenos Biofísicos , Células Cultivadas , Células Cromafines/fisiología , Exocitosis/fisiología , Técnicas In Vitro , Ratones , Ratones Noqueados , Modelos Neurológicos , Datos de Secuencia Molecular , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/fisiología , Neurotransmisores/metabolismo , Ratas , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Termodinámica , Proteína 2 de Membrana Asociada a Vesículas/genética
8.
Mol Biol Cell ; 33(1): ar3, 2022 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-34731031

RESUMEN

Neurons are polarized cells of extreme scale and compartmentalization. To fulfill their role in electrochemical signaling, axons must maintain a specific complement of membrane proteins. Despite being the subject of considerable attention, the trafficking pathway of axonal membrane proteins is not well understood. Two pathways, direct delivery and transcytosis, have been proposed. Previous studies reached contradictory conclusions about which of these mediates delivery of axonal membrane proteins to their destination, in part because they evaluated long-term distribution changes and not vesicle transport. We developed a novel strategy to selectively label vesicles in different trafficking pathways and determined the trafficking of two canonical axonal membrane proteins, neuron-glia cell adhesion molecule and vesicle-associated membrane protein-2. Results from detailed quantitative analyses of transporting vesicles differed substantially from previous studies and found that axonal membrane proteins overwhelmingly undergo direct delivery. Transcytosis plays only a minor role in axonal delivery of these proteins. In addition, we identified a novel pathway by which wayward axonal proteins that reach the dendritic plasma membrane are targeted to lysosomes. These results redefine how axonal proteins achieve their polarized distribution, a crucial requirement for elucidating the underlying molecular mechanisms.


Asunto(s)
Axones/metabolismo , Moléculas de Adhesión Celular Neurona-Glia/metabolismo , Transporte de Proteínas/fisiología , Proteína 2 de Membrana Asociada a Vesículas/metabolismo , Animales , Transporte Biológico , Moléculas de Adhesión Celular Neurona-Glia/fisiología , Polaridad Celular , Dendritas/metabolismo , Endocitosis/fisiología , Endosomas/metabolismo , Hipocampo/metabolismo , Potenciales de la Membrana/fisiología , Neuronas/metabolismo , Cultivo Primario de Células/métodos , Ratas , Transducción de Señal , Transcitosis/fisiología , Vesículas Transportadoras/metabolismo , Proteína 2 de Membrana Asociada a Vesículas/fisiología
9.
BMC Neurosci ; 12: 118, 2011 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-22094010

RESUMEN

BACKGROUND: The aim of this study was to assess the distribution of key SNARE proteins in glutamatergic and GABAergic synapses of the adult rat cerebellar cortex using light microscopy immunohistochemical techniques. Analysis was made of co-localizations of vGluT-1 and vGluT-2, vesicular transporters of glutamate and markers of glutamatergic synapses, or GAD, the GABA synthetic enzyme and marker of GABAergic synapses, with VAMP-2, SNAP-25A/B and syntaxin-1. RESULTS: The examined SNARE proteins were found to be diffusely expressed in glutamatergic synapses, whereas they were rarely observed in GABAergic synapses. However, among glutamatergic synapses, subpopulations which did not contain VAMP-2, SNAP-25A/B and syntaxin-1 were detected. They included virtually all the synapses established by terminals of climbing fibres (immunoreactive for vGluT-2) and some synapses established by terminals of parallel and mossy fibres (immunoreactive for vGluT-1, and for vGluT-1 and 2, respectively). The only GABA synapses expressing the SNARE proteins studied were the synapses established by axon terminals of basket neurons. CONCLUSION: The present study supplies a detailed morphological description of VAMP-2, SNAP-25A/B and syntaxin-1 in the different types of glutamatergic and GABAergic synapses of the rat cerebellar cortex. The examined SNARE proteins characterize most of glutamatergic synapses and only one type of GABAergic synapses. In the subpopulations of glutamatergic and GABAergic synapses lacking the SNARE protein isoforms examined, alternative mechanisms for regulating trafficking of synaptic vesicles may be hypothesized, possibly mediated by different isoforms or homologous proteins.


Asunto(s)
Corteza Cerebelosa/fisiología , Ácido Glutámico/fisiología , Sinapsis/metabolismo , Proteína 25 Asociada a Sinaptosomas/fisiología , Sintaxina 1/fisiología , Proteína 2 de Membrana Asociada a Vesículas/fisiología , Ácido gamma-Aminobutírico/fisiología , Animales , Transporte Axonal/fisiología , Corteza Cerebelosa/citología , Corteza Cerebelosa/metabolismo , Terminales Presinápticos/metabolismo , Terminales Presinápticos/fisiología , Ratas , Ratas Wistar , Vesículas Sinápticas/fisiología
10.
Exp Cell Res ; 316(1): 12-23, 2010 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-19822142

RESUMEN

Integrins are major receptors for cell adhesion to the extracellular matrix (ECM). As transmembrane proteins, the levels of integrins at the plasma membrane or the cell surface are ultimately determined by the balance between two vesicle trafficking events: endocytosis of integrins at the plasma membrane and exocytosis of the vesicles that transport integrins. Here, we report that vesicle-associated membrane protein 2 (VAMP2), a SNARE protein that mediates vesicle fusion with the plasma membrane, is involved in the trafficking of alpha5beta1 integrin. VAMP2 was present on vesicles containing endocytosed beta1 integrin. Small interfering RNA (siRNA) silencing of VAMP2 markedly reduced cell surface alpha5beta1 and inhibited cell adhesion and chemotactic migration to fibronectin, the ECM ligand of alpha5beta1, without altering cell surface expression of alpha2beta1 integrin or alpha3beta1 integrin. By contrast, silencing of VAMP8, another SNARE protein, had no effect on cell surface expression of the integrins or cell adhesion to fibronectin. In addition, VAMP2-mediated trafficking is involved in cell adhesion to collagen but not to laminin. Consistent with disruption of integrin functions in cell proliferation and survival, VAMP2 silencing diminished proliferation and triggered apoptosis. Collectively, these data indicate that VAMP2 mediates the trafficking of alpha5beta1 integrin to the plasma membrane and VAMP2-dependent integrin trafficking is critical in cell adhesion, migration and survival.


Asunto(s)
Membrana Celular/metabolismo , Integrina alfa5beta1/metabolismo , Proteína 2 de Membrana Asociada a Vesículas/fisiología , Apoptosis/fisiología , Adhesión Celular/fisiología , Proliferación Celular , Quimiotaxis/fisiología , Colágeno/metabolismo , Colágeno Tipo I/metabolismo , Combinación de Medicamentos , Fibronectinas/metabolismo , Fibronectinas/farmacología , Células HeLa , Humanos , Integrina alfa5/metabolismo , Integrina beta1/metabolismo , Laminina/metabolismo , Transporte de Proteínas , Proteoglicanos/metabolismo , Proteínas R-SNARE/genética , Proteínas R-SNARE/metabolismo , ARN Interferente Pequeño/genética , Vesículas Transportadoras/metabolismo
11.
Sci Rep ; 11(1): 10955, 2021 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-34040104

RESUMEN

The primary hallmark of Parkinson's disease (PD) is the generation of Lewy bodies of which major component is α-synuclein (α-Syn). Because of increasing evidence of the fundamental roles of α-Syn oligomers in disease progression, α-Syn oligomers have become potential targets for therapeutic interventions for PD. One of the potential toxicities of α-Syn oligomers is their inhibition of SNARE-mediated vesicle fusion by specifically interacting with vesicle-SNARE protein synaptobrevin-2 (Syb2), which hampers dopamine release. Here, we show that α-Syn monomers and oligomers cooperatively inhibit neuronal SNARE-mediated vesicle fusion. α-Syn monomers at submicromolar concentrations increase the fusion inhibition by α-Syn oligomers. This cooperative pathological effect stems from the synergically enhanced vesicle clustering. Based on this cooperative inhibition mechanism, we reverse the fusion inhibitory effect of α-Syn oligomers using small peptide fragments. The small peptide fragments, derivatives of α-Syn, block the binding of α-Syn oligomers to Syb2 and dramatically reverse the toxicity of α-Syn oligomers in vesicle fusion. Our findings demonstrate a new strategy for therapeutic intervention in PD and related diseases based on this specific interaction of α-Syn.


Asunto(s)
Fusión de Membrana/efectos de los fármacos , Proteínas SNARE/antagonistas & inhibidores , alfa-Sinucleína/farmacología , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Dopamina/metabolismo , Dopamina/farmacología , Evaluación Preclínica de Medicamentos , Liposomas , Lípidos de la Membrana/metabolismo , Modelos Moleculares , Mutación Missense , Fragmentos de Péptidos/farmacología , Mutación Puntual , Unión Proteica , Multimerización de Proteína , Proteolípidos/química , Proteínas Recombinantes de Fusión/farmacología , Proteínas SNARE/fisiología , Proteína 2 de Membrana Asociada a Vesículas/antagonistas & inhibidores , Proteína 2 de Membrana Asociada a Vesículas/fisiología , alfa-Sinucleína/química , alfa-Sinucleína/genética , alfa-Sinucleína/toxicidad
12.
Elife ; 92020 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-32391794

RESUMEN

Vesicle fusion is mediated by assembly of SNARE proteins between opposing membranes. While previous work suggested an active role of SNARE transmembrane domains (TMDs) in promoting membrane merger (Dhara et al., 2016), the underlying mechanism remained elusive. Here, we show that naturally-occurring v-SNARE TMD variants differentially regulate fusion pore dynamics in mouse chromaffin cells, indicating TMD flexibility as a mechanistic determinant that facilitates transmitter release from differentially-sized vesicles. Membrane curvature-promoting phospholipids like lysophosphatidylcholine or oleic acid profoundly alter pore expansion and fully rescue the decelerated fusion kinetics of TMD-rigidifying VAMP2 mutants. Thus, v-SNARE TMDs and phospholipids cooperate in supporting membrane curvature at the fusion pore neck. Oppositely, slowing of pore kinetics by the SNARE-regulator complexin-2 withstands the curvature-driven speeding of fusion, indicating that pore evolution is tightly coupled to progressive SNARE complex formation. Collectively, TMD-mediated support of membrane curvature and SNARE force-generated membrane bending promote fusion pore formation and expansion.


Asunto(s)
Exocitosis , Fusión de Membrana , Complejos Multiproteicos/fisiología , Neurotransmisores/fisiología , Fosfolípidos/metabolismo , Proteínas SNARE/fisiología , Proteína 2 de Membrana Asociada a Vesículas/fisiología , Animales , Calcio/fisiología , Membrana Celular/metabolismo , Células Cultivadas , Células Cromafines , Cinética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Mutantes/fisiología , Unión Proteica , Dominios Proteicos , Vesículas Secretoras/fisiología
13.
Neuron ; 48(5): 727-35, 2005 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-16337911

RESUMEN

Inducible and reversible silencing of selected neurons in vivo is critical to understanding the structure and dynamics of brain circuits. We have developed Molecules for Inactivation of Synaptic Transmission (MISTs) that can be genetically targeted to allow the reversible inactivation of neurotransmitter release. MISTs consist of modified presynaptic proteins that interfere with the synaptic vesicle cycle when crosslinked by small molecule "dimerizers." MISTs based on the vesicle proteins VAMP2/Synaptobrevin and Synaptophysin induced rapid ( approximately 10 min) and reversible block of synaptic transmission in cultured neurons and brain slices. In transgenic mice expressing MISTs selectively in Purkinje neurons, administration of dimerizer reduced learning and performance of the rotarod behavior. MISTs allow for specific, inducible, and reversible lesions in neuronal circuits and may provide treatment of disorders associated with neuronal hyperactivity.


Asunto(s)
Marcación de Gen , Neuronas/fisiología , Transmisión Sináptica/fisiología , Animales , Células Cultivadas , Reactivos de Enlaces Cruzados/farmacología , Dimerización , Técnicas In Vitro , Aprendizaje/fisiología , Ratones , Ratones Transgénicos , Actividad Motora/fisiología , Inhibición Neural/fisiología , Neuronas/metabolismo , Neurotransmisores/antagonistas & inhibidores , Neurotransmisores/metabolismo , Células de Purkinje/fisiología , Vesículas Sinápticas/metabolismo , Sinaptofisina/efectos de los fármacos , Sinaptofisina/genética , Sinaptofisina/fisiología , Factores de Tiempo , Proteína 2 de Membrana Asociada a Vesículas/efectos de los fármacos , Proteína 2 de Membrana Asociada a Vesículas/genética , Proteína 2 de Membrana Asociada a Vesículas/fisiología
14.
J Neurosci ; 28(34): 8470-6, 2008 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-18716205

RESUMEN

SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteins have a key role in membrane fusion. It is commonly assumed that pairing of SNARE proteins anchored in opposing membranes overcomes the repulsion energy between membranes, thereby catalyzing fusion. In this study, we have increased the distance between the coiled-coil SNARE motif and the transmembrane domain of the vesicular SNARE synaptobrevin-2 by insertion of a flexible linker to analyze how an increased intermembrane distance affects exocytosis. Synaptobrevin-2 lengthening did not change the frequency of exocytotic events measured at 1 mum free calcium but prevented the increase in the secretory activity triggered by higher calcium concentration. Exocytotic events monitored in adrenal chromaffin cells by means of carbon fiber amperometry were classified in two groups according to the rate and extent of fusion pore expansion. Lengthening the juxtamembrane region of synaptobrevin-2 severely reduced the occurrence of rapid single events, leaving slow ones unchanged. It also impaired the increase in the fast-fusion mode that normally follows elevation of intracellular Ca2+ levels. We conclude that mild stimuli trigger slow fusion events that do not rely on a short intermembrane distance. In contrast, a short intermembrane distance mediated by tight zippering of SNAREs is essential to a component of the secretory response elicited by robust stimuli and characterized by rapid dilation of the fusion pore.


Asunto(s)
Exocitosis/fisiología , Fusión de Membrana/fisiología , Proteína 2 de Membrana Asociada a Vesículas/fisiología , Médula Suprarrenal/citología , Secuencias de Aminoácidos , Animales , Calcio/metabolismo , Bovinos , Células Cultivadas , Células Cromafines/metabolismo , Células Cromafines/fisiología , Electrofisiología , Membranas Intracelulares/metabolismo , Mutagénesis Insercional , Concentración Osmolar , Mutación Puntual , Probabilidad , Estructura Terciaria de Proteína , Factores de Tiempo , Transfección , Proteína 2 de Membrana Asociada a Vesículas/genética
15.
J Neurosci ; 27(42): 11366-75, 2007 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-17942731

RESUMEN

A product of myosin Va mutations, Griscelli's syndrome type 1 (GS1) is characterized by several neurologic deficits including quadraparesis, mental retardation, and seizures. Although multiple studies have not clearly established a cause for the neurologic deficits linked with GS1, a few reports suggest that GS1 is associated with abnormal myelination, which could cause the neurologic deficits seen with GS1. In this report, we investigate whether myosin Va is critical to oligodendrocyte morphology and to myelination in vivo. We found that myosin Va-null mice exhibit significantly impaired myelination of the brain, optic nerve, and spinal cord. Oligodendrocytes express myosin Va and loss of myosin Va function resulted in significantly smaller lamellas and decreased process number, length, and branching of oligodendrocytes. Loss of myosin Va function also blocked distal localization of vesicle-associated membrane protein 2 (VAMP2), which is known to associate with myosin Va. When VAMP2 function was disrupted, oligodendrocytes exhibited similar morphologic deficits to what is seen with functional ablation of myosin Va. Our findings establish a role for both myosin Va and VAMP2 in oligodendrocyte function as it relates to myelination.


Asunto(s)
Morfogénesis/fisiología , Vaina de Mielina/fisiología , Cadenas Pesadas de Miosina/fisiología , Miosina Tipo V/fisiología , Oligodendroglía/citología , Oligodendroglía/metabolismo , Animales , Encéfalo/citología , Encéfalo/crecimiento & desarrollo , Células Cultivadas , Ratones , Ratones Noqueados , Morfogénesis/genética , Vaina de Mielina/metabolismo , Cadenas Pesadas de Miosina/deficiencia , Cadenas Pesadas de Miosina/genética , Miosina Tipo V/deficiencia , Miosina Tipo V/genética , Ratas , Ratas Sprague-Dawley , Proteína 2 de Membrana Asociada a Vesículas/antagonistas & inhibidores , Proteína 2 de Membrana Asociada a Vesículas/genética , Proteína 2 de Membrana Asociada a Vesículas/fisiología
16.
Diabetes ; 56(4): 1127-35, 2007 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-17395751

RESUMEN

The leading causes of albuminuria and end-stage renal failure are secondary to abnormalities in the production or cellular action of insulin, including diabetes and hyperinsulinemic metabolic syndrome. The human glomerular podocyte is a critical cell for maintaining the filtration barrier of the kidney and preventing albuminuria. We have recently shown this cell to be insulin sensitive with respect to glucose uptake, with kinetics similar to muscle cells. We now show that the podocyte protein nephrin is essential for this process. Conditionally immortalized podocytes from two different patients with nephrin mutations (natural human nephrin mutant models) were unresponsive to insulin. Knocking nephrin down with siRNA in wild-type podocytes abrogated the insulin response, and stable nephrin transfection of nephrin-deficient podocytes rescued their insulin response. Mechanistically, we show that nephrin allows the GLUT1- and GLUT4-rich vesicles to fuse with the membrane of this cell. Furthermore, we show that the COOH of nephrin interacts with the vesicular SNARE protein VAMP2 in vitro and ex vivo (using yeast-2 hybrid and coimmunoprecipitation studies). This work demonstrates a previously unsuspected role of nephrin in vesicular docking and insulin responsiveness of podocytes.


Asunto(s)
Glomérulos Renales/fisiología , Proteínas de la Membrana/fisiología , Podocitos/fisiología , Transporte Biológico , Niño , Desoxiglucosa/metabolismo , Humanos , Fallo Renal Crónico/fisiopatología , Glomérulos Renales/fisiopatología , Proteínas de la Membrana/deficiencia , Proteínas de la Membrana/genética , Síndrome Nefrótico/fisiopatología , ARN Interferente Pequeño/genética , Proteína 2 de Membrana Asociada a Vesículas/fisiología
17.
Circ Res ; 98(6): 811-7, 2006 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-16527992

RESUMEN

Reactive oxygen species (ROS) contribute to the pathogenesis of atherosclerosis in part by promoting vascular smooth muscle cell (VSMC) growth. Previously we demonstrated that cyclophilin A (CyPA) is a secreted oxidative stress-induced factor (SOXF) that promotes inflammation, VSMC growth, and endothelial cell apoptosis. However, the mechanisms that regulate CyPA secretion are unknown. In this study, we hypothesized that ROS-induced CyPA secretion from VSMC requires a highly regulated process of vesicle transport, docking, and fusion at the plasma membrane. Conditioned medium and plasma membrane sheets were prepared by exposing VSMC to 1 micromol/L LY83583, which generates intracellular superoxide. A vesicular transport mechanism was confirmed by colocalization at the plasma membrane with vesicle-associated membrane protein (VAMP). CyPA transport to the plasma membrane and secretion were significantly increased by LY83583. Reduction of VAMP-2 expression by small interfering RNA inhibited LY83583-induced CyPA secretion. Pretreatment with 3 micromol/L cytochalasin D, an actin depolymerizing agent, abrogated CyPA secretion. Infection with dominant-negative RhoA and Cdc42 adenovirus inhibited CyPA secretion by 72% and 63%, respectively, whereas dominant-negative Rac1 had a small effect (11%). Pretreatment with the Rho kinase inhibitor Y27632 (3 to 30 micromol/L) and myosin II inhibitor blebbistatin (1 to 10 micromol/L) inhibited CyPA secretion in a dose-dependent manner. Simvastatin (3 to 30 micromol/L) also dose-dependently inhibited LY83583-induced CyPA secretion likely via decreased isoprenylation of small GTPases. Our findings define a novel VSMC vesicular secretory pathway for CyPA that involves actin remodeling and myosin II activation via RhoA-, Cdc42-, and Rho kinase-dependent signaling events.


Asunto(s)
Ciclofilina A/metabolismo , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Actinas/metabolismo , Aminoquinolinas/farmacología , Animales , Membrana Celular/metabolismo , Péptidos y Proteínas de Señalización Intracelular , Masculino , Músculo Liso Vascular/citología , Miosina Tipo II/fisiología , Estrés Oxidativo , Proteínas Serina-Treonina Quinasas/fisiología , Ratas , Ratas Sprague-Dawley , Especies Reactivas de Oxígeno/toxicidad , Simvastatina/farmacología , Proteína 2 de Membrana Asociada a Vesículas/fisiología , Proteínas de Unión al GTP rho/fisiología , Quinasas Asociadas a rho
18.
J Neurosci ; 26(25): 6668-76, 2006 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-16793874

RESUMEN

Deletion of synaptobrevin/vesicle-associated membrane protein, the major synaptic vesicle soluble N-ethylmaleimide-sensitive factor attachment protein receptor (R-SNARE), severely decreases but does not abolish spontaneous and evoked synaptic vesicle exocytosis. We now show that the closely related R-SNARE protein cellubrevin rescues synaptic transmission in synaptobrevin-deficient neurons but that deletion of both cellubrevin and synaptobrevin does not cause a more severe decrease in exocytosis than deletion of synaptobrevin alone. We then examined the structural requirements for synaptobrevin to function in exocytosis. We found that substituting glutamine for arginine in the zero-layer of the SNARE motif did not significantly impair synaptobrevin-dependent exocytosis, whereas insertion of 12 or 24 residues between the SNARE motif and transmembrane region abolished the ability of synaptobrevin to mediate Ca2+-evoked exocytosis. Surprisingly, however, synaptobrevin with the 12-residue but not the 24-residue insertion restored spontaneous release in synaptobrevin-deficient neurons. Our data suggest that synaptobrevin mediates Ca2+-triggered exocytosis by tight coupling of the SNARE motif to the transmembrane region and hence forcing the membranes into close proximity for fusion. Furthermore, the fusion reactions underlying evoked and spontaneous release differ mechanistically.


Asunto(s)
Fusión de Membrana/fisiología , Sinapsis/fisiología , Vesículas Sinápticas/fisiología , Proteína 2 de Membrana Asociada a Vesículas/fisiología , Animales , Animales Recién Nacidos , Células Cultivadas , Clonación Molecular/métodos , Estimulación Eléctrica/métodos , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/genética , Potenciales Postsinápticos Excitadores/fisiología , Potenciales Postsinápticos Excitadores/efectos de la radiación , Hipocampo/citología , Inmunoprecipitación/métodos , Infecciones , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/genética , Potenciales de la Membrana/efectos de la radiación , Ratones , Ratones Noqueados , Mutación/fisiología , Neuronas/citología , Proteínas SNARE/fisiología , Relación Estructura-Actividad , Transmisión Sináptica , Sintaxina 1/metabolismo , Proteína 2 de Membrana Asociada a Vesículas/deficiencia , Proteína 3 de Membrana Asociada a Vesículas/deficiencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA