Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 629(8012): 697-703, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38658755

RESUMEN

RAD52 is important for the repair of DNA double-stranded breaks1,2, mitotic DNA synthesis3-5 and alternative telomere length maintenance6,7. Central to these functions, RAD52 promotes the annealing of complementary single-stranded DNA (ssDNA)8,9 and provides an alternative to BRCA2/RAD51-dependent homologous recombination repair10. Inactivation of RAD52 in homologous-recombination-deficient BRCA1- or BRCA2-defective cells is synthetically lethal11,12, and aberrant expression of RAD52 is associated with poor cancer prognosis13,14. As a consequence, RAD52 is an attractive therapeutic target against homologous-recombination-deficient breast, ovarian and prostate cancers15-17. Here we describe the structure of RAD52 and define the mechanism of annealing. As reported previously18-20, RAD52 forms undecameric (11-subunit) ring structures, but these rings do not represent the active form of the enzyme. Instead, cryo-electron microscopy and biochemical analyses revealed that ssDNA annealing is driven by RAD52 open rings in association with replication protein-A (RPA). Atomic models of the RAD52-ssDNA complex show that ssDNA sits in a positively charged channel around the ring. Annealing is driven by the RAD52 N-terminal domains, whereas the C-terminal regions modulate the open-ring conformation and RPA interaction. RPA associates with RAD52 at the site of ring opening with critical interactions occurring between the RPA-interacting domain of RAD52 and the winged helix domain of RPA2. Our studies provide structural snapshots throughout the annealing process and define the molecular mechanism of ssDNA annealing by the RAD52-RPA complex.


Asunto(s)
Microscopía por Crioelectrón , ADN de Cadena Simple , Complejos Multiproteicos , Proteína Recombinante y Reparadora de ADN Rad52 , Proteína de Replicación A , Humanos , ADN de Cadena Simple/química , ADN de Cadena Simple/metabolismo , ADN de Cadena Simple/ultraestructura , Modelos Moleculares , Unión Proteica , Proteína Recombinante y Reparadora de ADN Rad52/química , Proteína Recombinante y Reparadora de ADN Rad52/metabolismo , Proteína Recombinante y Reparadora de ADN Rad52/ultraestructura , Proteína de Replicación A/química , Proteína de Replicación A/metabolismo , Proteína de Replicación A/ultraestructura , Complejos Multiproteicos/química , Complejos Multiproteicos/metabolismo , Complejos Multiproteicos/ultraestructura , Dominios Proteicos , Sitios de Unión
2.
Anal Biochem ; 569: 46-52, 2019 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-30707898

RESUMEN

Due to the therapeutic potential of targeting protein-protein interactions (PPIs) there is a need for easily executed assays to perform high throughput screening (HTS) of inhibitors. We have developed and optimized an innovative and robust fluorescence-based assay for detecting PPI inhibitors, called FluorIA (Fluorescence-based protein-protein Interaction Assay). Targeting the PPI of RAD52 with replication protein A (RPA) was used as an example, and the FluorIA protocol design, optimization and successful application to HTS of large chemical libraries are described. Here enhanced green fluorescent protein (EGFP)-tagged RAD52 detected the PPI using full-length RPA heterotrimer coated, black microtiter plates and loss in fluorescence intensity identified small molecule inhibitors (SMIs) that displaced the EGFP-tagged RAD52. The FluorIA design and protocol can be adapted and applied to detect PPIs for other protein systems. This should push forward efforts to develop targeted therapeutics against protein complexes in pathological processes.


Asunto(s)
Proteínas Fluorescentes Verdes/metabolismo , Mapas de Interacción de Proteínas , Proteína Recombinante y Reparadora de ADN Rad52/metabolismo , Bibliotecas de Moléculas Pequeñas/química , Espectrometría de Fluorescencia/métodos , Proteínas Fluorescentes Verdes/química , Ensayos Analíticos de Alto Rendimiento , Humanos , Concentración de Iones de Hidrógeno , Unión Proteica , Proteína Recombinante y Reparadora de ADN Rad52/química , Bibliotecas de Moléculas Pequeñas/metabolismo
3.
Methods ; 142: 24-29, 2018 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-29518498

RESUMEN

The health of an organism is intimately linked to its ability to repair damaged DNA. Importantly, DNA repair processes are highly dynamic. This highlights the necessity of characterizing DNA repair in live cells. Advanced genome editing and imaging approaches allow us to visualize damaged DNA and its associated factors in real time. Here, we summarize both established and recent methods that are used to induce DNA damage and visualize damaged DNA and its repair in live cells.


