Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 401
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Small ; 20(16): e2308638, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38018295

RESUMEN

Immunotherapy is a promising cancer therapeutic strategy. However, the "cold" tumor immune microenvironment (TIME), characterized by insufficient immune cell infiltration and immunosuppressive status, limits the efficacy of immunotherapy. Tumor vascular abnormalities due to defective pericyte coverage are gradually recognized as a profound determinant in "cold" TIME establishment by hindering immune cell trafficking. Recently, several vascular normalization strategies by improving pericyte coverage have been reported, whereas have unsatisfactory efficacy and high rates of resistance. Herein, a combinatorial strategy to induce tumor vasculature-targeted pericyte recruitment and zinc ion-mediated immune activation with a platelet-derived growth factor B (PDGFB)-loaded, cyclo (Arg-Gly-Asp-D-Phe-Lys)-modified zeolitic imidazolate framework 8 (PDGFB@ZIF8-RGD) nanoplatform is proposed. PDGFB@ZIF8-RGD effectively induced tumor vascular normalization, which facilitated trafficking and infiltration of immune effector cells, including natural killer (NK) cells, M1-like macrophages and CD8+ T cells, into tumor microenvironment. Simultaneously, vascular normalization promoted the accumulation of zinc ions inside tumors to trigger effector cell immune activation and effector molecule production. The synergy between these two effects endowed PDGFB@ZIF8-RGD with superior capabilities in reprogramming the "cold" TIME to a "hot" TIME, thereby initiating robust antitumor immunity and suppressing tumor growth. This combinatorial strategy for improving immune effector cell infiltration and activation is a promising paradigm for solid tumor immunotherapy.


Asunto(s)
Linfocitos T CD8-positivos , Neoplasias , Humanos , Proteínas Proto-Oncogénicas c-sis/farmacología , Proteínas Proto-Oncogénicas c-sis/uso terapéutico , Neoplasias/terapia , Inmunoterapia , Oligopéptidos/uso terapéutico , Zinc/farmacología , Microambiente Tumoral
2.
Microvasc Res ; 151: 104609, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37716411

RESUMEN

OBJECTIVE: Vascular smooth muscle cell (VSMC) phenotypic switching is critical for normal vessel formation, vascular stability, and healthy brain aging. Phenotypic switching is regulated by mediators including platelet derived growth factor (PDGF)-BB, insulin-like growth factor (IGF-1), as well as transforming growth factor-ß (TGF-ß) and endothelin-1 (ET-1), but much about the role of these factors in microvascular VSMCs remains unclear. METHODS: We used primary rat microvascular VSMCs to explore PDGF-BB- and IGF-1-induced phenotypic switching. RESULTS: PDGF-BB induced an early proliferative response, followed by formation of polarized leader cells and rapid, directionally coordinated migration. In contrast, IGF-1 induced cell hypertrophy, and only a small degree of migration by unpolarized cells. TGF-ß and ET-1 selectively inhibit PDGF-BB-induced VSMC migration primarily by repressing migratory polarization and formation of leader cells. Contractile genes were downregulated by both growth factors, while other genes were differentially regulated by PDGF-BB and IGF-1. CONCLUSIONS: These studies indicate that PDGF-BB and IGF-1 stimulate different types of microvascular VSMC phenotypic switching characterized by different modes of cell migration. Our studies are consistent with a chronic vasoprotective role for IGF-1 in VSMCs in the microvasculature while PDGF is more involved in VSMC proliferation and migration in response to acute activities such as neovascularization. Better understanding of the nuances of the phenotypic switching induced by these growth factors is important for our understanding of a variety of microvascular diseases.


Asunto(s)
Factor I del Crecimiento Similar a la Insulina , Ratas , Animales , Becaplermina/farmacología , Proteínas Proto-Oncogénicas c-sis/farmacología , Proteínas Proto-Oncogénicas c-sis/metabolismo , Factor I del Crecimiento Similar a la Insulina/farmacología , Factor I del Crecimiento Similar a la Insulina/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Miocitos del Músculo Liso , Proliferación Celular , Movimiento Celular , Células Cultivadas
3.
J Vasc Res ; 60(4): 234-244, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37643584

RESUMEN

INTRODUCTION: Culturing cerebrovascular smooth muscle cells (CVSMCs) in vitro can provide a model for studying many cerebrovascular diseases. This study describes a convenient and efficient method to obtain mouse CVSMCs by enzyme digestion. METHODS: Mouse circle of Willis was isolated, digested, and cultured with platelet-derived growth factor-BB (PDGF-BB) to promote CVSMC growth, and CVSMCs were identified by morphology, immunofluorescence analysis, and flow cytometry. The effect of PDGF-BB on vascular smooth muscle cell (VSMC) proliferation was evaluated by cell counting kit (CCK)-8 assay, morphological observations, Western blotting, and flow cytometry. RESULTS: CVSMCs cultured in a PDGF-BB-free culture medium had a typical peak-to-valley growth pattern after approximately 14 days. Immunofluorescence staining and flow cytometry detected strong positive expression of the cell type-specific markers alpha-smooth muscle actin (α-SMA), smooth muscle myosin heavy chain 11 (SMMHC), smooth muscle protein 22 (SM22), calponin, and desmin. In the CCK-8 assay and Western blotting, cells incubated with PDGF-BB had significantly enhanced proliferation compared to those without PDGF-BB. CONCLUSION: We obtained highly purified VSMCs from the mouse circle of Willis using simple methods, providing experimental materials for studying the pathogenesis and treatment of neurovascular diseases in vitro. Moreover, the experimental efficiency improved with PDGF-BB, shortening the cell cultivation period.


Asunto(s)
Círculo Arterial Cerebral , Músculo Liso Vascular , Animales , Ratones , Becaplermina/farmacología , Becaplermina/metabolismo , Proteínas Proto-Oncogénicas c-sis/farmacología , Proteínas Proto-Oncogénicas c-sis/metabolismo , Músculo Liso Vascular/metabolismo , Células Cultivadas , Proliferación Celular , Miocitos del Músculo Liso/metabolismo , Movimiento Celular
4.
Int J Mol Sci ; 24(9)2023 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-37175802

RESUMEN

Platelet-derived growth factor type BB (PDGF-BB) regulates vascular smooth muscle cell (VSMC) migration and proliferation, which play critical roles in the development of vascular conditions. p90 ribosomal S6 kinase (p90RSK) can regulate various cellular processes through many different target substrates in several cell types, but the regulatory function of p90RSK on PDGF-BB-mediated cell migration and proliferation and subsequent vascular neointima formation has not yet been extensively examined. In this study, we investigated whether p90RSK inhibition protects VSMCs against PDGF-BB-induced cellular phenotypic changes and the molecular mechanisms underlying the effect of p90RSK inhibition on neointimal hyperplasia in vivo. Pretreatment of cultured primary rat VSMCs with FMK or BI-D1870, which are specific inhibitors of p90RSK, suppressed PDGF-BB-induced phenotypic changes, including migration, proliferation, and extracellular matrix accumulation, in VSMCs. Additionally, FMK and BI-D1870 repressed the PDGF-BB-induced upregulation of cyclin D1 and cyclin-dependent kinase-4 expression. Furthermore, p90RSK inhibition hindered the inhibitory effect of PDGF-BB on Cdk inhibitor p27 expression, indicating that p90RSK may induce VSMC proliferation by regulating the G0/G1 phase. Notably, treatment with FMK resulted in attenuation of neointima development in ligated carotid arteries in mice. The findings imply that p90RSK inhibition mitigates the phenotypic switch and neointimal hyperplasia induced by PDGF-BB.


Asunto(s)
Músculo Liso Vascular , Neointima , Ratas , Ratones , Animales , Becaplermina/farmacología , Becaplermina/metabolismo , Neointima/metabolismo , Hiperplasia/metabolismo , Músculo Liso Vascular/metabolismo , Proteínas Quinasas S6 Ribosómicas 90-kDa/metabolismo , Proliferación Celular , Ratas Sprague-Dawley , Movimiento Celular , Miocitos del Músculo Liso/metabolismo , Células Cultivadas , Proteínas Proto-Oncogénicas c-sis/farmacología , Proteínas Proto-Oncogénicas c-sis/metabolismo
5.
Medicina (Kaunas) ; 59(4)2023 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-37109634

RESUMEN

Human histology provides critical information on the biological potential of various regenerative protocols and biomaterials, which is vital to advancing the field of periodontal regeneration, both in research and clinical practice. Outcomes of histologic studies are particularly valuable when interpreted considering additional evidence available from pre-clinical and clinical studies. One of the best-documented growth factors areproven to have positive effects on a myriad of oral regenerative procedures is recombinant human platelet-derived growth factor-BB (rhPDGF-BB). While a systematic review of clinical studies evaluating rhPDGF in oral regenerative procedures has been recently completed, a review article that focuses on the histologic outcomes is needed. Hence, this communication discusses the histologic effects of rhPDGF-BB on oral and periodontal regenerative procedures, including root coverage and soft tissue augmentation, intrabony defects, furcation defects, peri-implant bone augmentation, and guided bone regeneration. Studies from 1989 to 2022 have been included in this review.


Asunto(s)
Defectos de Furcación , Péptidos y Proteínas de Señalización Intercelular , Humanos , Becaplermina/uso terapéutico , Proteínas Proto-Oncogénicas c-sis/farmacología , Proteínas Proto-Oncogénicas c-sis/uso terapéutico , Proteínas Recombinantes/farmacología , Proteínas Recombinantes/uso terapéutico
6.
J Cardiovasc Pharmacol ; 79(6): 914-924, 2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35266910

RESUMEN

ABSTRACT: Cystic fibrosis transmembrane conductance regulator (CFTR) plays important roles in arterial functions and the fate of cells. To further understand its function in vascular remodeling, we examined whether CFTR directly regulates platelet-derived growth factor-BB (PDGF-BB)-stimulated vascular smooth muscle cells (VSMCs) proliferation and migration, as well as the balloon injury-induced neointimal formation. The CFTR adenoviral gene delivery was used to evaluate the effects of CFTR on neointimal formation in a rat model of carotid artery balloon injury. The roles of CFTR in PDGF-BB-stimulated VSMC proliferation and migration were detected by mitochondrial tetrazolium assay, wound healing assay, transwell chamber method, western blot, and qPCR. We found that CFTR expression was declined in injured rat carotid arteries, while adenoviral overexpression of CFTR in vivo attenuated neointimal formation in carotid arteries. CFTR overexpression inhibited PDGF-BB-induced VSMC proliferation and migration, whereas CFTR silencing caused the opposite results. Mechanistically, CFTR suppressed the phosphorylation of PDGF receptor ß, serum and glucocorticoid-inducible kinase 1, JNK, p38 and ERK induced by PDGF-BB, and the increased mRNA expression of matrix metalloproteinase-9 and MMP2 induced by PDGF-BB. In conclusion, our results indicated that CFTR may attenuate neointimal formation by suppressing PDGF-BB-induced activation of serum and glucocorticoid-inducible kinase 1 and the JNK/p38/ERK signaling pathway.


Asunto(s)
Traumatismos de las Arterias Carótidas , Músculo Liso Vascular , Animales , Becaplermina/farmacología , Traumatismos de las Arterias Carótidas/genética , Traumatismos de las Arterias Carótidas/metabolismo , Movimiento Celular , Proliferación Celular , Células Cultivadas , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Regulador de Conductancia de Transmembrana de Fibrosis Quística/farmacología , Glucocorticoides/farmacología , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Neointima/metabolismo , Proteínas Proto-Oncogénicas c-sis/metabolismo , Proteínas Proto-Oncogénicas c-sis/farmacología , Ratas , Ratas Sprague-Dawley
7.
Ophthalmic Res ; 65(5): 556-565, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35584686

RESUMEN

INTRODUCTION: Retinal homeostasis is essential to avoid retinal pigment epithelium (RPE) damage resulting in photoreceptor death and blindness. Mesenchymal stem cells-based cell therapy could contribute to the maintenance of the retinal homeostasis. We have explored the effect of human uterine cervical stem cells (hUCESCs)-conditioned medium (hUCESC-CM) on RPE cells under oxidative stress condition. METHODS: ARPE-19 cells were treated with hydrogen peroxide (H2O2) in the presence or absence of hUCESC-CM. qRT-PCR and Western blot were used to evaluate the expression of oxidative stress-related (HO-1, GCLC, and HSPB1) and vasculogenesis-related (VEGFA, PDGFA, and PDGFB) factors. Also, we assessed in vitro effects of hUCESC-CM on endothelial-cell (HUVEC) tube formation. RESULTS: mRNA expression of HO-1, GCLC, HSPB1, VEGFA, PDGFA, and PDGFB were significantly increased in ARPE-19 cells treated with H2O2 + hUCESC-CM compared to cells treated with H2O2 only. Regarding the tube formation assay, HUVEC treated with supernatant from ARPE-19 cells treated with H2O2 + hUCESC-CM showed a significant increase in average vessel length, number of capillary-like junctions, and average of vessels area compared with HUVEC treated with supernatant from ARPE-19 cells treated with H2O2 only. CONCLUSION: Our results show potential therapeutic effects of hUCESC-CM on RPE, such as protection from damage by oxidative stress, stimulation of detoxifying genes, and a better vascularization.


Asunto(s)
Peróxido de Hidrógeno , Estrés Oxidativo , Supervivencia Celular , Medios de Cultivo Condicionados/metabolismo , Medios de Cultivo Condicionados/farmacología , Células Endoteliales/metabolismo , Células Epiteliales/metabolismo , Humanos , Peróxido de Hidrógeno/toxicidad , Neovascularización Patológica/metabolismo , Proteínas Proto-Oncogénicas c-sis/metabolismo , Proteínas Proto-Oncogénicas c-sis/farmacología , ARN Mensajero/metabolismo , Epitelio Pigmentado de la Retina/metabolismo , Pigmentos Retinianos/metabolismo , Células Madre
8.
Clin Oral Investig ; 25(11): 6159-6170, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33939007

RESUMEN

OBJECTIVES: We previously suggested an ovariectomy (OVX)-induced osteoporotic rat model showing an impaired alveolar bone defect healing. This study aimed to evaluate and compare the effects of recombinant human bone morphogenetic protein-2 (rhBMP-2) and recombinant human platelet-derived growth factor-BB (rhPDGF-BB) on alveolar bone defect healing in OVX-induced osteoporotic rats. MATERIALS AND METHODS: A total of forty-one female rats were divided into four groups: a collagen group (n=10), a PDGF-BB group (n=11), a BMP-2 group (n=10), and a control group (n=10). Four months after OVX, alveolar bone drill-hole defects were created and grafted with collagen gel, rhPDGF-BB/collagen gel, or rhBMP-2/collagen gel. The defects in the control group were not grafted with any material. Defect healing was evaluated by histological, histomorphometric, and microcomputed tomographic (micro-CT) analyses at 2 and 4 weeks. RESULTS: According to the micro-CT analysis, the BMP-2 group exhibited the greatest bone volume fraction among all groups, while the PDGF-BB group did not show significant differences compared with the collagen group. The histomorphometric analysis showed a significantly larger amount of new bone area in the BMP-2 group than in the control and collagen groups at 4 weeks; however, the PDGF-BB group did not reach significant superiority compared with the other groups. CONCLUSIONS: Alveolar bone regeneration was significantly enhanced by the local use of rhBMP-2/collagen gel compared with the use of rhPDGF-BB/collagen gel in OVX-induced osteoporotic rats. CLINICAL RELEVANCE: A treatment modality using rhBMP-2 may be a promising approach to promote alveolar bone regeneration in patients suffering from postmenopausal osteoporosis.


Asunto(s)
Proteína Morfogenética Ósea 2 , Regeneración Ósea , Animales , Becaplermina , Femenino , Humanos , Ovariectomía , Proteínas Proto-Oncogénicas c-sis/farmacología , Ratas , Proteínas Recombinantes , Factor de Crecimiento Transformador beta
9.
Mol Hum Reprod ; 26(8): 585-600, 2020 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-32467982

RESUMEN

Although advances in the prediction and management of ovarian hyperstimulation syndrome (OHSS) have been introduced, complete prevention is not yet possible. Previously, we and other authors have shown that vascular endothelial growth factor, angiopoietins (ANGPTs) and sphingosine-1-phosphate are involved in OHSS etiology. In addition, we have demonstrated that ovarian protein levels of platelet-derived growth factor (PDGF) ligands -B and -D decrease in an OHSS rat model, whilst PDGFR-ß and ANGPT2 remain unchanged. In the present work, we investigated the role of PDGF-B in OHSS by evaluating ligand protein levels in follicular fluid (FF) from women at risk of developing OHSS and by using an immature rat model of OHSS. We demonstrated that PDGF-B and PDGF-D are lower in FF from women at risk of developing OHSS compared to control patients (P < 0.05). In the OHSS rat model, PDGF-B (0.5 µg/ovary) administration decreased ovarian weight (P < 0.05), reduced serum progesterone (P < 0.05) and lowered the percentage of cysts (P < 0.05), compared to untreated OHSS rats, but had no effect on the proportion of follicles or corpora lutea (CL). PDGF-B treatment also restored the expression of steroidogenic acute regulatory protein (P < 0.05) and P450 cholesterol side-chain cleavage enzyme (P < 0.01) to control levels. In addition, PDGF-B increased the peri-endothelial cell area in CL and cystic structures, and reduced vascular permeability compared to untreated OHSS ovaries. Lastly, PDGF-B increased the levels of junction proteins claudin-5 (P < 0.05), occludin (P < 0.05) and ß-catenin (P < 0.05), while boosting the extracellular deposition of collagen IV surrounding the ovarian vasculature (PP < 0.01), compared to OHSS alone. In conclusion, our findings indicate that PDGF-B could be another crucial mediator in the onset and development of OHSS, which may lead to the development of novel prediction markers and therapeutic strategies.


Asunto(s)
Síndrome de Hiperestimulación Ovárica/tratamiento farmacológico , Síndrome de Hiperestimulación Ovárica/metabolismo , Proteínas Proto-Oncogénicas c-sis/farmacología , Proteínas Proto-Oncogénicas c-sis/uso terapéutico , Adulto , Animales , Western Blotting , Femenino , Humanos , Inmunohistoquímica , Ratas Sprague-Dawley
10.
J Cell Sci ; 130(9): 1583-1595, 2017 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-28289267

RESUMEN

The α6ß1-integrin is a major laminin receptor, and formation of a laminin-rich basement membrane is a key feature in tumour blood vessel stabilisation and pericyte recruitment, processes that are important in the growth and maturation of tumour blood vessels. However, the role of pericyte α6ß1-integrin in angiogenesis is largely unknown. We developed mice where the α6-integrin subunit is deleted in pericytes and examined tumour angiogenesis and growth. These mice had: (1) reduced pericyte coverage of tumour blood vessels; (2) reduced tumour blood vessel stability; (3) increased blood vessel diameter; (4) enhanced blood vessel leakiness, and (5) abnormal blood vessel basement membrane architecture. Surprisingly, tumour growth, blood vessel density and metastasis were not altered. Analysis of retinas revealed that deletion of pericyte α6-integrin did not affect physiological angiogenesis. At the molecular level, we provide evidence that pericyte α6-integrin controls PDGFRß expression and AKT-mTOR signalling. Taken together, we show that pericyte α6ß1-integrin regulates tumour blood vessels by both controlling PDGFRß and basement membrane architecture. These data establish a novel dual role for pericyte α6-integrin as modulating the blood vessel phenotype during pathological angiogenesis.


Asunto(s)
Vasos Sanguíneos/metabolismo , Integrina alfa6beta1/metabolismo , Neoplasias/irrigación sanguínea , Pericitos/metabolismo , Animales , Membrana Basal/efectos de los fármacos , Membrana Basal/metabolismo , Becaplermina , Vasos Sanguíneos/efectos de los fármacos , Vasos Sanguíneos/patología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Integrasas/metabolismo , Ratones , Metástasis de la Neoplasia , Neoplasias/metabolismo , Neoplasias/patología , Pericitos/efectos de los fármacos , Proteínas Proto-Oncogénicas c-sis/farmacología , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/metabolismo
11.
Wound Repair Regen ; 27(6): 634-649, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31219655

RESUMEN

Fibronectin (FN) is a multimodular glycoprotein that is a critical component of the extracellular matrix (ECM) anlage during embryogenesis, morphogenesis, and wound repair. Our laboratory has previously described a family of FN-derived peptides collectively called "epiviosamines" that enhance platelet-derived growth factor-BB (PDGF-BB)-driven tissue cell survival, speed burn healing, and reduce scarring. In this study, we used an agarose drop outmigration assay to report that epiviosamines can enhance PDGF-BB-stimulated adult human dermal fibroblast (AHDF) outmigration in a dose-dependent manner. Furthermore, these peptides can, when delivered topically, stimulate granulation tissue formation in vivo. A thiol-derivatized hyaluronan hydrogel cross-linked with polyethyleneglycol diacrylate (PEGDA) was used to topically deliver a cyclized epiviosamine: cP12 and a cyclized engineered variant of cP12 termed cNP8 to porcine, full-thickness, excisional wounds. Both cP12 and cNP8 exhibited dose-dependent increases in granulation tissue formation at day 4, with 600 µM cNP8 significantly enhancing new granulation tissue compared to vehicle alone. In contrast to previous studies, this study suggests that epiviosamines can be used to increase granulation tissue formation without an exogenous supply of PDGF-BB or any cell-binding peptides. Thus, epiviosamine may be useful topically to increase granulation tissue formation in acute wounds.


Asunto(s)
Movimiento Celular/genética , Fibronectinas/metabolismo , Tejido de Granulación/efectos de los fármacos , Proteínas Proto-Oncogénicas c-sis/farmacología , Heridas y Lesiones/terapia , Adulto , Animales , Supervivencia Celular/genética , Células Cultivadas , Modelos Animales de Enfermedad , Femenino , Fibroblastos/metabolismo , Fibronectinas/efectos de los fármacos , Tejido de Granulación/patología , Humanos , Masculino , Proteínas Proto-Oncogénicas c-sis/genética , Muestreo , Sensibilidad y Especificidad , Porcinos , Cicatrización de Heridas/genética , Heridas y Lesiones/patología
12.
Proc Natl Acad Sci U S A ; 113(10): 2666-71, 2016 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-26929346

RESUMEN

Testicular Leydig cells are the primary source of testosterone in males. Adult Leydig cells have been shown to arise from stem cells present in the neonatal testis. Once established, adult Leydig cells turn over only slowly during adult life, but when these cells are eliminated experimentally from the adult testis, new Leydig cells rapidly reappear. As in the neonatal testis, stem cells in the adult testis are presumed to be the source of the new Leydig cells. As yet, the mechanisms involved in regulating the proliferation and differentiation of these stem cells remain unknown. We developed a unique in vitro system of cultured seminiferous tubules to assess the ability of factors from the seminiferous tubules to regulate the proliferation of the tubule-associated stem cells, and their subsequent entry into the Leydig cell lineage. The proliferation of the stem Leydig cells was stimulated by paracrine factors including Desert hedgehog (DHH), basic fibroblast growth factor (FGF2), platelet-derived growth factor (PDGF), and activin. Suppression of proliferation occurred with transforming growth factor ß (TGF-ß). The differentiation of the stem cells was regulated positively by DHH, lithium- induced signaling, and activin, and negatively by TGF-ß, PDGFBB, and FGF2. DHH functioned as a commitment factor, inducing the transition of stem cells to the progenitor stage and thus into the Leydig cell lineage. Additionally, CD90 (Thy1) was found to be a unique stem cell surface marker that was used to obtain purified stem cells by flow cytometry.


Asunto(s)
Células Intersticiales del Testículo/metabolismo , Túbulos Seminíferos/metabolismo , Células Madre/metabolismo , Testículo/metabolismo , 3-Hidroxiesteroide Deshidrogenasas/metabolismo , Actinas/metabolismo , Animales , Becaplermina , Diferenciación Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Separación Celular , Células Cultivadas , Enzima de Desdoblamiento de la Cadena Lateral del Colesterol/metabolismo , Desmina/metabolismo , Factor 2 de Crecimiento de Fibroblastos/farmacología , Citometría de Flujo , Masculino , Microscopía Fluorescente , Proteínas Proto-Oncogénicas c-sis/farmacología , Ratas Endogámicas BN , Testículo/citología , Antígenos Thy-1/metabolismo , Técnicas de Cultivo de Tejidos
13.
Cell Physiol Biochem ; 50(5): 1740-1753, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30384378

RESUMEN

BACKGROUND/AIMS: The proliferation and migration of vascular smooth muscle cells (VSMCs) are key steps in the progression of atherosclerosis. The aim of the present study was to investigate the potential roles of salusin-α in the functions of VSMCs during the development of atherosclerosis. METHODS: In vivo, the effects of salusin-α on atherogenesis were examined in rabbits fed a cholesterol diet. The aortas were en face stained with Sudan IV to evaluate the gross atherosclerotic lesion size. The cellular components of atherosclerotic plaques were analyzed by immunohistochemical methods. In vitro, Cell Counting Kit-8 and wound-healing assays were used to assess the effects of salusin-α on VSMC proliferation and migration. In addition, western blotting was used to evaluate the total and phosphorylated levels of Akt (also known as protein kinase B) and mammalian target of rapamycin (mTOR) in VSMCs. RESULTS: Salusin-α infusion significantly reduced the aortic lesion areas of atherosclerosis, with a 39% reduction in the aortic arch, a 71% reduction in the thoracic aorta, and a 71% reduction in the abdominal aorta; plasma lipid levels were unaffected. Immunohistochemical staining showed that salusin-α decreased both macrophage- and VSMC-positively stained areas in atherosclerotic lesions by 54% and 69%, cell proliferative activity in the intima and media of arteriosclerotic lesions, and matrix metalloproteinase 2 (MMP-2) and MMP-9 expression in plaques. Studies using cultured VSMCs showed that salusin-α decreased VSMC migration and proliferation via reduced phosphorylation of Akt and mTOR. CONCLUSION: Our data indicate that salusin-α suppresses the development of atherosclerosis by inhibiting VSMC proliferation and migration through the Akt/mTOR pathway.


Asunto(s)
Proliferación Celular/efectos de los fármacos , Péptidos y Proteínas de Señalización Intercelular/farmacología , Transducción de Señal/efectos de los fármacos , Animales , Aterosclerosis/metabolismo , Aterosclerosis/patología , Becaplermina , Movimiento Celular/efectos de los fármacos , Dieta Alta en Grasa , Masculino , Metaloproteinasa 2 de la Matriz/metabolismo , Metaloproteinasa 9 de la Matriz/metabolismo , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Músculo Liso Vascular/citología , Músculo Liso Vascular/metabolismo , Fosforilación/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas c-sis/farmacología , Conejos , Ratas , Ratas Sprague-Dawley , Serina-Treonina Quinasas TOR/metabolismo
14.
Cell Physiol Biochem ; 46(4): 1566-1580, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29689557

RESUMEN

BACKGROUND/AIMS: Increasing evidence links microRNAs to the pathogenesis of peripheral vascular disease. We recently found microRNA-125b (miR-125b) to be one of the most significantly down­regulated microRNAs in human arteries with arteriosclerosis obliterans (ASO) of the lower extremities. However, its function in the process of ASO remains unclear. This study aimed to investigate the expression, regulatory mechanisms, and functions of miR-125b in the process of ASO. METHODS: Using the tissue explants adherent method, vascular smooth muscle cells (VSMCs) were prepared for this study. A rat carotid artery balloon injury model was constructed to simulate the development of vascular neointima, and a lentiviral transduction system was used to overexpress serum response factor (SRF) or miR-125b. Quantitative real­time PCR (qRT­PCR) was used to detect the expression levels of miR­125b and SRF mRNA. Western blotting was performed to determine the expression levels of SRF and Ki67. In situ hybridization analysis was used to analyze the location and expression levels of miR-125b. CCK-8 and EdU assays were used to assess cell proliferation, and transwell and wound closure assays were performed to measure cell migration. Flow cytometry was used to evaluate cell apoptosis, and a dual-luciferase reporter assay was conducted to examine the effects of miR­125b on SRF. Immunohistochemistry and immunofluorescence analyses were performed to analyze the location and expression levels of SRF and Ki67. RESULTS: miR-125b expression was decreased in ASO arteries and platelet-derived growth factor (PDGF)-BB-stimulated VSMCs. miR-125b suppressed VSMC proliferation and migration but promoted VSMC apoptosis. SRF was determined to be a direct target of miR-125b. Exogenous miR-125b expression modulated SRF expression and inhibited vascular neointimal formation in balloon-injured rat carotid arteries. CONCLUSIONS: These findings demonstrate a specific role of the miR-125b/SRF pathway in regulating VSMC function and suggest that modulating miR-125b levels might be a novel approach for treating ASO.


Asunto(s)
MicroARNs/metabolismo , Factor de Respuesta Sérica/metabolismo , Regiones no Traducidas 3' , Adulto , Anciano , Animales , Antagomirs/metabolismo , Apoptosis/efectos de los fármacos , Arteriosclerosis Obliterante/genética , Arteriosclerosis Obliterante/metabolismo , Arteriosclerosis Obliterante/patología , Secuencia de Bases , Becaplermina , Traumatismos de las Arterias Carótidas/metabolismo , Traumatismos de las Arterias Carótidas/patología , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Regulación hacia Abajo/efectos de los fármacos , Femenino , Humanos , Hibridación Fluorescente in Situ , Masculino , MicroARNs/antagonistas & inhibidores , MicroARNs/genética , Persona de Mediana Edad , Músculo Liso Vascular/citología , Músculo Liso Vascular/metabolismo , Proteínas Proto-Oncogénicas c-sis/farmacología , Ratas , Ratas Sprague-Dawley , Alineación de Secuencia , Factor de Respuesta Sérica/química , Factor de Respuesta Sérica/genética
15.
Biochem Biophys Res Commun ; 506(4): 1040-1046, 2018 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-30409428

RESUMEN

The switch of vascular smooth muscle cells (SMCs) from the contractile phenotype to proliferative one can make contributions to atherosclerosis and neointima formation. MiR-21 can prevent the rupture of advanced lesion plaques. We previously reported the protection of DNA topoisomerase II (Topo II) inhibitors against atherosclerosis and vascular calcification. However, it remains unknown if Topo II inhibitors can change SMC phenotypes. Herein, we show that teniposide protected SMC phenotype switching during atherosclerosis by enhancing expression of smooth muscle α-actin (SMA) while reducing osteopontin (OPN) expression in aortic lesion plaques. In vitro, teniposide induced expression of smooth muscle protein 22-α and calponin 1, but inhibited expression of OPN and epiregulin in human aortic SMCs (HASMCs). Moreover, teniposide attenuated platelet derived growth factor-BB-induced HASMC proliferation and migration. Mechanistically, the effect of teniposide on SMC phenotypes was completed, at least in part, by activating miR-21 expression. In addition, teniposide ameliorated ligation-induced carotid artery remodeling in C57BL/6J mice by regulating SMA and OPN expression. Taken together, our study demonstrates that teniposide regulates SMC phenotype switching by upregulating expression of contractile genes in a miR-21-dependent manner, and this function is an important anti-atherogenic mechanism of teniposide.


Asunto(s)
MicroARNs/metabolismo , Músculo Liso Vascular/citología , Miocitos del Músculo Liso/citología , Miocitos del Músculo Liso/metabolismo , Tenipósido/farmacología , Animales , Proliferación Celular/efectos de los fármacos , Femenino , Humanos , Masculino , Ratones Endogámicos C57BL , MicroARNs/genética , Contracción Muscular/efectos de los fármacos , Miocitos del Músculo Liso/efectos de los fármacos , Fenotipo , Proteínas Proto-Oncogénicas c-sis/farmacología , Remodelación Vascular/efectos de los fármacos
16.
Am J Pathol ; 187(8): 1814-1827, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28618254

RESUMEN

Duchenne muscular dystrophy (DMD) is characterized by a progressive loss of muscle fibers, and their substitution by fibrotic and adipose tissue. Many factors contribute to this process, but the molecular pathways related to regeneration and degeneration of muscle are not completely known. Platelet-derived growth factor (PDGF)-BB belongs to a family of growth factors that regulate proliferation, migration, and differentiation of mesenchymal cells. The role of PDGF-BB in muscle regeneration in humans has not been studied. We analyzed the expression of PDGF-BB in muscle biopsy samples from controls and patients with DMD. We performed in vitro experiments to understand the effects of PDGF-BB on myoblasts involved in the pathophysiology of muscular dystrophies and confirmed our results in vivo by treating the mdx murine model of DMD with repeated i.m. injections of PDGF-BB. We observed that regenerating and necrotic muscle fibers in muscle biopsy samples from DMD patients expressed PDGF-BB. In vitro, PDGF-BB attracted myoblasts and activated their proliferation. Analysis of muscles from the animals treated with PDGF-BB showed an increased population of satellite cells and an increase in the number of regenerative fibers, with a reduction in inflammatory infiltrates, compared with those in vehicle-treated mice. Based on our results, PDGF-BB may play a protective role in muscular dystrophies by enhancing muscle regeneration through activation of satellite cell proliferation and migration.


Asunto(s)
Proliferación Celular/efectos de los fármacos , Células Musculares/efectos de los fármacos , Músculo Esquelético/metabolismo , Distrofia Muscular de Duchenne/metabolismo , Proteínas Proto-Oncogénicas c-sis/metabolismo , Regeneración/efectos de los fármacos , Animales , Becaplermina , Diferenciación Celular/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Distrofina/genética , Distrofina/metabolismo , Humanos , Ratones , Ratones Endogámicos mdx , Células Musculares/metabolismo , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/patología , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/patología , Proteínas Proto-Oncogénicas c-sis/genética , Proteínas Proto-Oncogénicas c-sis/farmacología , Regeneración/genética
17.
J Vasc Surg ; 67(5): 1556-1570.e9, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-28647196

RESUMEN

OBJECTIVE: Venous valves are essential but are prone to injury, thrombosis, and fibrosis. We compared the behavior and gene expression of smooth muscle cells (SMCs) in the valve sinus vs nonvalve sites to elucidate biologic differences associated with vein valves. METHODS: Tissue explants of fresh human saphenous veins were prepared, and the migration of SMCs from explants of valve sinus vs nonvalve sinus areas was measured. Proliferation and death of SMCs were determined by staining for Ki67 and terminal deoxynucleotidyl transferase dUTP nick end labeling. Proliferation and migration of passaged valve vs nonvalve SMCs were determined by cell counts and using microchemotaxis chambers. Global gene expression in valve vs nonvalve intima-media was determined by RNA sequencing. RESULTS: Valve SMCs demonstrated greater proliferation in tissue explants compared with nonvalve SMCs (19.3% ± 5.4% vs 6.8% ± 2.0% Ki67-positive nuclei at 4 days, respectively; mean ± standard error of the mean, five veins; P < .05). This was also true for migration (18.2 ± 2.7 vs 7.5 ± 3.0 migrated SMCs/explant at 6 days, respectively; 24 veins, 15 explants/vein; P < .0001). Cell death was not different (39.6% ± 16.1% vs 41.5% ± 16.0% terminal deoxynucleotidyl transferase dUTP nick end labeling-positive cells, respectively, at 4 days, five veins). Cultured valve SMCs also proliferated faster than nonvalve SMCs in response to platelet-derived growth factor subunit BB (2.9 ± 0.2-fold vs 2.1 ± 0.2-fold of control, respectively; P < .001; n = 5 pairs of cells). This was also true for migration (6.5 ± 1.2-fold vs 4.4 ± 0.8-fold of control, respectively; P < .001; n = 7 pairs of cells). Blockade of fibroblast growth factor 2 (FGF2) inhibited the increased responses of valve SMCs but had no effect on nonvalve SMCs. Exogenous FGF2 increased migration of valve but not of nonvalve SMCs. Unlike in the isolated, cultured cells, blockade of FGF2 in the tissue explants did not block migration of valve or nonvalve SMCs from the explants. Thirty-seven genes were differentially expressed by valve compared with nonvalve intimal-medial tissue (11 veins). Peptide-mediated inhibition of SEMA3A, one of the differentially expressed genes, increased the number of migrated SMCs of valve but not of nonvalve explants. CONCLUSIONS: Valve compared with nonvalve SMCs have greater rates of migration and proliferation, which may in part explain the propensity for pathologic lesion formation in valves. Whereas FGF2 mediates these effects in cultured SMCs, the mediators of these stimulatory effects in the valve wall tissue remain unclear but may be among the differentially expressed genes discovered in this study. One of these genes, SEMA3A, mediates a valve-specific inhibitory effect on the injury response of valve SMCs.


Asunto(s)
Movimiento Celular , Proliferación Celular , Músculo Liso Vascular/patología , Miocitos del Músculo Liso/patología , Lesiones del Sistema Vascular/patología , Válvulas Venosas/patología , Becaplermina , Muerte Celular , Células Cultivadas , Factor 2 de Crecimiento de Fibroblastos/farmacología , Regulación de la Expresión Génica , Humanos , Músculo Liso Vascular/efectos de los fármacos , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/efectos de los fármacos , Miocitos del Músculo Liso/metabolismo , Neointima , Proteínas Proto-Oncogénicas c-sis/farmacología , Vena Safena/lesiones , Vena Safena/metabolismo , Vena Safena/patología , Semaforina-3A/genética , Semaforina-3A/metabolismo , Factores de Tiempo , Lesiones del Sistema Vascular/genética , Lesiones del Sistema Vascular/metabolismo , Válvulas Venosas/efectos de los fármacos , Válvulas Venosas/lesiones , Válvulas Venosas/metabolismo
18.
Respir Res ; 19(1): 120, 2018 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-29921306

RESUMEN

BACKGROUND: Platelet-derived growth factor (PDGF)-BB and its receptor PDGFR are highly expressed in pulmonary hypertension (PH) and mediate proliferation. Recently, we showed that PDGF-BB contracts pulmonary veins (PVs) and that this contraction is prevented by inhibition of PDGFR-ß (imatinib/SU6668). Here, we studied PDGF-BB-induced contraction and downstream-signalling in isolated perfused lungs (IPL) and precision-cut lung slices (PCLS) of guinea pigs (GPs). METHODS: In IPLs, PDGF-BB was perfused after or without pre-treatment with imatinib (perfused/nebulised), the effects on the pulmonary arterial pressure (PPA), the left atrial pressure (PLA) and the capillary pressure (Pcap) were studied and the precapillary (Rpre) and postcapillary resistance (Rpost) were calculated. Perfusate samples were analysed (ELISA) to detect the PDGF-BB-induced release of prostaglandin metabolites (TXA2/PGI2). In PCLS, the contractile effect of PDGF-BB was evaluated in pulmonary arteries (PAs) and PVs. In PVs, PDGF-BB-induced contraction was studied after inhibition of PDGFR-α/ß, L-Type Ca2+-channels, ROCK/PKC, prostaglandin receptors, MAP2K, p38-MAPK, PI3K-α/γ, AKT/PKB, actin polymerisation, adenyl cyclase and NO. Changes of the vascular tone were measured by videomicroscopy. In PVs, intracellular cAMP was measured by ELISA. RESULTS: In IPLs, PDGF-BB increased PPA, Pcap and Rpost. In contrast, PDGF-BB had no effect if lungs were pre-treated with imatinib (perfused/nebulised). In PCLS, PDGF-BB significantly contracted PVs/PAs which was blocked by the PDGFR-ß antagonist SU6668. In PVs, inhibition of actin polymerisation and inhibition of L-Type Ca2+-channels reduced PDGF-BB-induced contraction, whereas inhibition of ROCK/PKC had no effect. Blocking of EP1/3- and TP-receptors or inhibition of MAP2K-, p38-MAPK-, PI3K-α/γ- and AKT/PKB-signalling prevented PDGF-BB-induced contraction, whereas inhibition of EP4 only slightly reduced it. Accordingly, PDGF-BB increased TXA2 in the perfusate, whereas PGI2 was increased in all groups after 120 min and inhibition of IP-receptors did not enhance PDGF-BB-induced contraction. Moreover, PDGF-BB increased cAMP in PVs and inhibition of adenyl cyclase enhanced PDGF-BB-induced contraction, whereas inhibition of NO-formation only slightly increased it. CONCLUSIONS: PDGF-BB/PDGFR regulates the pulmonary vascular tone by the generation of prostaglandins, the increase of calcium, the activation of MAPK- or PI3K/AKT/mTOR signalling and actin remodelling. More insights in PDGF-BB downstream-signalling may contribute to develop new therapeutics for PH.


Asunto(s)
Actinas/metabolismo , Sistema de Señalización de MAP Quinasas/fisiología , Proteínas Proto-Oncogénicas c-sis/farmacología , Venas Pulmonares/fisiología , Sistema Vasomotor/metabolismo , Inductores de la Angiogénesis/farmacología , Animales , Becaplermina , Calcio/metabolismo , Femenino , Cobayas , Fosfatidilinositol 3-Quinasas/metabolismo , Inhibidores de las Quinasa Fosfoinosítidos-3 , Polimerizacion/efectos de los fármacos , Prostaglandinas/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Venas Pulmonares/efectos de los fármacos , Serina-Treonina Quinasas TOR/metabolismo , Sistema Vasomotor/efectos de los fármacos
19.
Mol Cell Biochem ; 438(1-2): 175-182, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28766166

RESUMEN

To investigate the mechanism of recombinant human platelet-derived growth factor-BB (rhPDGF-BB) and human adipose-derived stem cells (hADSCs) in the treatment of Achilles tendinitis. Biomechanical indices of stiffness, stress, and maximum load-to-failure were detected by biomechanical test. mRNA and protein levels of miR-363, p-PI3K/AKT, tendon-related genes Collagen I, Scleraxis (Scx), and Tenascin C (TNC) were measured by qRT-PCR and western blot. The proliferation of hADSCs was accessed by MTT assay. Biomechanical indices of stiffness, stress, and maximum load-to-failure, and mRNA and protein levels of tendon-related genes could be improved by rhPDGF-BB or hADSCs alone, and could be further improved by rhPDGF-BB + hADSCs. rhPDGF-BB and hADSCs downregulated the expression of miR-363 and upregulated the levels of p-PI3K/Akt, and rhPDGF-BB + hADSCs further strengthened these effects. In addition, rhPDGF-BB promoted the proliferation of hADSCs in vitro and upregulated the expression of tendon-related genes. miR-363 mimic downregulated the levels of p-PI3K/Akt, miR-363 inhibitor upregulated the levels of p-PI3K/Akt, and miR-363 mimic and PI3K/Akt pathway inhibitor LY294002 reversed the positive effect of rhPDGF-BB on the proliferation of hADSCs, which suggested that rhPDGF-BB promoted the proliferation of hADSCs via miR-363/PI3K/Akt pathway. Biomechanical indices and tendon-related genes could be improved by rhPDGF-BB and hADSCs. Moreover, rhPDGF-BB promoted the proliferation of hADSCs via miR-363/PI3K/Akt pathway, indicating that rhPDGF-BB combined with ADSCs could treat Achilles tendinitis via miR-363/PI3K/Akt pathway.


Asunto(s)
Tendón Calcáneo , Tejido Adiposo/metabolismo , Proteínas Proto-Oncogénicas c-sis/farmacología , Trasplante de Células Madre , Células Madre/metabolismo , Tendinopatía/terapia , Tejido Adiposo/patología , Animales , Becaplermina , Modelos Animales de Enfermedad , Xenoinjertos , Humanos , Ratas , Ratas Sprague-Dawley , Células Madre/patología , Tendinopatía/metabolismo , Tendinopatía/patología
20.
Arterioscler Thromb Vasc Biol ; 37(3): 446-454, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28062493

RESUMEN

OBJECTIVE: The objective of this study is to investigate the role and underlying mechanism of Olfactomedin 2 (Olfm2) in smooth muscle cell (SMC) phenotypic modulation and vascular remodeling. APPROACH AND RESULTS: Platelet-derived growth factor-BB induces Olfm2 expression in primary SMCs while modulating SMC phenotype as shown by the downregulation of SMC marker proteins. Knockdown of Olfm2 blocks platelet-derived growth factor-BB-induced SMC phenotypic modulation, proliferation, and migration. Conversely, Olfm2 overexpression inhibits SMC marker expression. Mechanistically, Olfm2 promotes the interaction of serum response factor with the runt-related transcription factor 2 that is induced by platelet-derived growth factor-BB, leading to a decreased interaction between serum response factor and myocardin, causing a repression of SMC marker gene transcription and consequently SMC phenotypic modulation. Animal studies show that Olfm2 is upregulated in balloon-injured rat carotid arteries. Knockdown of Olfm2 effectively inhibits balloon injury-induced neointima formation. Importantly, knockout of Olfm2 in mice profoundly suppresses wire injury-induced neointimal hyperplasia while restoring SMC contractile protein expression, suggesting that Olfm2 plays a critical role in SMC phenotypic modulation in vivo. CONCLUSIONS: Olfm2 is a novel factor mediating SMC phenotypic modulation. Thus, Olfm2 may be a potential target for treating injury-induced proliferative vascular diseases.


Asunto(s)
Traumatismos de las Arterias Carótidas/metabolismo , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Proteínas de la Matriz Extracelular/metabolismo , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Factor de Respuesta Sérica/metabolismo , Factores de Transcripción/metabolismo , Remodelación Vascular , Animales , Aorta Torácica/metabolismo , Becaplermina , Traumatismos de las Arterias Carótidas/genética , Traumatismos de las Arterias Carótidas/patología , Células Cultivadas , Modelos Animales de Enfermedad , Proteínas de la Matriz Extracelular/genética , Masculino , Ratones , Ratones Noqueados , Músculo Liso Vascular/efectos de los fármacos , Miocitos del Músculo Liso/efectos de los fármacos , Neointima , Proteínas Nucleares/metabolismo , Fenotipo , Unión Proteica , Proteínas Proto-Oncogénicas c-sis/farmacología , Interferencia de ARN , Ratas Sprague-Dawley , Transducción de Señal , Transactivadores/metabolismo , Transfección , Remodelación Vascular/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA