RESUMEN
Retinol-binding protein 4 (RBP4) is known as a highly conserved adipokine for immune activation. Aeromonas hydrophila (A. hydrophila) is the most common zoonotic pathogen in aquaculture, which causes serious economic losses to aquaculture, especially to bighead carp (Hypophthalmichthys nobilis, H. nobilis) and silver carp (Hypophthalmichthys molitrix, H. molitrix). Recent studies along with our previous findings have shown that synthetic oligodeoxynucleotides containing CpG motifs (CpG ODN) can play a good role in aquatic animals against infection. In order to clarify the relationship between CpG ODN and RBP4 under A. hydrophila infection, firstly, full-length RBP4 cDNAs from H. nobilis and H. molitrix were cloned. And characteristics of RBP4, including sequence and structure, tissue distribution and genetic evolution were analyzed. In addition, mRNA expression levels of RBP4, cytokine, toll-like receptors (TLRs), morbidity and survival rates of H. nobilis and H. molitrix were observed post CpG ODN immunization or following challenge. The results indicated that hn/hm_RBP4 (RBP4 genes obtained from H. nobilis and H. molitrix) had the highest homology with Megalobrama amblycephala. Distribution data showed that the expression level of hn_RBP4 mRNA was higher than that of hm_RBP4. After CpG ODN immunization followed by A.hydrophila challenge, significantly higher survival was observed in both carps, together with up-regulated RBP4 expression. Meanwhile, hn/hm_IL-1ß level was relatively flat (and decreased), hn/hm_IFN-γ, hn/hm_TLR4 and hn/hm_TLR9 levels increased significantly, but hn/hm_STRA6 showed no significant change, compared with control. Moreover, CpG ODN immunization could induce stronger immune protective responses (higher IFN-γ/gentle IL-1ß level and lower morbidity/higher survival rate) against A. hydrophila in H. nobilis, along with higher RBP4 level, when compared with that in H. molitrix. These results demonstrated that RBP4 was well involved in the immune protection of CpG ODN. Based on the results, we speculated that in the case of A. hydrophila infection, TLR9 signaling pathway was activated by CpG ODN. Subsequently, CpG ODN up-regulated RBP4, and RBP4 activated TLR4 signaling pathway. Then TLR4 and TLR9 synergistically improved the anti-infection responses. Our findings have good significance for improving resistance to pathogen infection in freshwater fish.
Asunto(s)
Carpas/genética , Carpas/microbiología , Infecciones por Bacterias Gramnegativas/veterinaria , Inmunización/veterinaria , Oligodesoxirribonucleótidos/administración & dosificación , Proteínas Celulares de Unión al Retinol/genética , Aeromonas hydrophila/patogenicidad , Animales , Carpas/inmunología , ADN Complementario , Infecciones por Bacterias Gramnegativas/inmunología , Infecciones por Bacterias Gramnegativas/prevención & control , Oligodesoxirribonucleótidos/inmunología , Proteínas Celulares de Unión al Retinol/química , Proteínas Celulares de Unión al Retinol/inmunología , Regulación hacia ArribaRESUMEN
BACKGROUND & AIMS: Precisely what type of cells mainly contributes to portal fibrosis, especially in chronic viral hepatitis, such as hepatic stellate cells (HSCs) in the parenchyma or myofibroblasts in the portal area, still remains unclear. It is necessary to clarify the characteristics of cells that contribute to portal fibrosis in order to determine the mechanism of portal fibrogenesis and to develop a therapeutic target for portal fibrosis. This study was undertaken to examine whether LRAT+/CRBP-1+ HSCs contribute to portal fibrosis on viral hepatitis. METHODS: Antibodies to lecithin:retinol acyltransferase (LRAT), cellular retinol-binding protein-1 (CRBP-1) and widely ascertained antibodies to HSCs (alpha-smooth muscle actin, neurotrophin-3) and endothelial cells (CD31) were used for immunohistochemical studies to assess the distribution of cells that contribute to the development of portal fibrosis with the aid of fluorescence microscopy. A quantitative analysis of LRAT+/CRBP-1+ HSCs was performed. RESULTS: The number of LRAT+/CRBP-1+ HSCs was increased in fibrotic liver in comparison with normal liver in the portal area and fibrous septa. The number of double positive cells was less than 20% of all cells/field in maximum. CONCLUSION: This study provides evidence that functional HSCs coexpressing both LRAT and CRBP-1 that continue to maintain the ability to store vitamin A contribute in part to the development of portal fibrogenesis in addition to parenchymal fibrogenesis in patients with viral hepatitis.