Asunto(s)
Daño del ADN/genética , ADN/metabolismo , Microscopía Intravital/métodos , Imagen Molecular/métodos , Animales , Cromatina/química , Cromatina/genética , Cromatina/metabolismo , ADN/química , ADN/genética , Daño del ADN/efectos de los fármacos , Daño del ADN/efectos de la radiación , Reparación del ADN/genética , Endonucleasas/genética , Endonucleasas/metabolismo , Humanos , Microscopía Intravital/instrumentación , Proteínas Luminiscentes/química , Proteínas Luminiscentes/genética , Microscopía Fluorescente/instrumentación , Microscopía Fluorescente/métodos , Imagen Molecular/instrumentación , Proteína Recombinante y Reparadora de ADN Rad52/química , Proteína Recombinante y Reparadora de ADN Rad52/genética , Proteína Recombinante y Reparadora de ADN Rad52/metabolismo
4.
J Biol Chem ; 292(28): 11702-11713, 2017 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-28551686

RESUMEN

Rad52 is a highly conserved protein involved in the repair of DNA damage. Human RAD52 has been shown to mediate single-stranded DNA (ssDNA) and is synthetic lethal with mutations in other key recombination proteins. For this study, we used single-molecule imaging and ssDNA curtains to examine the binding interactions of human RAD52 with replication protein A (RPA)-coated ssDNA, and we monitored the fate of RAD52 during assembly of the presynaptic complex. We show that RAD52 binds tightly to the RPA-ssDNA complex and imparts an inhibitory effect on RPA turnover. We also found that during presynaptic complex assembly, most of the RPA and RAD52 was displaced from the ssDNA, but some RAD52-RPA-ssDNA complexes persisted as interspersed clusters surrounded by RAD51 filaments. Once assembled, the presence of RAD51 restricted formation of new RAD52-binding events, but additional RAD52 could bind once RAD51 dissociated from the ssDNA. Together, these results provide new insights into the behavior and dynamics of human RAD52 during presynaptic complex assembly and disassembly.


Asunto(s)
ADN de Cadena Simple/metabolismo , Terminales Presinápticos/metabolismo , Recombinasa Rad51/metabolismo , Proteína Recombinante y Reparadora de ADN Rad52/metabolismo , Proteína de Replicación A/metabolismo , Estabilidad de Enzimas , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Cinética , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Microscopía Fluorescente , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Terminales Presinápticos/enzimología , Multimerización de Proteína , Estabilidad Proteica , Recombinasa Rad51/química , Recombinasa Rad51/genética , Proteína Recombinante y Reparadora de ADN Rad52/química , Proteína Recombinante y Reparadora de ADN Rad52/genética , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo , Proteína de Replicación A/química , Proteína de Replicación A/genética , Proteína Fluorescente Roja
5.
Nucleic Acids Res ; 44(9): 4189-99, 2016 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-26873923

RESUMEN

RAD52 is a member of the homologous recombination (HR) pathway that is important for maintenance of genome integrity. While single RAD52 mutations show no significant phenotype in mammals, their combination with mutations in genes that cause hereditary breast cancer and ovarian cancer like BRCA1, BRCA2, PALB2 and RAD51C are lethal. Consequently, RAD52 may represent an important target for cancer therapy. In vitro, RAD52 has ssDNA annealing and DNA strand exchange activities. Here, to identify small molecule inhibitors of RAD52 we screened a 372,903-compound library using a fluorescence-quenching assay for ssDNA annealing activity of RAD52. The obtained 70 putative inhibitors were further characterized using biochemical and cell-based assays. As a result, we identified compounds that specifically inhibit the biochemical activities of RAD52, suppress growth of BRCA1- and BRCA2-deficient cells and inhibit RAD52-dependent single-strand annealing (SSA) in human cells. We will use these compounds for development of novel cancer therapy and as a probe to study mechanisms of DNA repair.


Asunto(s)
Antineoplásicos/farmacología , Proteína BRCA1/genética , Proteína BRCA2/genética , Proteína Recombinante y Reparadora de ADN Rad52/antagonistas & inhibidores , Proteína BRCA1/metabolismo , Proteína BRCA2/metabolismo , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Cisplatino/farmacología , Daño del ADN , Ensayos de Selección de Medicamentos Antitumorales , Técnicas de Silenciamiento del Gen , Ensayos Analíticos de Alto Rendimiento , Humanos , Concentración 50 Inhibidora , Unión Proteica , Proteína Recombinante y Reparadora de ADN Rad52/química
6.
Nucleic Acids Res ; 42(2): 941-51, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24163251

RESUMEN

The Saccharomyces cerevisiae Rad52 protein is essential for efficient homologous recombination (HR). An important role of Rad52 in HR is the loading of Rad51 onto replication protein A-coated single-stranded DNA (ssDNA), which is referred to as the recombination mediator activity. In vitro, Rad52 displays additional activities, including self-association, DNA binding and ssDNA annealing. Although Rad52 has been a subject of extensive genetic, biochemical and structural studies, the mechanisms by which these activities are coordinated in the various roles of Rad52 in HR remain largely unknown. In the present study, we found that an isolated C-terminal half of Rad52 disrupted the Rad51 oligomer and formed a heterodimeric complex with Rad51. The Rad52 fragment inhibited the binding of Rad51 to double-stranded DNA, but not to ssDNA. The phenylalanine-349 and tyrosine-409 residues present in the C-terminal half of Rad52 were critical for the interaction with Rad51, the disruption of Rad51 oligomers, the mediator activity of the full-length protein and for DNA repair in vivo in the presence of methyl methanesulfonate. Our studies suggested that phenylalanine-349 and tyrosine-409 are key residues in the C-terminal half of Rad52 and probably play an important role in the mediator activity.


Asunto(s)
Recombinación Homóloga , Proteína Recombinante y Reparadora de ADN Rad52/química , Proteínas de Saccharomyces cerevisiae/química , Secuencia de Aminoácidos , ADN/metabolismo , Reparación del ADN , Datos de Secuencia Molecular , Mutación , Fenilalanina/genética , Multimerización de Proteína , Recombinasa Rad51/metabolismo , Proteína Recombinante y Reparadora de ADN Rad52/genética , Proteína Recombinante y Reparadora de ADN Rad52/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Tirosina/genética
7.
EMBO J ; 30(16): 3368-82, 2011 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-21804533

RESUMEN

RAD52 protein has an important role in homology-directed DNA repair by mediating RAD51 nucleoprotein filament formation on single-stranded DNA (ssDNA) protected by replication protein-A (RPA) and annealing of RPA-coated ssDNA. In human, cellular response to DNA damage includes phosphorylation of RAD52 by c-ABL kinase at tyrosine 104. To address how this phosphorylation modulates RAD52 function, we used an amber suppressor technology to substitute tyrosine 104 with chemically stable phosphotyrosine analogue (p-Carboxymethyl-L-phenylalanine, pCMF). The RAD52(Y104pCMF) retained ssDNA-binding activity characteristic of unmodified RAD52 but showed lower affinity for double-stranded DNA (dsDNA) binding. Single-molecule analyses revealed that RAD52(Y104pCMF) specifically targets and wraps ssDNA. While RAD52(Y104pCMF) is confined to ssDNA region, unmodified RAD52 readily diffuses into dsDNA region. The Y104pCMF substitution also increased the ssDNA annealing rate and allowed overcoming the inhibitory effect of dsDNA. We propose that phosphorylation at Y104 enhances ssDNA annealing activity of RAD52 by attenuating dsDNA binding. Implications of phosphorylation-mediated activation of RAD52 annealing activity are discussed.


Asunto(s)
ADN de Cadena Simple/metabolismo , Fosfotirosina/metabolismo , Procesamiento Proteico-Postraduccional , Proteína Recombinante y Reparadora de ADN Rad52/metabolismo , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Aminoácidos/metabolismo , Unión Competitiva , ADN/metabolismo , ADN/farmacología , Roturas del ADN de Doble Cadena , Genes Supresores , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Fenilalanina/análogos & derivados , Fenilalanina/metabolismo , Fosforilación , Unión Proteica , Conformación Proteica , Proteínas Proto-Oncogénicas c-abl/metabolismo , Proteína Recombinante y Reparadora de ADN Rad52/química , Proteína Recombinante y Reparadora de ADN Rad52/genética , Proteínas Recombinantes de Fusión/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido
8.
Mol Carcinog ; 54(9): 853-8, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24729511

RESUMEN

As an important member in homologous recombination repair, RAD52 plays a crucial part in maintaining genomic stability and prevent carcinogenesis. Several cancer susceptibility RAD52 single nucleotide polymorphisms (SNPs) have been identified previously. However, little or nothing has been known about the RAD52 SNPs and their functional significance in hepatitis B viruses (HBV)-related hepatocellular carcinoma (HCC). Therefore, we investigated the association between five RAD52 SNPs (rs1051669, rs10774474, rs11571378, rs7963551, and rs6489769) and HBV-related HCC risk as well as its biological function in vivo. Genotypes were determined in two independent case-control sets from two regions of China. Odds ratios (ORs) and 95% confidence intervals (CIs) were estimated by logistic regression. The allele-specific regulation on RAD52 expression by the functional genetic variant was examined with normal liver tissues. We found that only the RAD52 rs7963551 SNP was significantly associated with HCC risk, with the odds of having the rs7963551 CC genotype in patients was 0.59 (95% CI = 0.45-0.78, P = 1.5 × 10(-4), HCC cases versus chronic HBV carriers) or 0.65 (95% CI = 0.52-0.81, P = 1.1 × 10(-4), HCC cases versus healthy controls) compared with the AA genotype. In the genotype-phenotype correlation analyses of 44 human liver tissue samples, rs7963551 CC or AC was associated with a statistically significant increase of RAD52 mRNA expression, which are consistent to functional relevance of allelic regulation of RAD52 expression by rs7963551 SNP and miRNA let-7 in cancer cells. Our data demonstrated that RAD52 functional rs7963551 SNP contributes to susceptibility to developing HCC.


Asunto(s)
Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/virología , Hepatitis B Crónica/complicaciones , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/virología , Polimorfismo de Nucleótido Simple , Proteína Recombinante y Reparadora de ADN Rad52/genética , Sitios de Unión , Carcinoma Hepatocelular/epidemiología , Carcinoma Hepatocelular/metabolismo , China/epidemiología , Femenino , Virus de la Hepatitis B/aislamiento & purificación , Humanos , Hígado/metabolismo , Hígado/virología , Neoplasias Hepáticas/epidemiología , Neoplasias Hepáticas/metabolismo , Masculino , MicroARNs/metabolismo , Persona de Mediana Edad , Proteína Recombinante y Reparadora de ADN Rad52/química , Proteína Recombinante y Reparadora de ADN Rad52/metabolismo
9.
Crit Rev Biochem Mol Biol ; 46(3): 240-70, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21599536

RESUMEN

Homologous recombination (HR) is an essential genome stability mechanism used for high-fidelity repair of DNA double-strand breaks and for the recovery of stalled or collapsed DNA replication forks. The crucial homology search and DNA strand exchange steps of HR are catalyzed by presynaptic filaments-helical filaments of a recombinase enzyme bound to single-stranded DNA (ssDNA). Presynaptic filaments are fundamentally dynamic structures, the assembly, catalytic turnover, and disassembly of which must be closely coordinated with other elements of the DNA recombination, repair, and replication machinery in order for genome maintenance functions to be effective. Here, we reviewed the major dynamic elements controlling the assembly, activity, and disassembly of presynaptic filaments; some intrinsic such as recombinase ATP-binding and hydrolytic activities, others extrinsic such as ssDNA-binding proteins, mediator proteins, and DNA motor proteins. We examined dynamic behavior on multiple levels, including atomic- and filament-level structural changes associated with ATP binding and hydrolysis as evidenced in crystal structures, as well as subunit binding and dissociation events driven by intrinsic and extrinsic factors. We examined the biochemical properties of recombination proteins from four model systems (T4 phage, Escherichia coli, Saccharomyces cerevisiae, and Homo sapiens), demonstrating how their properties are tailored for the context-specific requirements in these diverse species. We proposed that the presynaptic filament has evolved to rely on multiple external factors for increased multilevel regulation of HR processes in genomes with greater structural and sequence complexity.


Asunto(s)
Reparación del ADN , ADN de Cadena Simple/química , Proteínas de Unión al ADN/química , Recombinasas/química , Recombinación Genética , Proteína BRCA2/química , Proteína BRCA2/genética , Proteína BRCA2/metabolismo , Bacteriófago T4/enzimología , Bacteriófago T4/genética , Bacteriófago T4/metabolismo , Roturas del ADN de Doble Cadena , Roturas del ADN de Cadena Simple , ADN Helicasas/química , ADN Helicasas/genética , ADN Helicasas/metabolismo , ADN de Cadena Simple/genética , ADN de Cadena Simple/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Humanos , Hidrólisis , Unión Proteica/genética , Recombinasa Rad51/química , Recombinasa Rad51/genética , Recombinasa Rad51/metabolismo , Proteína Recombinante y Reparadora de ADN Rad52/química , Proteína Recombinante y Reparadora de ADN Rad52/genética , Proteína Recombinante y Reparadora de ADN Rad52/metabolismo , Rec A Recombinasas/química , Rec A Recombinasas/genética , Rec A Recombinasas/metabolismo , Recombinasas/genética , Recombinasas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Cloruro de Sodio/química
10.
Biochem Biophys Res Commun ; 435(2): 260-6, 2013 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-23639616

RESUMEN

Rad52 plays essential roles in homologous recombination (HR) and repair of DNA double-strand breaks (DSBs) in Saccharomyces cerevisiae. However, in vertebrates, knockouts of the Rad52 gene show no hypersensitivity to agents that induce DSBs. Rad52 localizes in the nucleus and forms foci at a late stage following irradiation. Ku70 and Ku80, which play an essential role in nonhomologous DNA-end-joining (NHEJ), are essential for the accumulation of other core NHEJ factors, e.g., XRCC4, and a HR-related factor, e.g., BRCA1. Here, we show that the subcellular localization of EYFP-Rad52(1-418) changes dynamically during the cell cycle. In addition, EYFP-Rad52(1-418) accumulates rapidly at microirradiated sites and colocalizes with the DSB sensor protein Ku80. Moreover, the accumulation of EYFP-Rad52(1-418) at DSB sites is independent of the core NHEJ factors, i.e., Ku80 and XRCC4. Furthermore, we observed that EYFP-Rad52(1-418) localizes in nucleoli in CHO-K1 cells and XRCC4-deficient cells, but not in Ku80-deficient cells. We also found that Rad52 nuclear localization, nucleolar localization, and accumulation at DSB sites are dependent on eight amino acids (411-418) at the end of the C-terminal region of Rad52 (Rad52 CTR). Furthermore, basic amino acids on Rad52 CTR are highly conserved among mammalian, avian, and fish homologues, suggesting that Rad52 CTR is important for the regulation and function of Rad52 in vertebrates. These findings also suggest that the mechanism underlying the regulation of subcellular localization of Rad52 is important for the physiological function of Rad52 not only at a late stage following irradiation, but also at an early stage.


Asunto(s)
Núcleo Celular/fisiología , Núcleo Celular/efectos de la radiación , Daño del ADN/fisiología , Proteína Recombinante y Reparadora de ADN Rad52/química , Proteína Recombinante y Reparadora de ADN Rad52/metabolismo , Animales , Células CHO , Cricetinae , Cricetulus , Estructura Terciaria de Proteína , Relación Estructura-Actividad
12.
Nucleic Acids Res ; 38(9): 2917-30, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20081207

RESUMEN

Rad52 promotes the annealing of complementary strands of DNA bound by replication protein A (RPA) during discrete repair pathways. Here, we used a fluorescence resonance energy transfer (FRET) between two fluorescent dyes incorporated into DNA substrates to probe the mechanism by which human Rad52 (hRad52) interacts with and mediates annealing of ssDNA-hRPA complexes. Human Rad52 bound ssDNA or ssDNA-hRPA complex in two, concentration-dependent modes. At low hRad52 concentrations, ssDNA was wrapped around the circumference of the protein ring, while at higher protein concentrations, ssDNA was stretched between multiple hRad52 rings. Annealing by hRad52 occurred most efficiently when each complementary DNA strand or each ssDNA-hRPA complex was bound by hRad52 in a wrapped configuration, suggesting homology search and annealing occur via two hRad52-ssDNA complexes. In contrast to the wild type protein, hRad52(RQK/AAA) and hRad52(1-212) mutants with impaired ability to bind hRPA protein competed with hRPA for binding to ssDNA and failed to counteract hRPA-mediated duplex destabilization highlighting the importance of hRad52-hRPA interactions in promoting efficient DNA annealing.


Asunto(s)
ADN de Cadena Simple/metabolismo , Proteína Recombinante y Reparadora de ADN Rad52/metabolismo , Unión Competitiva , Transferencia Resonante de Energía de Fluorescencia , Humanos , Mutación , Unión Proteica , Proteína Recombinante y Reparadora de ADN Rad52/química , Proteína Recombinante y Reparadora de ADN Rad52/genética , Proteína de Replicación A/metabolismo
13.
Nucleic Acids Res ; 38(12): 3952-62, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20194117

RESUMEN

Homologous recombination is a key in contributing to bacteriophages genome repair, circularization and replication. No less than six kinds of recombinase genes have been reported so far in bacteriophage genomes, two (UvsX and Gp2.5) from virulent, and four (Sak, Red beta, Erf and Sak4) from temperate phages. Using profile-profile comparisons, structure-based modelling and gene-context analyses, we provide new views on the global landscape of recombinases in 465 bacteriophages. We show that Sak, Red beta and Erf belong to a common large superfamily adopting a shortcut Rad52-like fold. Remote homologs of Sak4 are predicted to adopt a shortcut Rad51/RecA fold and are discovered widespread among phage genomes. Unexpectedly, within temperate phages, gene-context analyses also pinpointed the presence of distant Gp2.5 homologs, believed to be restricted to virulent phages. All in all, three major superfamilies of phage recombinases emerged either related to Rad52-like, Rad51-like or Gp2.5-like proteins. For two newly detected recombinases belonging to the Sak4 and Gp2.5 families, we provide experimental evidence of their recombination activity in vivo. Temperate versus virulent lifestyle together with the importance of genome mosaicism is discussed in the light of these novel recombinases. Screening for these recombinases in genomes can be performed at http://biodev.extra.cea.fr/virfam.


Asunto(s)
Bacteriófagos/enzimología , Recombinasas/química , Proteínas Virales/química , Secuencia de Aminoácidos , Bacteriófagos/genética , Genes Virales , Genoma Viral , Datos de Secuencia Molecular , Recombinasa Rad51/química , Proteína Recombinante y Reparadora de ADN Rad52/química , Recombinasas/clasificación , Recombinasas/metabolismo , Homología de Secuencia de Aminoácido , Proteínas Virales/clasificación , Proteínas Virales/metabolismo
14.
Nucleic Acids Res ; 38(14): 4708-21, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20371517

RESUMEN

Homologous recombination (HR) plays a vital role in DNA metabolic processes including meiosis, DNA repair, DNA replication and rDNA homeostasis. HR defects can lead to pathological outcomes, including genetic diseases and cancer. Recent studies suggest that the post-translational modification by the small ubiquitin-like modifier (SUMO) protein plays an important role in mitotic and meiotic recombination. However, the precise role of SUMOylation during recombination is still unclear. Here, we characterize the effect of SUMOylation on the biochemical properties of the Saccharomyces cerevisiae recombination mediator protein Rad52. Interestingly, Rad52 SUMOylation is enhanced by single-stranded DNA, and we show that SUMOylation of Rad52 also inhibits its DNA binding and annealing activities. The biochemical effects of SUMO modification in vitro are accompanied by a shorter duration of spontaneous Rad52 foci in vivo and a shift in spontaneous mitotic recombination from single-strand annealing to gene conversion events in the SUMO-deficient Rad52 mutants. Taken together, our results highlight the importance of Rad52 SUMOylation as part of a 'quality control' mechanism regulating the efficiency of recombination and DNA repair.


Asunto(s)
Reparación del ADN , Proteína Recombinante y Reparadora de ADN Rad52/metabolismo , Recombinación Genética , Proteína SUMO-1/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , ADN de Cadena Simple/metabolismo , Lisina/metabolismo , Estructura Terciaria de Proteína , Recombinasa Rad51/metabolismo , Proteína Recombinante y Reparadora de ADN Rad52/química , Proteína de Replicación A/metabolismo , Proteínas de Saccharomyces cerevisiae/química
15.
Curr Biol ; 18(15): 1142-6, 2008 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-18656357

RESUMEN

In eukaryotes, homologous recombination proteins such as RAD51 and RAD52 play crucial roles in DNA repair and genome stability. Human RAD52 is a member of a large single-strand annealing protein (SSAP) family [1] and stimulates Rad51-dependent recombination [2, 3]. In prokaryotes and phages, it has been difficult to establish the presence of RAD52 homologs with conserved sequences. Putative SSAPs were recently found in several phages that infect strains of Lactococcus lactis[4]. One of these SSAPs was identified as Sak and was found in the virulent L. lactis phage ul36, which belongs to the Siphoviridae family [4, 5]. In this study, we show that Sak is homologous to the N terminus of human RAD52. Purified Sak binds single-stranded DNA (ssDNA) preferentially over double-stranded DNA (dsDNA) and promotes the renaturation of long complementary ssDNAs. Sak also binds RecA and stimulates homologous recombination reactions. Mutations shown to modulate RAD52 DNA binding [6] affect Sak similarly. Remarkably, electron-microscopic reconstruction of Sak reveals an undecameric (11) subunit ring, similar to the crystal structure of the N-terminal fragment of human RAD52 [7, 8]. For the first time, we propose a viral homolog of RAD52 at the amino acid, phylogenic, functional, and structural levels.


Asunto(s)
Proteínas de Unión al ADN/química , Proteína Recombinante y Reparadora de ADN Rad52/química , Siphoviridae/genética , Proteínas Virales/química , Secuencia de Aminoácidos , Reparación del ADN , Proteínas de Unión al ADN/fisiología , Proteínas de Unión al ADN/ultraestructura , Humanos , Lactococcus lactis/virología , Modelos Moleculares , Datos de Secuencia Molecular , Filogenia , Proteína Recombinante y Reparadora de ADN Rad52/fisiología , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Homología Estructural de Proteína , Proteínas Virales/fisiología , Proteínas Virales/ultraestructura
16.
Elife ; 102021 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-33543712

RESUMEN

In response to double strand breaks (DSB), repair proteins accumulate at damaged sites, forming membrane-less sub-compartments or foci. Here we explored the physical nature of these foci, using single molecule microscopy in living cells. Rad52, the functional homolog of BRCA2 in yeast, accumulates at DSB sites and diffuses ~6 times faster within repair foci than the focus itself, exhibiting confined motion. The Rad52 confinement radius coincides with the focus size: foci resulting from 2 DSBs are twice larger in volume that the ones induced by a unique DSB and the Rad52 confinement radius scales accordingly. In contrast, molecules of the single strand binding protein Rfa1 follow anomalous diffusion similar to the focus itself or damaged chromatin. We conclude that while most Rfa1 molecules are bound to the ssDNA, Rad52 molecules are free to explore the entire focus reflecting the existence of a liquid droplet around damaged DNA.


Asunto(s)
Proteína Recombinante y Reparadora de ADN Rad52/química , Proteína de Replicación A/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/química , Imagen Individual de Molécula , Daño del ADN
17.
Cells ; 10(6)2021 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-34207997

RESUMEN

Homologous recombination (HR) depends on the formation of a nucleoprotein filament of the recombinase Rad51 to scan the genome and invade the homologous sequence used as a template for DNA repair synthesis. Therefore, HR is highly accurate and crucial for genome stability. Rad51 filament formation is controlled by positive and negative factors. In Saccharomyces cerevisiae, the mediator protein Rad52 catalyzes Rad51 filament formation and stabilizes them, mostly by counteracting the disruptive activity of the translocase Srs2. Srs2 activity is essential to avoid the formation of toxic Rad51 filaments, as revealed by Srs2-deficient cells. We previously reported that Rad52 SUMOylation or mutations disrupting the Rad52-Rad51 interaction suppress Rad51 filament toxicity because they disengage Rad52 from Rad51 filaments and reduce their stability. Here, we found that mutations in Rad52 N-terminal domain also suppress the DNA damage sensitivity of Srs2-deficient cells. Structural studies showed that these mutations affect the Rad52 oligomeric ring structure. Overall, in vivo and in vitro analyzes of these mutants indicate that Rad52 ring structure is important for protecting Rad51 filaments from Srs2, but can increase Rad51 filament stability and toxicity in Srs2-deficient cells. This stabilization function is distinct from Rad52 mediator and annealing activities.


Asunto(s)
ADN Helicasas/metabolismo , Recombinación Homóloga , Mutación , Recombinasa Rad51/química , Proteína Recombinante y Reparadora de ADN Rad52/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , ADN Helicasas/genética , Dominios Proteicos , Recombinasa Rad51/genética , Recombinasa Rad51/metabolismo , Proteína Recombinante y Reparadora de ADN Rad52/química , Proteína Recombinante y Reparadora de ADN Rad52/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
18.
J Biol Chem ; 284(48): 33275-84, 2009 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-19812039

RESUMEN

Saccharomyces cerevisiae Rad52 protein promotes homologous recombination by nucleating the Rad51 recombinase onto replication protein A-coated single-stranded DNA strands and also by directly annealing such strands. We show that the purified rad52-R70A mutant protein, with a compromised amino-terminal DNA binding domain, is capable of Rad51 delivery to DNA but is deficient in DNA annealing. Results from chromatin immunoprecipitation experiments find that rad52-R70A associates with DNA double-strand breaks and promotes recruitment of Rad51 as efficiently as wild-type Rad52. Analysis of gene conversion intermediates reveals that rad52-R70A cells can mediate DNA strand invasion but are unable to complete the recombination event. These results provide evidence that DNA binding by the evolutionarily conserved amino terminus of Rad52 is needed for the capture of the second DNA end during homologous recombination.


Asunto(s)
Reparación del ADN , Proteína Recombinante y Reparadora de ADN Rad52/metabolismo , Recombinación Genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Sustitución de Aminoácidos , Sitios de Unión , Inmunoprecipitación de Cromatina , Roturas del ADN de Doble Cadena , ADN de Cadena Simple , Electroforesis en Gel de Poliacrilamida , Microscopía Electrónica , Mutación , Unión Proteica , Recombinasa Rad51/genética , Recombinasa Rad51/metabolismo , Proteína Recombinante y Reparadora de ADN Rad52/química , Proteína Recombinante y Reparadora de ADN Rad52/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética
19.
Genetics ; 178(4): 2399-412, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18430957

RESUMEN

Proteins of the RAD52 epistasis group play an essential role in repair of some types of DNA damage and genetic recombination. In Schizosaccharomyces pombe, Rad22 (a Rad52 ortholog) has been shown to be as necessary for repair and recombination events during vegetative growth as its Saccharomyces cerevisiae counterpart. This finding contrasts with previous reports where, due to suppressor mutations in the fbh1 gene, rad22 mutants did not display a severe defect. We have analyzed the roles of Rad22 and Rti1, another Rad52 homolog, during meiotic recombination and meiosis in general. Both proteins play an important role in spore viability. During meiotic prophase I, they partially colocalize and partially localize to Rad51 foci and linear elements. Genetic analysis showed that meiotic interchromosomal crossover and conversion events were unexpectedly not much affected by deletion of either or both genes. A strong decrease of intrachromosomal recombination assayed by a gene duplication construct was observed. Therefore, we propose that the most important function of Rad22 and Rti1 in S. pombe meiosis is repair of double-strand breaks with involvement of the sister chromatids. In addition, a novel mating-type-related repair function of Rad22 specific to meiosis and spore germination is described.


Asunto(s)
Cromosomas Fúngicos/genética , Reparación del ADN , Proteínas de Unión al ADN/metabolismo , Meiosis , Proteína Recombinante y Reparadora de ADN Rad52/química , Recombinación Genética/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/genética , Núcleo Celular/metabolismo , Cruzamientos Genéticos , Eliminación de Gen , Genes del Tipo Sexual de los Hongos , Viabilidad Microbiana , Mitosis , Modelos Genéticos , Mutación/genética , Fenotipo , Transporte de Proteínas , Recombinasa Rad51/metabolismo , Schizosaccharomyces/citología , Schizosaccharomyces/crecimiento & desarrollo , Homología de Secuencia de Aminoácido , Esporas Fúngicas/citología , Esporas Fúngicas/genética
20.
Mol Cell Biol ; 26(10): 3752-63, 2006 May.
Artículo en Inglés | MEDLINE | ID: mdl-16648471

RESUMEN

The RAD52 gene is essential for homologous recombination in the yeast Saccharomyces cerevisiae. RAD52 is the archetype in an epistasis group of genes essential for DNA damage repair. By catalyzing the replacement of replication protein A with Rad51 on single-stranded DNA, Rad52 likely promotes strand invasion of a double-stranded DNA molecule by single-stranded DNA. Although the sequence and in vitro functions of mammalian RAD52 are conserved with those of yeast, one difference is the presence of introns and consequent splicing of the mammalian RAD52 pre-mRNA. We identified two novel splice variants from the RAD52 gene that are expressed in adult mouse tissues. Expression of these splice variants in tissue culture cells elevates the frequency of recombination that uses a sister chromatid template. To characterize this dominant phenotype further, the RAD52 gene from the yeast Saccharomyces cerevisiae was truncated to model the mammalian splice variants. The same dominant sister chromatid recombination phenotype seen in mammalian cells was also observed in yeast. Furthermore, repair from a homologous chromatid is reduced in yeast, implying that the choice of alternative repair pathways may be controlled by these variants. In addition, a dominant DNA repair defect induced by one of the variants in yeast is suppressed by overexpression of RAD51, suggesting that the Rad51-Rad52 interaction is impaired.


Asunto(s)
Empalme Alternativo , Reparación del ADN , Variación Genética , Proteína Recombinante y Reparadora de ADN Rad52/metabolismo , Intercambio de Cromátides Hermanas , Células 3T3 , Alelos , Secuencia de Aminoácidos , Animales , Células CHO , Cricetinae , Exones , Citometría de Flujo , Rayos gamma , Frecuencia de los Genes , Genes Dominantes , Intrones , Ratones , Datos de Secuencia Molecular , Proteína Recombinante y Reparadora de ADN Rad52/química , Proteína Recombinante y Reparadora de ADN Rad52/genética , Recombinación Genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Saccharomyces cerevisiae/efectos de la radiación , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Homología de Secuencia de Aminoácido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA